/* A Modbus node-type supporting RTU and TCP transports.
 *
 * The modbus communication using the libmodbus library is fairly simple.
 *
 * 1. Create a modbus_t modbus_context from the connection_settings.
 * 2. Call modbus_connect to create a connection to a server.
 * 3. Use modbus_read_registers/modbus_write_registers to read/write values.
 *
 * The complicated part is the configuration parsing, especially the mapping
 * from signals to registers. We try to group as many registers as we can
 * together to query them using a single modbus command. The general idea is:
 *
 * 1. Create a simple mapping for all signal specifications in the parse() function.
 * 2. Sort all mappings by the range of registers the need.
 * 3. Merge mappings that sit next to each other into larger groups until either ...
 *    - ... the group is larger than "max_block_size".
 *    - ... the ration of needed registers to queried registers falls below
 *      "min_block_usage". So we cap the amount of unecessary data transmitted.
 *
 * The merging process is further complicated by the possibility to map bits from
 * a register to their own signals. We don't generally want to allow mapping the
 * same register multiple times, except for the case of bit mappings.
 *
 * While a general overlap between any two mappings is considered an error, the
 * case of overlapping bit mappings is detected by hasOverlappingBitMapping and
 * handled in blockDistance and compareBlockAddress.
 *
 * - The special case in compareBlockAddress makes bit mappings of the same register
 *   reside next to each other after sorting the mappings.
 * - The special case in blockDistance makes causes the bit mappings to be grouped
 *   first, before any adjacent registers.
 *
 * Author: Philipp Jungkamp <philipp.jungkamp@opal-rt.com>
 * SPDX-FileCopyrightText: 2023 OPAL-RT Germany GmbH
 * SPDX-License-Identifier: Apache-2.0
 */

#include <atomic>
#include <chrono>

#include <fmt/format.h>

#include <villas/exceptions.hpp>
#include <villas/node_compat.hpp>
#include <villas/nodes/modbus.hpp>
#include <villas/sample.hpp>
#include <villas/super_node.hpp>
#include <villas/utils.hpp>

using namespace villas;
using namespace villas::node;
using namespace villas::node::modbus;
using namespace villas::utils;

int64_t
RegisterMappingSingle::IntegerToInteger::read(uint16_t const *registers) const {
  int64_t integer = 0;
  auto ptr = word_endianess == Endianess::Big ? registers + num_registers - 1
                                              : registers;

  for (size_t i = 0; i < num_registers; ++i) {
    integer <<= sizeof(uint16_t) * 8;

    if (byte_endianess == Endianess::Big)
      integer |= (int64_t)*ptr;
    else
      integer |= (int64_t)byteswap(*ptr);

    if (word_endianess == Endianess::Big)
      --ptr;
    else
      ++ptr;
  }

  return integer;
}

void RegisterMappingSingle::IntegerToInteger::write(int64_t integer,
                                                    uint16_t *registers) const {
  auto ptr = word_endianess == Endianess::Big ? registers
                                              : registers + num_registers - 1;

  for (size_t i = 0; i < num_registers; ++i) {
    if (byte_endianess == Endianess::Big)
      *ptr = (uint16_t)integer;
    else
      *ptr = byteswap((uint16_t)integer);

    if (word_endianess == Endianess::Big)
      ++ptr;
    else
      --ptr;

    integer >>= sizeof(uint16_t) * 8;
  }
}

double
RegisterMappingSingle::IntegerToFloat::read(uint16_t const *registers) const {
  int64_t integer = integer_conversion.read(registers);

  return integer * scale + offset;
}

void RegisterMappingSingle::IntegerToFloat::write(double d,
                                                  uint16_t *registers) const {
  int64_t integer = (d - offset) / scale;

  integer_conversion.write(integer, registers);
}

double
RegisterMappingSingle::FloatToFloat::read(uint16_t const *registers) const {
  static_assert(sizeof(float) == sizeof(uint32_t));

