/* Node type: infiniband. * * Author: Dennis Potter * SPDX-FileCopyrightText: 2014-2023 Institute for Automation of Complex Power Systems, RWTH Aachen University * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include using namespace villas; using namespace villas::node; using namespace villas::utils; static int ib_disconnect(NodeCompat *n) { auto *ib = n->getData(); struct ibv_wc wc[MAX(ib->recv_cq_size, ib->send_cq_size)]; int wcs; n->logger->debug("Starting to clean up"); rdma_disconnect(ib->ctx.id); // If there is anything in the Completion Queue, it should be given back to the framework Receive Queue. while (ib->conn.available_recv_wrs) { wcs = ibv_poll_cq(ib->ctx.recv_cq, ib->recv_cq_size, wc); ib->conn.available_recv_wrs -= wcs; for (int j = 0; j < wcs; j++) sample_decref((struct Sample *)(intptr_t)(wc[j].wr_id)); } // Send Queue while ((wcs = ibv_poll_cq(ib->ctx.send_cq, ib->send_cq_size, wc))) for (int j = 0; j < wcs; j++) if (wc[j].wr_id > 0) sample_decref((struct Sample *)(intptr_t)(wc[j].wr_id)); // Destroy QP rdma_destroy_qp(ib->ctx.id); n->logger->debug("Destroyed QP"); return ib->stopThreads; } static void ib_build_ibv(NodeCompat *n) { auto *ib = n->getData(); int ret; n->logger->debug("Starting to build IBV components"); // Create completion queues (No completion channel!) ib->ctx.recv_cq = ibv_create_cq(ib->ctx.id->verbs, ib->recv_cq_size, nullptr, nullptr, 0); if (!ib->ctx.recv_cq) throw RuntimeError("Could not create receive completion queue"); n->logger->debug("Created receive Completion Queue"); ib->ctx.send_cq = ibv_create_cq(ib->ctx.id->verbs, ib->send_cq_size, nullptr, nullptr, 0); if (!ib->ctx.send_cq) throw RuntimeError("Could not create send completion queue"); n->logger->debug("Created send Completion Queue"); // Prepare remaining Queue Pair (QP) attributes ib->qp_init.send_cq = ib->ctx.send_cq; ib->qp_init.recv_cq = ib->ctx.recv_cq; // Create the actual QP ret = rdma_create_qp(ib->ctx.id, ib->ctx.pd, &ib->qp_init); if (ret) throw RuntimeError("Failed to create Queue Pair"); n->logger->debug("Created Queue Pair with {} receive and {} send elements", ib->qp_init.cap.max_recv_wr, ib->qp_init.cap.max_send_wr); if (ib->conn.send_inline) n->logger->info("Maximum inline size is set to {} byte", ib->qp_init.cap.max_inline_data); } static int ib_addr_resolved(NodeCompat *n) { auto *ib = n->getData(); int ret; n->logger->debug("Successfully resolved address"); // Build all components from IB Verbs ib_build_ibv(n); // Resolve address ret = rdma_resolve_route(ib->ctx.id, ib->conn.timeout); if (ret) throw RuntimeError("Failed to resolve route"); return 0; } static int ib_route_resolved(NodeCompat *n) { auto *ib = n->getData(); int ret; struct rdma_conn_param cm_params; memset(&cm_params, 0, sizeof(cm_params)); // Send connection request ret = rdma_connect(ib->ctx.id, &cm_params); if (ret) throw RuntimeError("Failed to connect"); n->logger->debug("Called rdma_connect"); return 0; } static int ib_connect_request(NodeCompat *n, struct rdma_cm_id *id) { auto *ib = n->getData(); int ret; n->logger->debug("Received a connection request!"); ib->ctx.id = id; ib_build_ibv(n); struct rdma_conn_param cm_params; memset(&cm_params, 0, sizeof(cm_params)); // Accept connection request ret = rdma_accept(ib->ctx.id, &cm_params); if (ret) throw RuntimeError("Failed to connect"); n->logger->info("Successfully accepted connection request"); return 