/** Node-type for uldaq connections. * * @file * @author Manuel Pitz * @author Steffen Vogel * @copyright 2014-2020, Institute for Automation of Complex Power Systems, EONERC * @license GNU General Public License (version 3) * * VILLASnode * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *********************************************************************************/ #include #include #include #include #include #include #include using namespace villas; using namespace villas::node; using namespace villas::utils; static unsigned num_devs = ULDAQ_MAX_DEV_COUNT; static DaqDeviceDescriptor descriptors[ULDAQ_MAX_DEV_COUNT]; static const struct { const char *name; AiInputMode mode; } input_modes[] = { { "differential", AI_DIFFERENTIAL }, { "single-ended", AI_SINGLE_ENDED }, { "pseudo-differential", AI_PSEUDO_DIFFERENTIAL } }; static const struct { const char *name; DaqDeviceInterface interface; } interface_types[] = { { "usb", USB_IFC }, { "bluetooth", BLUETOOTH_IFC }, { "ethernet", ETHERNET_IFC }, { "any", ANY_IFC } }; static const struct { const char *name; Range range; float min, max; } ranges[] = { { "bipolar-60", BIP60VOLTS, -60.0, +60.0 }, { "bipolar-60", BIP60VOLTS, -60.0, +60.0 }, { "bipolar-30", BIP30VOLTS, -30.0, +30.0 }, { "bipolar-15", BIP15VOLTS, -15.0, +15.0 }, { "bipolar-20", BIP20VOLTS, -20.0, +20.0 }, { "bipolar-10", BIP10VOLTS, -10.0, +10.0 }, { "bipolar-5", BIP5VOLTS, -5.0, +5.0 }, { "bipolar-4", BIP4VOLTS, -4.0, +4.0 }, { "bipolar-2.5", BIP2PT5VOLTS, -2.5, +2.5 }, { "bipolar-2", BIP2VOLTS, -2.0, +2.0 }, { "bipolar-1.25", BIP1PT25VOLTS, -1.25, +1.25 }, { "bipolar-1", BIP1VOLTS, -1.0, +1.0 }, { "bipolar-0.625", BIPPT625VOLTS, -0.625, +0.625 }, { "bipolar-0.5", BIPPT5VOLTS, -0.5, +0.5 }, { "bipolar-0.25", BIPPT25VOLTS, -0.25, +0.25 }, { "bipolar-0.125", BIPPT125VOLTS, -0.125, +0.125 }, { "bipolar-0.2", BIPPT2VOLTS, -0.2, +0.2 }, { "bipolar-0.1", BIPPT1VOLTS, -0.1, +0.1 }, { "bipolar-0.078", BIPPT078VOLTS, -0.078, +0.078 }, { "bipolar-0.05", BIPPT05VOLTS, -0.05, +0.05 }, { "bipolar-0.01", BIPPT01VOLTS, -0.01, +0.01 }, { "bipolar-0.005", BIPPT005VOLTS, -0.005, +0.005 }, { "unipolar-60", UNI60VOLTS , 0.0, +60.0 }, { "unipolar-30", UNI30VOLTS , 0.0, +30.0 }, { "unipolar-15", UNI15VOLTS , 0.0, +15.0 }, { "unipolar-20", UNI20VOLTS , 0.0, +20.0 }, { "unipolar-10", UNI10VOLTS , 0.0, +10.0 }, { "unipolar-5", UNI5VOLTS , 0.0, +5.0 }, { "unipolar-4", UNI4VOLTS , 0.0, +4.0 }, { "unipolar-2.5", UNI2PT5VOLTS, 0.0, +2.5 }, { "unipolar-2", UNI2VOLTS , 0.0, +2.0 }, { "unipolar-1.25", UNI1PT25VOLTS, 0.0, +1.25 }, { "unipolar-1", UNI1VOLTS , 0.0, +1.0 }, { "unipolar-0.625", UNIPT625VOLTS, 0.0, +0.625 }, { "unipolar-0.5", UNIPT5VOLTS, 0.0, +0.5 }, { "unipolar-0.25", UNIPT25VOLTS, 0.0, +0.25 }, { "unipolar-0.125", UNIPT125VOLTS, 0.0, +0.125 }, { "unipolar-0.2", UNIPT2VOLTS, 0.0, +0.2 }, { "unipolar-0.1", UNIPT1VOLTS, 0.0, +0.1 }, { "unipolar-0.078", UNIPT078VOLTS, 0.0, +0.078 }, { "unipolar-0.05", UNIPT05VOLTS, 0.0, +0.05 }, { "unipolar-0.01", UNIPT01VOLTS, 0.0, +0.01 }, { "unipolar-0.005", UNIPT005VOLTS, 0.0, +0.005 } }; static AiInputMode uldaq_parse_input_mode(const char *str) { for (unsigned i = 0; i < ARRAY_LEN(input_modes); i++) { if (!strcmp(input_modes[i].name, str)) return input_modes[i].mode; } return (AiInputMode) -1; } static DaqDeviceInterface