  auto const conversion = IntegerToInteger{
      .word_endianess = word_endianess,
      .byte_endianess = byte_endianess,
      .num_registers = 2,
  };

  union {
    uint32_t i;
    float f;
  } value;

  value.i = (uint32_t)conversion.read(registers);

  return value.f * scale + offset;
}

void RegisterMappingSingle::FloatToFloat::write(double d,
                                                uint16_t *registers) const {
  static_assert(sizeof(float) == sizeof(uint32_t));

  auto const conversion = IntegerToInteger{
      .word_endianess = word_endianess,
      .byte_endianess = byte_endianess,
      .num_registers = 2,
  };

  union {
    uint32_t i;
    float f;
  } value;

  value.f = (d - offset) / scale;

  conversion.write((int64_t)value.i, registers);
}

bool RegisterMappingSingle::BitToBool::read(uint16_t reg) const {
  return (reg >> bit) & 1;
}

RegisterMappingSingle::RegisterMappingSingle(unsigned int signal_index,
                                             modbus_addr_t address)
    : conversion(IntegerToInteger{
          .word_endianess = Endianess::Big,
          .byte_endianess = Endianess::Big,
          .num_registers = 1,
      }),
      signal_index(signal_index), address(address) {}

SignalData RegisterMappingSingle::read(uint16_t const *registers,
                                       modbus_addr_t length) const {
  SignalData data;

  if (num_registers() != length)
    throw RuntimeError{"reading from invalid register range"};

  if (auto i2i = std::get_if<IntegerToInteger>(&conversion))
    data.i = i2i->read(registers);
  else if (auto i2f = std::get_if<IntegerToFloat>(&conversion))
    data.f = i2f->read(registers);
  else if (auto f2f = std::get_if<FloatToFloat>(&conversion))
    data.f = f2f->read(registers);
  else if (auto b2b = std::get_if<BitToBool>(&conversion))
    data.b = b2b->read(*registers);
  else
    throw RuntimeError{"read unsupported"};

  return data;
}

void RegisterMappingSingle::write(SignalData data, uint16_t *registers,
                                  modbus_addr_t length) const {
  if (num_registers() != length)
    throw RuntimeError{"writing to invalid register range"};

  if (auto i2i = std::get_if<IntegerToInteger>(&conversion))
    i2i->write(data.i, registers);
  else if (auto i2f = std::get_if<IntegerToFloat>(&conversion))
    i2f->write(data.f, registers);
  else if (auto f2f = std::get_if<FloatToFloat>(&conversion))
    f2f->write(data.f, registers);
  else
    throw RuntimeError{"write unsupported"};
}

modbus_addr_t RegisterMappingSingle::num_registers() const {
  if (auto i2i = std::get_if<IntegerToInteger>(&conversion))
    return i2i->num_registers;

  if (auto i2f = std::get_if<IntegerToFloat>(&conversion))
    return i2f->integer_conversion.num_registers;

  if (std::holds_alternative<FloatToFloat>(conversion))
    return 2;

  if (std::holds_alternative<BitToBool>(conversion))
    return 1;

  throw RuntimeError{"unreachable"};
}

uint16_t modbus::byteswap(uint16_t i) {
  uint8_t low = (i & 0x00FF);
  uint8_t high = (i & 0xFF00) >> 8;
  return (low << 8) | high;
}

modbus_addr_t modbus::blockBegin(RegisterMappingSingle const &single) {
  return single.address;
}

modbus_addr_t modbus::blockBegin(RegisterMappingBlock const &block) {
  assert(!block.empty());
  return blockBegin(block.front());
}

modbus_addr_t modbus::blockBegin(RegisterMapping const &mapping) {
  return std::visit([](auto &v) { return blockBegin(v); }, mapping);
}

modbus_addr_t modbus::blockEnd(RegisterMappingSingle const &single) {
  return single.address + single.num_registers();
}

modbus_addr_t modbus::blockEnd(RegisterMappingBlock const &block) {
  assert(!block.empty());
  return blockEnd(block.back());
}