0; } int villas::node::ib_reverse(NodeCompat *n) { auto *ib = n->getData(); SWAP(ib->conn.src_addr, ib->conn.dst_addr); return 0; } int villas::node::ib_parse(NodeCompat *n, json_t *json) { auto *ib = n->getData(); throw ConfigError(json, "The infiniband node-type is currently broken!"); int ret; char *local = nullptr, *remote = nullptr, *lasts; const char *transport_mode = "RC"; int timeout = 1000; int recv_cq_size = 128; int send_cq_size = 128; int max_send_wr = 128; int max_recv_wr = 128; int max_inline_data = 0; int send_inline = 1; int vectorize_in = 1; int vectorize_out = 1; int buffer_subtraction = 16; int use_fallback = 1; // Parse JSON files and copy to local variables json_t *json_in = nullptr; json_t *json_out = nullptr; json_error_t err; ret = json_unpack_ex(json, &err, 0, "{ s?: o, s?: o, s?: s }", "in", &json_in, "out", &json_out, "rdma_transport_mode", &transport_mode); if (ret) throw ConfigError(json, err, "node-config-node-ib"); if (json_in) { ret = json_unpack_ex( json_in, &err, 0, "{ s?: s, s?: i, s?: i, s?: i, s?: i}", "address", &local, "cq_size", &recv_cq_size, "max_wrs", &max_recv_wr, "vectorize", &vectorize_in, "buffer_subtraction", &buffer_subtraction); if (ret) throw ConfigError(json_in, err, "node-config-node-ib-in"); } if (json_out) { ret = json_unpack_ex( json_out, &err, 0, "{ s?: s, s?: i, s?: i, s?: i, s?: i, s?: b, s?: i, s?: b, s?: i}", "address", &remote, "resolution_timeout", &timeout, "cq_size", &send_cq_size, "max_wrs", &max_send_wr, "max_inline_data", &max_inline_data, "send_inline", &send_inline, "vectorize", &vectorize_out, "use_fallback", &use_fallback, "periodic_signaling", &ib->periodic_signaling); if (ret) throw ConfigError(json_out, err, "node-config-node-ib-out"); if (remote) { ib->is_source = 1; n->logger->debug("Setup as source and target"); } } else { ib->is_source = 0; n->logger->debug("Setup as target"); } // Set fallback mode ib->conn.use_fallback = use_fallback; // Set vectorize mode. Do not print, since framework will print this information n->in.vectorize = vectorize_in; n->out.vectorize = vectorize_out; // Set buffer subtraction ib->conn.buffer_subtraction = buffer_subtraction; n->logger->debug("Set buffer subtraction to {}", buffer_subtraction); // Translate IP:PORT to a struct addrinfo char *ip_adr = strtok_r(local, ":", &lasts); char *port = strtok_r(nullptr, ":", &lasts); ret = getaddrinfo(ip_adr, port, nullptr, &ib->conn.src_addr); if (ret) throw RuntimeError("Failed to resolve local address '{}': {}", local, gai_strerror(ret)); n->logger->debug("Translated {}:{} to a struct addrinfo", ip_adr, port); // Translate port space if (strcmp(transport_mode, "RC") == 0) { ib->conn.port_space = RDMA_PS_TCP; ib->qp_init.qp_type = IBV_QPT_RC; } else if (strcmp(transport_mode, "UC") == 0) { #ifdef RDMA_CMA_H_CUSTOM ib->conn.port_space = RDMA_PS_IB; ib->qp_init.qp_type = IBV_QPT_UC; #else throw RuntimeError("Unreliable Connected (UC) mode is only available with " "an adapted version of librdma. " "Please read the Infiniband node type Documentation for " "more information on UC!"); #endif } else if (strcmp(transport_mode, "UD") == 0) { ib->conn.port_space = RDMA_PS_UDP; ib->qp_init.qp_type = IBV_QPT_UD; } else throw RuntimeError("Invalid transport_mode = '{}'!", transport_mode); n->logger->debug("Set transport mode to {}", transport_mode); // Set timeout ib->conn.timeout = timeout; n->logger->debug("Set