uldaq_parse_interface_type(const char *str) { for (unsigned i = 0; i < ARRAY_LEN(interface_types); i++) { if (!strcmp(interface_types[i].name, str)) return interface_types[i].interface; } return (DaqDeviceInterface) -1; } static const char * uldaq_print_interface_type(DaqDeviceInterface iftype) { for (unsigned i = 0; i < ARRAY_LEN(interface_types); i++) { if (interface_types[i].interface == iftype) return interface_types[i].name; } return nullptr; } static Range uldaq_parse_range(const char *str) { for (unsigned i = 0; i < ARRAY_LEN(ranges); i++) { if (!strcmp(ranges[i].name, str)) return ranges[i].range; } return (Range) -1; } static DaqDeviceDescriptor * uldaq_find_device(struct uldaq *u) { DaqDeviceDescriptor *d = nullptr; if (num_devs == 0) return nullptr; if (u->device_interface_type == ANY_IFC && u->device_id == nullptr) return &descriptors[0]; for (unsigned i = 0; i < num_devs; i++) { d = &descriptors[i]; if (u->device_id) { if (strcmp(u->device_id, d->uniqueId)) break; } if (u->device_interface_type != ANY_IFC) { if (u->device_interface_type != d->devInterface) break; } return d; } return nullptr; } static int uldaq_connect(struct vnode *n) { struct uldaq *u = (struct uldaq *) n->_vd; UlError err; /* Find Matching device */ if (!u->device_descriptor) { u->device_descriptor = uldaq_find_device(u); if (!u->device_descriptor) throw RuntimeError("Unable to find a matching device"); } /* Get a handle to the DAQ device associated with the first descriptor */ if (!u->device_handle) { u->device_handle = ulCreateDaqDevice(*u->device_descriptor); if (!u->device_handle) throw RuntimeError("Unable to create handle for DAQ device"); } /* Check if device is already connected */ int connected; err = ulIsDaqDeviceConnected(u->device_handle, &connected); if (err != ERR_NO_ERROR) return -1; /* Connect to device */ if (!connected) { err = ulConnectDaqDevice(u->device_handle); if (err != ERR_NO_ERROR) { char buf[ERR_MSG_LEN]; ulGetErrMsg(err, buf); throw RuntimeError("Failed to connect to DAQ device: {}", buf); } } return 0; } int uldaq_type_start(villas::node::SuperNode *sn) { UlError err; /* Get descriptors for all of the available DAQ devices */ err = ulGetDaqDeviceInventory(ANY_IFC, descriptors, &num_devs); if (err != ERR_NO_ERROR) throw RuntimeError("Failed to retrieve DAQ device list"); auto logger = logging.get("node:uldaq"); logger->info("Found {} DAQ devices", num_devs); for (unsigned i = 0; i < num_devs; i++) { DaqDeviceDescriptor *desc = &descriptors[i]; logger->info(" {}: {} {} ({})", i, desc->uniqueId, desc->devString, uldaq_print_interface_type(desc->devInterface)); } return 0; } int uldaq_init(struct vnode *n) { int ret; struct uldaq *u = (struct uldaq *) n->_vd; u->device_id = nullptr; u->device_interface_type = ANY_IFC; u->in.queues = nullptr; u->in.sample_rate = 1000; u->in.scan_options = (ScanOption) (SO_DEFAULTIO | SO_CONTINUOUS); u->in.flags = AINSCAN_FF_DEFAULT; ret = pthread_mutex_init(&u->in.mutex, nullptr); if (ret) return ret; ret = pthread_cond_init(&u->in.cv, nullptr); if (ret) return ret; return 0; } int uldaq_destroy(struct vnode *n) { int ret; struct uldaq *u = (struct uldaq *) n->_vd; if (u->in.queues) delete[] u->in.queues; ret = pthread_mutex_destroy(&u->in.mutex); if (ret) return ret; ret = pthread_cond_destroy(&u->in.cv); if (ret) return ret; return 0; } int uldaq_parse(struct vnode *n, json_t *json) { int ret; struct uldaq *u = (struct uldaq *) n->_vd; const char *default_range_str = nullptr; const char *default_input_mode_str = nullptr; const char *interface_type = nullptr; size_t i; json_t *json_signals; json_t *json_signal; json_error_t err; ret = json_unpack_ex(json, &err, 0, "{ s?: s, s?: s, s: { s: o, s: F, s?: s, s?: s } }", "interface_type", &interface_type, "device_id", &u->device_id, "in", "signals", &json_signals, "sample_rate", &u->in.sample_rate, "range", &default_range_str, "input_mode", &default_input_mode_str ); if (ret) throw ConfigError(json, err, "node-config-node-uldaq"); if (interface_type) { int iftype = uldaq_parse_interface_type(interface_type); if (iftype < 0) throw ConfigError(json, "node-config-node-uldaq-interface-type", "Invalid interface type: {}", interface_type); u->device_interface_type = (DaqDeviceInterface) iftype; } if (u->in.queues) delete[] u->in.queues; u->in.channel_count = vlist_length(&n->in.signals); u->in.queues = new struct AiQueueElement[u->in.channel_count]; if (!u->in.queues) throw MemoryAllocationError(); json_array_foreach(json_signals, i, json_signal) { const char *range_str = nullptr, *input_mode_str = nullptr; int channel = -1, input_mode, range; ret = json_unpack_ex(json_signal, &err, 0, "{ s?: s, s?: s, s?: i }", "range", &range_str, "input_mode", &input_mode_str, "channel", &channel ); if (ret) throw ConfigError(json_signal, err, "node-config-node-uldaq-signal", "Failed to parse signal configuration"); if (!range_str) range_str = default_range_str; if (!input_mode_str) input_mode_str = default_input_mode_str; if (channel < 0) channel = i; if (!range_str) throw ConfigError(json_signal, err, "node-config-node-uldaq-signal", "No input range specified for signal {}.", i); if (!input_mode_str) throw ConfigError(json_signal, err, "node-config-node-uldaq-signal", "No input mode specified for signal {}.", i); range = uldaq_parse_range(range_str); if (range < 0) throw ConfigError(json_signal, err, "node-config-node-uldaq-signal", "Invalid input range specified for signal {}.", i); input_mode = uldaq_parse_input_mode(input_mode_str); if (input_mode < 0) throw ConfigError(json_signal, err, "node-config-node-uldaq-signal", "Invalid input mode specified for signal {}.", i); u->in.queues[i].range = (Range) range; u->in.queues[i].inputMode = (AiInputMode) input_mode; u->in.queues[i].channel = channel; } return ret; } char * uldaq_print(struct vnode *n) { struct uldaq *u = (struct uldaq *) n->_vd; char *buf = nullptr; if (u->device_descriptor) { char *uid = u->device_descriptor->uniqueId; char *name = u->device_descriptor->productName; const char *iftype = uldaq_print_interface_type(u->device_descriptor->devInterface); buf = strcatf(&buf, "device=%s (%s), interface=%s", uid, name, iftype); } else { const char *uid = u->device_id; const char *iftype = uldaq_print_interface_type(u->device_interface_type); buf = strcatf(&buf, "device=%s, interface=%s", uid, iftype); } buf = strcatf(&buf, ", in.sample_rate=%f", u->in.sample_rate); return buf; } int uldaq_check(struct vnode *n) { int ret; long long has_ai, event_types, max_channel, scan_options, num_ranges_se, num_ranges_diff; struct uldaq *u = (struct uldaq *) n->_vd; UlError err; if (n->in.vectorize < 100) throw ConfigError(n->config, "node-config-node-vectorize", "Setting 'vectorize' must be larger than 100"); ret = uldaq_connect(n); if (ret) return ret; err = ulDevGetInfo(u->device_handle, DEV_INFO_HAS_AI_DEV, 0, &has_ai); if (err != ERR_NO_ERROR) return -1; err = ulDevGetInfo(u->device_handle, DEV_INFO_DAQ_EVENT_TYPES, 0, &event_types); if (err != ERR_NO_ERROR) return -1; err = ulAIGetInfo(u->device_handle, AI_INFO_NUM_CHANS, 0, &max_channel); if (err != ERR_NO_ERROR) return -1; err = ulAIGetInfo(u->device_handle, AI_INFO_SCAN_OPTIONS, 0, &scan_options); if (err != ERR_NO_ERROR) return -1; err = ulAIGetInfo(u->device_handle, AI_INFO_NUM_DIFF_RANGES, 0, &num_ranges_diff); if (err != ERR_NO_ERROR) return -1; err = ulAIGetInfo(u->device_handle, AI_INFO_NUM_SE_RANGES, 0, &num_ranges_se); if (err != ERR_NO_ERROR) return -1; Range ranges_diff[num_ranges_diff]; Range ranges_se[num_ranges_se]; for (int i = 0; i < num_ranges_diff; i++) { err = ulAIGetInfo(u->device_handle, AI_INFO_DIFF_RANGE, i, (long long *) &ranges_diff[i]); if (err != ERR_NO_ERROR) return -1; } for (int i = 0; i < num_ranges_se; i++) { err = ulAIGetInfo(u->device_handle, AI_INFO_SE_RANGE, i, (long long *) &ranges_se[i]); if (err != ERR_NO_ERROR) return -1; } if (!has_ai) throw RuntimeError("DAQ device has no analog input channels"); if (!(event_types & DE_ON_DATA_AVAILABLE)) throw RuntimeError("DAQ device does not support events"); if ((scan_options & u->in.scan_options) != u->in.scan_options) throw RuntimeError("DAQ device does not support required scan options"); for (size_t i = 0; i < vlist_length(&n->in.signals); i++) { struct signal *s = (struct signal *) vlist_at(&n->in.signals, i); AiQueueElement *q = &u->in.queues[i]; if (s->type != SignalType::FLOAT) throw RuntimeError("Node supports only signals of type = float!"); switch (q->inputMode) { case AI_PSEUDO_DIFFERENTIAL: case AI_DIFFERENTIAL: for (int j = 0; j < num_ranges_diff; j++) { if (q->range == ranges_diff[j]) goto found; } break; case AI_SINGLE_ENDED: for (int j = 0; j < num_ranges_se; j++) { if (q->range == ranges_se[j]) goto found; } break; } throw RuntimeError("Unsupported range for signal {}", i); found: if (q->channel > max_channel) throw RuntimeError("DAQ device does not support more than {} channels", max_channel); } return 0; } void uldaq_data_available(DaqDeviceHandle device_handle, DaqEventType event_type, unsigned long long event_data, void *ctx) { struct vnode *n = (struct vnode *) ctx; struct uldaq *u = (struct uldaq *) n->_vd; pthread_mutex_lock(&u->in.mutex); UlError err; err = ulAInScanStatus(device_handle, &u->in.status, &u->in.transfer_status); if (err != ERR_NO_ERROR) n->logger->warn("Failed to retrieve scan status in event callback"); pthread_mutex_unlock(&u->in.mutex); /* Signal uldaq_read() about new data */ pthread_cond_signal(&u->in.cv); } int uldaq_start(struct vnode *n) { struct uldaq *u = (struct uldaq *) n->_vd; u->sequence = 0; u->in.buffer_pos = 0; int ret; UlError err; /* Allocate a buffer to receive the data */ u->in.buffer_len = u->in.channel_count * n->in.vectorize * 50; u->in.buffer = new double[u->in.buffer_len]; if (!u->in.buffer) throw MemoryAllocationError(); ret = uldaq_connect(n); if (ret) return ret; err = ulAInLoadQueue(u->device_handle, u->in.queues, vlist_length(&n->in.signals)); if (err != ERR_NO_ERROR) throw RuntimeError("Failed to load input queue to DAQ device"); /* Enable the event to be notified every time samples are available */ err = ulEnableEvent(u->device_handle, DE_ON_DATA_AVAILABLE, n->in.vectorize, uldaq_data_available, n); /* Start the acquisition */ err = ulAInScan(u->device_handle, 0, 0, (AiInputMode) 0, (Range) 0, u->in.buffer_len / u->in.channel_count, &u->in.sample_rate, u->in.scan_options, u->in.flags, u->in.buffer); if (err != ERR_NO_ERROR) { char buf[ERR_MSG_LEN]; ulGetErrMsg(err, buf); throw RuntimeError("Failed to start acquisition on DAQ device: {}", buf); } /* Get the initial status of the acquisition */ err = ulAInScanStatus(u->device_handle, &u->in.status, &u->in.transfer_status); if (err != ERR_NO_ERROR) { char buf[ERR_MSG_LEN]; ulGetErrMsg(err, buf); throw RuntimeError("Failed to retrieve scan status on DAQ device: {}", buf); } if (u->in.status != SS_RUNNING) { char buf[ERR_MSG_LEN]; ulGetErrMsg(err, buf); throw RuntimeError("Acquisition did not start on DAQ device: {}", buf); } return 0; } int uldaq_stop(struct vnode *n) { struct uldaq *u = (struct uldaq *) n->_vd; UlError err; /* @todo Fix deadlock */ //pthread_mutex_lock(&u->in.mutex); /* Get the current status of the acquisition */ err = ulAInScanStatus(u->device_handle, &u->in.status, &u->in.transfer_status); if (err != ERR_NO_ERROR) return -1; /* Stop the acquisition if it is still running */ if (u->in.status == SS_RUNNING) { err = ulAInScanStop(u->device_handle); if (err != ERR_NO_ERROR) return -1; } //pthread_mutex_unlock(&u->in.mutex); err = ulDisconnectDaqDevice(u->device_handle); if (err != ERR_NO_ERROR) return -1; err = ulReleaseDaqDevice(u->device_handle); if (err != ERR_NO_ERROR) return -1; return 0; } int uldaq_read(struct vnode *n, struct sample * const smps[], unsigned cnt) { struct uldaq *u = (struct uldaq *) n->_vd; pthread_mutex_lock(&u->in.mutex); if (u->in.status != SS_RUNNING) return -1; size_t start_index = u->in.buffer_pos; /* Wait for data available condition triggered by event callback */ if (start_index + n->in.vectorize * u->in.channel_count > u->in.transfer_status.currentTotalCount) pthread_cond_wait(&u->in.cv, &u->in.mutex); for (unsigned j = 0; j < cnt; j++) { struct sample *smp = smps[j]; long long scan_index = start_index + j * u->in.channel_count; for (unsigned i = 0; i < u->in.channel_count; i++) { long long channel_index = (scan_index + i) % u->in.buffer_len; smp->data[i].f = u->in.buffer[channel_index]; } smp->length = u->in.channel_count; smp->signals = &n->in.signals; smp->sequence = u->sequence++; smp->flags = (int) SampleFlags::HAS_SEQUENCE | (int) SampleFlags::HAS_DATA; } u->in.buffer_pos += u->in.channel_count * cnt; pthread_mutex_unlock(&u->in.mutex); return cnt; } static struct vnode_type p; __attribute__((constructor(110))) static void register_plugin() { p.name = "uldaq"; p.description = "Measurement Computing DAQ devices like UL201 (libuldaq)"; p.vectorize = 0; p.flags = 0; p.size = sizeof(struct uldaq); p.type.start = uldaq_type_start; p.init = uldaq_init; p.destroy = uldaq_destroy; p.parse = uldaq_parse; p.print = uldaq_print; p.start = uldaq_start; p.stop = uldaq_stop; p.read = uldaq_read; if (!node_types) node_types = new NodeTypeList(); node_types->push_back(&p); }