modbus_addr_t modbus::blockEnd(RegisterMapping const &mapping) {
  return std::visit([](auto &v) { return blockEnd(v); }, mapping);
}

modbus_addr_t modbus::mappedRegisters(RegisterMappingSingle const &single) {
  return single.num_registers();
}

modbus_addr_t modbus::mappedRegisters(RegisterMappingBlock const &block) {
  auto mapped = 0;

  modbus_addr_t last_address = -1;
  for (auto &single : block) {
    if (single.address != last_address)
      mapped += single.num_registers();

    last_address = single.address;
  }

  return mapped;
}

modbus_addr_t modbus::mappedRegisters(RegisterMapping const &mapping) {
  return std::visit([](auto &v) { return mappedRegisters(v); }, mapping);
}

modbus_addrdiff_t modbus::blockDistance(RegisterMapping const &lhs,
                                        RegisterMapping const &rhs) {
  if (blockBegin(rhs) >= blockEnd(lhs))
    return (modbus_addrdiff_t)blockBegin(rhs) - blockEnd(lhs);

  if (blockBegin(lhs) >= blockEnd(rhs))
    return (modbus_addrdiff_t)blockBegin(lhs) - blockEnd(rhs);

  if (hasOverlappingBitMapping(lhs, rhs))
    return -1;

  throw RuntimeError{"overlapping mappings"};
}

bool modbus::hasOverlappingBitMapping(RegisterMapping const &lhs,
                                      RegisterMapping const &rhs) {
  // Only check if there is exactly 1 register of overlap.
  if (blockEnd(lhs) - blockBegin(rhs) != 1 &&
      blockEnd(rhs) - blockBegin(lhs) != 1)
    return false;

  // Assume that lhs is at a lower address than rhs.
  if (blockBegin(rhs) < blockBegin(lhs) || blockEnd(rhs) < blockEnd(lhs))
    return hasOverlappingBitMapping(rhs, lhs);

  // Get the last mapping from the lhs block.
  RegisterMappingSingle const *lhs_back = nullptr;
  if (auto single = std::get_if<RegisterMappingSingle>(&lhs))
    lhs_back = single;
  else if (auto block = std::get_if<RegisterMappingBlock>(&lhs))
    lhs_back = &block->back();
  else
    return false;

  // We are only interested in bit mappings.
  if (!std::holds_alternative<RegisterMappingSingle::BitToBool>(
          lhs_back->conversion))
    return false;

  // Get the first mapping from the rhs block.
  RegisterMappingSingle const *rhs_front = nullptr;
  if (auto single = std::get_if<RegisterMappingSingle>(&rhs))
    rhs_front = single;
  else if (auto block = std::get_if<RegisterMappingBlock>(&rhs))
    rhs_front = &block->front();
  else
    return false;

  // We are only interested in bit mappings.
  if (!std::holds_alternative<RegisterMappingSingle::BitToBool>(
          rhs_front->conversion))
    return false;

  // The last register of lhs and the first register of rhs overlap and are both bit mappings.
  return true;
}

bool modbus::compareBlockAddress(RegisterMapping const &lhs,
                                 RegisterMapping const &rhs) {
  if (blockBegin(rhs) >= blockEnd(lhs))
    return true;

  if (blockBegin(lhs) >= blockEnd(rhs))
    return false;

  if (hasOverlappingBitMapping(lhs, rhs))
    return false;

  throw RuntimeError{"overlapping mappings"};
}

bool ModbusNode::isReconnecting() { return reconnecting.load(); }

void ModbusNode::reconnect() {
  if (reconnecting.exchange(true))
    return;

  logger->error("No connection to the Modbus server. Reconnecting...");

  std::thread([this]() {
    auto start = std::chrono::steady_clock::now();

    if (modbus_connect(modbus_context) == -1) {
      logger->error("reconnect failure: ", modbus_strerror(errno));
      std::this_thread::sleep_until(
          start + std::chrono::duration<double>(reconnect_interval));
    }