timeout to {}", timeout); // Set completion queue size ib->recv_cq_size = recv_cq_size; ib->send_cq_size = send_cq_size; n->logger->debug("Set Completion Queue size to {} & {} (in & out)", recv_cq_size, send_cq_size); // Translate inline mode ib->conn.send_inline = send_inline; n->logger->debug("Set send_inline to {}", send_inline); // Set max. send and receive Work Requests ib->qp_init.cap.max_send_wr = max_send_wr; ib->qp_init.cap.max_recv_wr = max_recv_wr; n->logger->debug("Set max_send_wr and max_recv_wr to {} and {}, respectively", max_send_wr, max_recv_wr); // Set available receive Work Requests to 0 ib->conn.available_recv_wrs = 0; // Set remaining QP attributes ib->qp_init.cap.max_send_sge = 4; ib->qp_init.cap.max_recv_sge = (ib->conn.port_space == RDMA_PS_UDP) ? 5 : 4; // Set number of bytes to be send inline ib->qp_init.cap.max_inline_data = max_inline_data; // If node will send data, set remote address if (ib->is_source) { // Translate address info char *ip_adr = strtok_r(remote, ":", &lasts); char *port = strtok_r(nullptr, ":", &lasts); ret = getaddrinfo(ip_adr, port, nullptr, &ib->conn.dst_addr); if (ret) throw RuntimeError("Failed to resolve remote address '{}': {}", remote, gai_strerror(ret)); n->logger->debug("Translated {}:{} to a struct addrinfo", ip_adr, port); } return 0; } int villas::node::ib_check(NodeCompat *n) { auto *ib = n->getData(); // Check if read substraction makes sense if (ib->conn.buffer_subtraction < 2 * n->in.vectorize) throw RuntimeError( "The buffer substraction value must be bigger than 2 * in.vectorize"); if (ib->conn.buffer_subtraction >= ib->qp_init.cap.max_recv_wr - n->in.vectorize) throw RuntimeError("The buffer substraction value cannot be bigger than " "in.max_wrs - in.vectorize"); // Check if the set value is a power of 2, and warn the user if this is not the case unsigned max_send_pow = (int)pow(2, ceil(log2(ib->qp_init.cap.max_send_wr))); unsigned max_recv_pow = (int)pow(2, ceil(log2(ib->qp_init.cap.max_recv_wr))); if (ib->qp_init.cap.max_send_wr != max_send_pow) { n->logger->warn("Max nr. of send WRs ({}) is not a power of 2! It will be " "changed to a power of 2: {}", ib->qp_init.cap.max_send_wr, max_send_pow); // Change it now, because otherwise errors are possible in ib_start(). ib->qp_init.cap.max_send_wr = max_send_pow; } if (ib->qp_init.cap.max_recv_wr != max_recv_pow) { n->logger->warn("Max nr. of recv WRs ({}) is not a power of 2! It will be " "changed to a power of 2: {}", ib->qp_init.cap.max_recv_wr, max_recv_pow); // Change it now, because otherwise errors are possible in ib_start(). ib->qp_init.cap.max_recv_wr = max_recv_pow; } // Check maximum size of max_recv_wr and max_send_wr if (ib->qp_init.cap.max_send_wr > 8192) n->logger->warn("Max number of send WRs ({}) is bigger than send queue!", ib->qp_init.cap.max_send_wr); if (ib->qp_init.cap.max_recv_wr > 8192) n->logger->warn("Max number of receive WRs ({}) is bigger than send queue!", ib->qp_init.cap.max_recv_wr); /* Set periodic signaling * This is done here, so that it uses the checked max_send_wr value */ if (ib->periodic_signaling == 0) ib->periodic_signaling = ib->qp_init.cap.max_send_wr / 2; // Warn user if he changed the default inline value if (ib->qp_init.cap.max_inline_data != 0) n->logger->warn("You changed the default value of max_inline_data. This " "might influence the maximum number " "of outstanding Work Requests in the Queue Pair and can be " "a reason for the Queue Pair creation to fail"); return 0; } char *villas::node::ib_print(NodeCompat *n) { return 0; } int villas::node::ib_destroy(NodeCompat *n) { return 0; } static void ib_create_bind_id(NodeCompat *n) { auto *ib = n->getData(); int ret; /* Create rdma_cm_id * * The unreliable connected mode is officially not supported by the rdma_cm library. Only the Reliable * Connected mode (RDMA_PS_TCP) and the Unreliable Datagram mode (RDMA_PS_UDP). Although it is not officially * supported, it is possible to use it with a few small adaptions to the sourcecode. To enable the * support for UC connections follow the steps below: * * 1. git clone https://github.com/linux-rdma/rdma-core * 2. cd rdma-core * 2. Edit librdmacm/cma.c and remove the keyword 'static' in front of: * * static int rdma_create_id2(struct rdma_event_channel *channel, * struct rdma_cm_id **id, void *context, * enum rdma_port_space ps, enum ibv_qp_type qp_type) * * 3. Edit librdmacm/rdma_cma.h and add the following two entries to the file: * * #define RDMA_CMA_H_CUSTOM * * int rdma_create_id2(struct rdma_event_channel *channel, * struct rdma_cm_id **id, void *context, * enum rdma_port_space ps, enum ibv_qp_type qp_type); * * 4. Edit librdmacm/librdmacm.map and add a new line with: * * rdma_create_id2 * * 5. ./build.sh * 6. cd build && sudo make install * */ #ifdef RDMA_CMA_H_CUSTOM ret = rdma_create_id2(ib->ctx.ec, &ib->ctx.id, nullptr, ib->conn.port_space, ib->qp_init.qp_type); #else ret = rdma_create_id(ib->ctx.ec, &ib->ctx.id, nullptr, ib->conn.port_space); #endif if (ret) throw RuntimeError("Failed to create rdma_cm_id: {}", gai_strerror(ret)); n->logger->debug("Created rdma_cm_id"); // Bind rdma_cm_id to the HCA ret = rdma_bind_addr(ib->ctx.id, ib->conn.src_addr->ai_addr); if (ret) throw RuntimeError("Failed to bind to local device: {}", gai_strerror(ret)); n->logger->debug("Bound rdma_cm_id to Infiniband device"); /* The ID will be overwritten for the target. If the event type is * RDMA_CM_EVENT_CONNECT_REQUEST, >then this references a new id for * that communication. */ ib->ctx.listen_id = ib->ctx.id; } static void ib_continue_as_listen(NodeCompat *n, struct rdma_cm_event *event) { auto *ib = n->getData(); int ret; if (ib->conn.use_fallback) n->logger->warn("Trying to continue as listening node"); else throw RuntimeError("Cannot establish a connection with remote host! If you " "want that {} tries to " "continue as listening node in such cases, set " "use_fallback = true in the configuration"); n->setState(State::STARTED); // Acknowledge event rdma_ack_cm_event(event); // Destroy ID rdma_destroy_id(ib->ctx.listen_id); // Create rdma_cm_id and bind to device ib_create_bind_id(n); // Listen to id for events ret = rdma_listen(ib->ctx.listen_id, 10); if (ret) throw RuntimeError("Failed to listen to rdma_cm_id"); // Node is not a source (and will not send data ib->is_source = 0; n->logger->info("Use listening mode"); } static void *ib_rdma_cm_event_thread(void *ctx) { auto *n = (NodeCompat *)ctx; auto *ib = n->getData(); struct rdma_cm_event *event; int ret = 0; n->logger->debug("Started rdma_cm_event thread"); // Wait until node is completely started while (n->getState() != State::STARTED) ; // Monitor event channel while (rdma_get_cm_event(ib->ctx.ec, &event) == 0) { n->logger->debug("Received communication event: {}", rdma_event_str(event->event)); switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: ret = ib_addr_resolved(n); break; case RDMA_CM_EVENT_ADDR_ERROR: n->logger->warn("Address resolution (rdma_resolve_addr) failed!"); ib_continue_as_listen(n, event); break; case RDMA_CM_EVENT_ROUTE_RESOLVED: ret = ib_route_resolved(n); break; case RDMA_CM_EVENT_ROUTE_ERROR: n->logger->warn("Route resolution (rdma_resovle_route) failed!"); ib_continue_as_listen(n, event); break; case RDMA_CM_EVENT_UNREACHABLE: n->logger->warn("Remote server unreachable!"); ib_continue_as_listen(n, event); break; case RDMA_CM_EVENT_CONNECT_REQUEST: ret = ib_connect_request(n, event->id); /* A target UDP node will never really connect. In order to receive data, * we set it to connected after it answered the connection request * with rdma_connect. */ if (ib->conn.port_space == RDMA_PS_UDP && !ib->is_source) n->setState(State::CONNECTED); else n->setState(State::PENDING_CONNECT); break; case RDMA_CM_EVENT_CONNECT_ERROR: n->logger->warn( "An error has occurred trying to establish a connection!"); ib_continue_as_listen(n, event); break; case RDMA_CM_EVENT_REJECTED: n->logger->warn("Connection request or response was rejected by the " "remote end point!"); ib_continue_as_listen(n, event); break; case RDMA_CM_EVENT_ESTABLISHED: // If the connection is unreliable connectionless, set appropriate variables if (ib->conn.port_space == RDMA_PS_UDP) { ib->conn.ud.ud = event->param.ud; ib->conn.ud.ah = ibv_create_ah(ib->ctx.pd, &ib->conn.ud.ud.ah_attr); } n->setState(State::CONNECTED); n->logger->info("Connection established"); break; case RDMA_CM_EVENT_DISCONNECTED: n->setState(State::STARTED); ret = ib_disconnect(n); if (!ret) n->logger->info("Host disconnected. Ready to accept new connections."); break; case RDMA_CM_EVENT_TIMEWAIT_EXIT: break; default: throw RuntimeError("Unknown event occurred: {}", event->event); } rdma_ack_cm_event(event); if (ret) break; } return nullptr; } int villas::node::ib_start(NodeCompat *n) { auto *ib = n->getData(); int ret; n->logger->debug("Started ib_start"); // Create event channel ib->ctx.ec = rdma_create_event_channel(); if (!ib->ctx.ec) throw RuntimeError("Failed to create event channel!"); n->logger->debug("Created event channel"); // Create rdma_cm_id and bind to device ib_create_bind_id(n); n->logger->debug("Initialized Work Completion Buffer"); // Resolve address or listen to rdma_cm_id if (ib->is_source) { // Resolve address ret = rdma_resolve_addr(ib->ctx.id, nullptr, ib->conn.dst_addr->ai_addr, ib->conn.timeout); if (ret) throw RuntimeError("Failed to resolve remote address after {}ms: {}", ib->conn.timeout, gai_strerror(ret)); } else { // Listen on rdma_cm_id for events ret = rdma_listen(ib->ctx.listen_id, 10); if (ret) throw RuntimeError("Failed to listen to rdma_cm_id"); n->logger->debug("Started to listen to rdma_cm_id"); } // Allocate protection domain ib->ctx.pd = ibv_alloc_pd(ib->ctx.id->verbs); if (!ib->ctx.pd) throw RuntimeError("Could not allocate protection domain"); n->logger->debug("Allocated Protection Domain"); // Allocate space for 40 Byte GHR. We don't use this. if (ib->conn.port_space == RDMA_PS_UDP) { ib->conn.ud.grh_ptr = new char[GRH_SIZE]; if (!ib->conn.ud.grh_ptr) throw MemoryAllocationError(); ib->conn.ud.grh_mr = ibv_reg_mr(ib->ctx.pd, ib->conn.ud.grh_ptr, GRH_SIZE, IBV_ACCESS_LOCAL_WRITE); } /* Several events should occur on the event channel, to make * sure