    reconnecting.store(false);
  }).detach();
}

void ModbusNode::mergeMappingInplace(RegisterMapping &lhs,
                                     RegisterMappingBlock const &rhs) {
  if (auto lhs_single = std::get_if<RegisterMappingSingle>(&lhs))
    lhs = RegisterMappingBlock{*lhs_single};

  auto &block = std::get<RegisterMappingBlock>(lhs);
  block.reserve(blockEnd(rhs) - blockBegin(lhs));
  std::copy(std::begin(rhs), std::end(rhs), std::back_inserter(block));
}

void ModbusNode::mergeMappingInplace(RegisterMapping &lhs,
                                     RegisterMappingSingle const &rhs) {
  if (auto lhs_single = std::get_if<RegisterMappingSingle>(&lhs))
    lhs = RegisterMappingBlock{*lhs_single};

  auto &block = std::get<RegisterMappingBlock>(lhs);
  block.push_back(rhs);
}

bool ModbusNode::tryMergeMappingInplace(RegisterMapping &lhs,
                                        RegisterMapping const &rhs) {
  auto block_size = blockEnd(rhs) - blockBegin(lhs);

  if (block_size >= max_block_size)
    return false;

  auto block_usage =
      (mappedRegisters(lhs) + mappedRegisters(rhs)) / (float)block_size;

  if (block_usage < min_block_usage)
    return false;

  std::visit([&lhs](auto const &rhs) { mergeMappingInplace(lhs, rhs); }, rhs);

  return true;
}

void ModbusNode::mergeMappings(std::vector<RegisterMapping> &mappings,
                               modbus_addrdiff_t max_block_distance) {
  if (std::size(mappings) < 2)
    return;

  // Sort all mappings by their block address.
  std::sort(std::begin(mappings), std::end(mappings), compareBlockAddress);

  // Calculate the distances. (number of unused registers inbetween mappings)
  auto distances = std::vector<int>();
  distances.reserve(std::size(mappings));
  for (size_t i = 1; i < std::size(mappings); i++)
    distances.push_back(blockDistance(mappings[i - 1], mappings[i]));

  for (;;) {
    // Try to group the mappings closest to each other first.
    auto min_distance =
        std::min_element(std::begin(distances), std::end(distances));

    // The closest distance is too far to merge, abort the merging process.
    if (min_distance == std::end(distances) ||
        *min_distance >= max_block_distance)
      break;

    // Find the mappings to the left and right of the minimum distance.
    auto i = std::distance(std::begin(distances), min_distance);
    auto left_mapping = std::next(std::begin(mappings), i);
    auto right_mapping = std::next(std::begin(mappings), i + 1);

    if (tryMergeMappingInplace(*left_mapping, *right_mapping)) {
      // Remove the right mapping and the distance
      // if it could be merged into the left mapping.
      mappings.erase(right_mapping);
      distances.erase(min_distance);
    } else {
      // Set the distance to a value, so that it won't be retried.
      *min_distance = max_block_distance;
    }
  }
}

int ModbusNode::readBlock(RegisterMapping const &mapping, SignalData *data,
                          size_t size) {
  if (isReconnecting())
    return -1;

  auto address = blockBegin(mapping);
  auto block_size = blockEnd(mapping) - address;

  read_buffer.resize(block_size);

  if (modbus_read_registers(modbus_context, address, block_size,
                            read_buffer.data()) == -1) {
    logger->error("read registers failure: ", modbus_strerror(errno));

    reconnect();

    return -1;
  }

  return readMapping(mapping, read_buffer.data(), read_buffer.size(), data,
                     size);
}

int ModbusNode::readMapping(RegisterMapping const &mapping,
                            uint16_t const *registers,
                            modbus_addr_t num_registers, SignalData *signals,
                            unsigned int num_signals) {
  return std::visit(
      [this, registers, num_registers, signals, num_signals](auto mapping) {
        return readMapping(mapping, registers, num_registers, signals,
                           num_signals);
      },
      mapping);
}