the nodes are succesfully connected. */ n->logger->debug("Starting to monitor events on rdma_cm_id"); // Create thread to monitor rdma_cm_event channel ret = pthread_create(&ib->conn.rdma_cm_event_thread, nullptr, ib_rdma_cm_event_thread, n); if (ret) throw RuntimeError("Failed to create thread to monitor rdma_cm events: {}", gai_strerror(ret)); return 0; } int villas::node::ib_stop(NodeCompat *n) { auto *ib = n->getData(); int ret; n->logger->debug("Called ib_stop"); ib->stopThreads = 1; /* Call RDMA disconnect function * Will flush all outstanding WRs to the Completion Queue and * will call RDMA_CM_EVENT_DISCONNECTED if that is done. */ if (n->getState() == State::CONNECTED && ib->conn.port_space != RDMA_PS_UDP) { ret = rdma_disconnect(ib->ctx.id); if (ret) throw RuntimeError("Error while calling rdma_disconnect: {}", gai_strerror(ret)); n->logger->debug("Called rdma_disconnect"); } else { pthread_cancel(ib->conn.rdma_cm_event_thread); n->logger->debug( "Called pthread_cancel() on communication management thread."); } n->logger->info("Disconnecting... Waiting for threads to join."); // Wait for event thread to join ret = pthread_join(ib->conn.rdma_cm_event_thread, nullptr); if (ret) throw RuntimeError("Error while joining rdma_cm_event_thread: {}", ret); n->logger->debug("Joined rdma_cm_event_thread"); // Destroy RDMA CM ID rdma_destroy_id(ib->ctx.id); n->logger->debug("Destroyed rdma_cm_id"); // Dealloc Protection Domain ibv_dealloc_pd(ib->ctx.pd); n->logger->debug("Destroyed protection domain"); // Destroy event channel rdma_destroy_event_channel(ib->ctx.ec); n->logger->debug("Destroyed event channel"); n->logger->info("Successfully stopped node"); return 0; } int villas::node::ib_read(NodeCompat *n, struct Sample *const smps[], unsigned cnt) { auto *ib = n->getData(); struct ibv_wc wc[cnt]; struct ibv_recv_wr wr[cnt], *bad_wr = nullptr; struct ibv_sge sge[cnt][ib->qp_init.cap.max_recv_sge]; struct ibv_mr *mr; struct timespec ts_receive; int ret = 0, wcs = 0, read_values = 0, max_wr_post; n->logger->debug("ib_read is called"); if (n->getState() == State::CONNECTED || n->getState() == State::PENDING_CONNECT) { max_wr_post = cnt; /* Poll Completion Queue * If we've already posted enough receive WRs, try to pull cnt */ if (ib->conn.available_recv_wrs >= (ib->qp_init.cap.max_recv_wr - ib->conn.buffer_subtraction)) { for (int i = 0;; i++) { if (i % CHK_PER_ITER == CHK_PER_ITER - 1) pthread_testcancel(); /* If IB node disconnects or if it is still in State::PENDING_CONNECT, ib_read * should return immediately if this condition holds */ if (n->getState() != State::CONNECTED) return 0; wcs = ibv_poll_cq(ib->ctx.recv_cq, cnt, wc); if (wcs) { // Get time directly after something arrived in Completion Queue ts_receive = time_now(); n->logger->debug("Received {} Work Completions", wcs); read_values = wcs; // Value to return max_wr_post = wcs; // Make space free in smps[] break; } } /* All samples (wcs * received + unposted) should be released. Let * *release be equal to allocated. * * This is set in the framework, before this function was called. */ } else { ib->conn.available_recv_wrs += max_wr_post; // TODO: fix release logic // *release = 0; // While we fill the receive queue, we always use all samples } // Get Memory Region mr = memory::ib_get_mr(pool_buffer(sample_pool(smps[0]))); for (int i = 0; i < max_wr_post; i++) { int j = 0; // Prepare receive Scatter/Gather element // First 40 byte of UD data are GRH and unused in our case if (ib->conn.port_space == RDMA_PS_UDP) { sge[i][j].addr = (uint64_t)ib->conn.ud.grh_ptr; sge[i][j].length = GRH_SIZE; sge[i][j].lkey = ib->conn.ud.grh_mr->lkey; j++; } // Sequence sge[i][j].addr = (uint64_t)&smps[i]->sequence; sge[i][j].length = sizeof(smps[i]->sequence); sge[i][j].lkey = mr->lkey; j++; // Timespec origin sge[i][j].addr = (uint64_t)&smps[i]->ts.origin; sge[i][j].length = sizeof(smps[i]->ts.origin); sge[i][j].lkey = mr->lkey; j++; sge[i][j].addr = (uint64_t)&smps[i]->data; sge[i][j].length = SAMPLE_DATA_LENGTH(DEFAULT_SAMPLE_LENGTH); sge[i][j].lkey = mr->lkey; j++; // Prepare a receive Work Request wr[i].wr_id = (uintptr_t)smps[i]; wr[i].next = &wr[i + 1]; wr[i].sg_list = sge[i]; wr[i].num_sge = j; } wr[max_wr_post - 1].next = nullptr; n->logger->debug("Prepared {} new receive Work Requests", max_wr_post); n->logger->debug("{} receive Work Requests in Receive Queue", ib->conn.available_recv_wrs); // Post list of Work Requests ret = ibv_post_recv(ib->ctx.id->qp, &wr[0], &bad_wr); if (ret) throw RuntimeError("Was unable to post receive WR: {}, bad WR ID: {:#x}", ret, bad_wr->wr_id); n->logger->debug("Succesfully posted receive Work Requests"); // Doesn't start if wcs == 0 for (int j = 0; j < wcs; j++) { if (!((wc[j].opcode & IBV_WC_RECV) && wc[j].status == IBV_WC_SUCCESS)) { // Drop all values, we don't know where the error occured read_values = 0; } if (wc[j].status == IBV_WC_WR_FLUSH_ERR) n->logger->debug("Received IBV_WC_WR_FLUSH_ERR (ib_read). Ignore it."); else if (wc[j].status != IBV_WC_SUCCESS) n->logger->warn("Work Completion status was not IBV_WC_SUCCESS: {}", wc[j].status); /* 32 byte of meta data is always transferred. We should substract it. * Furthermore, in case of an unreliable connection, a 40 byte * global routing header is transferred. This should be substracted as well. */ int correction = (ib->conn.port_space == RDMA_PS_UDP) ? META_GRH_SIZE : META_SIZE; // TODO: fix release logic // smps[j] = (struct Sample *) (wc[j].wr_id); smps[j]->length = SAMPLE_NUMBER_OF_VALUES(wc[j].byte_len - correction); smps[j]->ts.received = ts_receive; smps[j]->flags = (int)SampleFlags::HAS_TS_ORIGIN | (int)SampleFlags::HAS_TS_RECEIVED | (int)SampleFlags::HAS_SEQUENCE; smps[j]->signals = n->getInputSignals(false); } } return read_values; } int villas::node::ib_write(NodeCompat *n, struct Sample *const smps[], unsigned cnt) { auto *ib = n->getData(); struct ibv_send_wr wr[cnt], *bad_wr = nullptr; struct ibv_sge sge[cnt][ib->qp_init.cap.max_recv_sge]; struct ibv_wc wc[cnt]; struct ibv_mr *mr; int ret; unsigned sent = 0; // Used for first loop: prepare work requests to post to send queue n->logger->debug("ib_write is called"); if (n->getState() == State::CONNECTED) { // TODO: fix release logic // *release = 0; // First, write // Get Memory Region mr = memory::ib_get_mr(pool_buffer(sample_pool(smps[0]))); for (sent = 0; sent < cnt; sent++) { int j = 0; // Set Scatter/Gather element to data of sample // Sequence sge[sent][j].addr = (uint64_t)&smps[sent]->sequence; sge[sent][j].length = sizeof(smps[sent]->sequence); sge[sent][j].lkey = mr->lkey; j++; // Timespec origin sge[sent][j].addr = (uint64_t)&smps[sent]->ts.origin; sge[sent][j].length = sizeof(smps[sent]->ts.origin); sge[sent][j].lkey = mr->lkey; j++; // Actual Payload sge[sent][j].addr = (uint64_t)&smps[sent]->data; sge[sent][j].length = SAMPLE_DATA_LENGTH(smps[sent]->length); sge[sent][j].lkey = mr->lkey; j++; // Check if connection is connected or unconnected and set appropriate values if (ib->conn.port_space == RDMA_PS_UDP) { wr[sent].wr.ud.ah = ib->conn.ud.ah; wr[sent].wr.ud.remote_qkey = ib->conn.ud.ud.qkey; wr[sent].wr.ud.remote_qpn = ib->conn.ud.ud.qp_num; } /* Check if data can be send inline * 32 byte meta data is always send. * Once every max_send_wr iterations a signal must be generated. Since we would need * an additional buffer if we were sending inlines with IBV_SEND_SIGNALED, we prefer * to send one samples every max_send_wr NOT inline (which thus generates a signal). */ int send_inline = ((sge[sent][j - 1].length + META_SIZE) < ib->qp_init.cap.max_inline_data) && ((++ib->signaling_counter % ib->periodic_signaling) != 0) ? ib->conn.send_inline : 0; n->logger->debug("Sample will be send inline [0/1]: {}", send_inline); // Set Send Work Request wr[sent].wr_id = (uintptr_t)smps[sent]; wr[sent].sg_list = sge[sent]; wr[sent].num_sge = j; wr[sent].next = &wr[sent + 1]; wr[sent].send_flags = send_inline ? IBV_SEND_INLINE : IBV_SEND_SIGNALED; wr[sent].opcode = IBV_WR_SEND; } n->logger->debug("Prepared {} send Work Requests", cnt); wr[cnt - 1].next = nullptr; // Send linked list of Work Requests ret = ibv_post_send(ib->ctx.id->qp, wr, &bad_wr); n->logger->debug("Posted send Work Requests"); /* Reorder list. Place inline and unposted samples to the top * m will always be equal or smaller than *release */ for (unsigned m = 0; m < cnt; m++) { /* We can't use wr_id as identifier, since it is 0 for inline * elements */ if (ret && (wr[m].sg_list == bad_wr->sg_list)) { /* The remaining work requests will be bad. Ripple through list * and prepare them to be released */ n->logger->debug( "Bad WR occured with ID: {:#x} and S/G address: {:#x}: {}", bad_wr->wr_id, (void *)bad_wr->sg_list, ret); while (1) { // TODO: fix release logic // smps[*release] = smps[m]; // (*release)++; // Increment number of samples to be released sent--; // Decrement the number of successfully posted elements if (++m == cnt) break; } } else if (wr[m].send_flags & IBV_SEND_INLINE) { // TODO: fix release logic // smps[*release] = smps[m]; // (*release)++; } } // TODO: fix release logic // n->logger->debug("{} samples will be released (before WC)", *release); // Try to grab as many CQEs from CQ as there is space in *smps[] // ret = ibv_poll_cq(ib->ctx.send_cq, cnt - *release, wc); for (int i = 0; i < ret; i++) { if (wc[i].status != IBV_WC_SUCCESS && wc[i].status != IBV_WC_WR_FLUSH_ERR) n->logger->warn("Work Completion status was not IBV_WC_SUCCESS: {}", wc[i].status); // TODO: fix release logic // smps[*release] = (struct Sample *) (wc[i].wr_id); // (*release)++; } // TODO: fix release logic // n->logger->debug("{} samples will be released (after WC)", *release); } return sent; } static NodeCompatType p; __attribute__((constructor(110))) static void register_plugin() { p.name = "infiniband"; p.description = "Infiniband interface (libibverbs, librdmacm)"; p.vectorize = 0; p.size = sizeof(struct infiniband); // TODO: fix // p.pool_size = 8192; p.destroy = ib_destroy; p.parse = ib_parse; p.check = ib_check; p.print = ib_print; p.start = ib_start; p.stop = ib_stop; p.read = ib_read; p.write = ib_write; p.reverse = ib_reverse; p.memory_type = memory::ib; static NodeCompatFactory ncp(&p); }