int ModbusNode::readMapping(RegisterMappingSingle const &single,
                            uint16_t const *registers,
                            modbus_addr_t num_registers, SignalData *signals,
                            unsigned int num_signals) {
  auto signal_data = single.read(registers, num_registers);

  assert(single.signal_index < num_signals);
  signals[single.signal_index] = signal_data;

  return 0;
}

int ModbusNode::readMapping(RegisterMappingBlock const &block,
                            uint16_t const *registers,
                            modbus_addr_t num_registers, SignalData *signals,
                            unsigned int num_signals) {
  auto begin_block = blockBegin(block);

  for (auto &single : block) {
    auto begin_single = blockBegin(single);
    auto end_single = blockEnd(single);

    assert(end_single - begin_block <= num_registers);
    if (auto ret = readMapping(single, &registers[begin_single - begin_block],
                               end_single - begin_single, signals, num_signals))
      return ret;
  }

  return 0;
}

int ModbusNode::_read(struct Sample *smps[], unsigned cnt) {
  read_task.wait();

  for (unsigned int i = 0; i < cnt; ++i) {
    auto smp = smps[i];
    smp->length = num_in_signals;
    smp->flags |= (int)SampleFlags::HAS_DATA;

    assert(smp->length <= smp->capacity);

    for (auto &mapping : in_mappings) {
      if (auto ret = readBlock(mapping, smp->data, smp->length))
        return ret;
    }
  }

  return cnt;
}

int ModbusNode::writeBlock(RegisterMapping const &mapping,
                           SignalData const *data, size_t size) {
  if (isReconnecting())
    return -1;

  auto address = blockBegin(mapping);
  auto block_size = blockEnd(mapping) - address;

  write_buffer.resize(block_size);

  if (auto ret = writeMapping(mapping, write_buffer.data(), write_buffer.size(),
                              data, size))
    return ret;

  if (modbus_write_registers(modbus_context, address, block_size,
                             write_buffer.data()) == -1) {
    logger->error("write registers failure: ", modbus_strerror(errno));

    reconnect();

    return -1;
  }

  return 0;
}

int ModbusNode::writeMapping(RegisterMapping const &mapping,
                             uint16_t *registers, modbus_addr_t num_registers,
                             SignalData const *signals,
                             unsigned int num_signals) {
  return std::visit(
      [this, registers, num_registers, signals, num_signals](auto mapping) {
        return writeMapping(mapping, registers, num_registers, signals,
                            num_signals);
      },
      mapping);
}

int ModbusNode::writeMapping(RegisterMappingSingle const &single,
                             uint16_t *registers, modbus_addr_t num_registers,
                             SignalData const *signals,
                             unsigned int num_signals) {
  assert(single.signal_index < num_signals);
  single.write(signals[single.signal_index], registers, num_registers);

  return 0;
}

int ModbusNode::writeMapping(RegisterMappingBlock const &block,
                             uint16_t *registers, modbus_addr_t num_registers,
                             SignalData const *signals,
                             unsigned int num_signals) {
  auto begin_block = blockBegin(block);

  for (auto &single : block) {
    auto begin_single = blockBegin(single);
    auto end_single = blockEnd(single);

    assert(end_single - begin_block <= num_registers);
    if (auto ret =
            writeMapping(single, &registers[begin_single - begin_block],
                         end_single - begin_single, signals, num_signals))
      return ret;
  }

  return 0;
}

int ModbusNode::_write(struct Sample *smps[], unsigned cnt) {
  for (unsigned int i = 0; i < cnt; ++i) {
    auto smp = smps[i];

    assert(smp->length == num_out_signals);

    for (auto &mapping : out_mappings) {
      if (auto ret = writeBlock(mapping, smp->data, smp->length))
        return ret;
    }
  }

  return cnt;
}

ModbusNode::ModbusNode(const uuid_t &id, const std::string &name)
    : Node(id, name), max_block_size(32), min_block_usage(0.25),
      connection_settings(), rate(-1), response_timeout(1), in_mappings{},
      num_in_signals(0), out_mappings{}, num_out_signals(0),
      reconnect_interval(10), read_buffer{}, write_buffer{},
      modbus_context(nullptr), read_task(), reconnecting(false) {}

ModbusNode::~ModbusNode() {
  if (modbus_context)
    modbus_free(modbus_context);
}

int ModbusNode::prepare() {
  mergeMappings(in_mappings, max_block_size - 2);
  mergeMappings(out_mappings, 0);

  if (in.enabled) {
    read_task.setRate(rate);

    logger->info("Making {} Modbus calls for each read", in_mappings.size());
  }

  if (out.enabled)
    logger->info("Making {} Modbus calls for each write", out_mappings.size());

  assert(!std::holds_alternative<std::monostate>(connection_settings));

  if (auto tcp = std::get_if<Tcp>(&connection_settings)) {
    modbus_context = modbus_new_tcp(tcp->remote.c_str(), tcp->port);

    if (tcp->unit)
      modbus_set_slave(modbus_context, *tcp->unit);
  }

  if (auto rtu = std::get_if<Rtu>(&connection_settings)) {
    modbus_context = modbus_new_rtu(rtu->device.c_str(), rtu->baudrate,
                                    static_cast<char>(rtu->parity),
                                    rtu->data_bits, rtu->stop_bits);

    modbus_set_slave(modbus_context, rtu->unit);
  }

  auto response_timeout_secs = (uint32_t)response_timeout;
  auto response_timeout_usecs =
      (uint32_t)(response_timeout - (double)response_timeout_secs);
  modbus_set_response_timeout(modbus_context, response_timeout_secs,
                              response_timeout_usecs);

  return Node::prepare();
}

Endianess modbus::parseEndianess(char const *str) {
  if (!strcmp(str, "little"))
    return Endianess::Little;

  if (!strcmp(str, "big"))
    return Endianess::Big;

  throw RuntimeError{"invalid endianess"};
}

Parity modbus::parseParity(char const *str) {
  if (!strcmp(str, "none"))
    return Parity::None;

  if (!strcmp(str, "even"))
    return Parity::Even;

  if (!strcmp(str, "odd"))
    return Parity::Odd;

  throw RuntimeError{"invalid parity"};
}

Rtu Rtu::parse(json_t *json) {
  char const *device = nullptr;
  char const *parity_str = nullptr;
  int baudrate = -1;
  int data_bits = -1;
  int stop_bits = -1;

  json_error_t err;
  int ret = json_unpack_ex(json, &err, 0, "{ s: s, s: s, s: i, s: i, s: i }",
                           "device", &device, "parity", &parity_str, "baudrate",
                           &baudrate, "data_bits", &data_bits, "stop_bits",
                           &stop_bits);
  if (ret)
    throw ConfigError(json, err, "node-config-node-modbus-rtu");

  Parity parity = parseParity(parity_str);

  return Rtu{device, parity, baudrate, data_bits, stop_bits};
}

Tcp Tcp::parse(json_t *json) {
  char const *remote = nullptr;
  int port = 502;
  int unit_int = -1;

  json_error_t err;
  int ret = json_unpack_ex(json, &err, 0, "{ s: s, s?: i, s?: i }", "remote",
                           &remote, "port", &port, "unit", &unit_int);
  if (ret)
    throw ConfigError(json, err, "node-config-node-modbus-tcp");

  std::optional unit = unit_int >= 0 ? std::optional(unit_int) : std::nullopt;

  return Tcp{
      .remote = remote,
      .port = (uint16_t)port,
      .unit = unit,
  };
}

RegisterMappingSingle RegisterMappingSingle::parse(unsigned int index,
                                                   Signal::Ptr signal,
                                                   json_t *json) {
  int address = -1;
  int bit = -1;
  int integer_registers = -1;
  char const *word_endianess_str = nullptr;
  char const *byte_endianess_str = nullptr;
  double offset = 0.0;
  double scale = 1.0;

  json_error_t err;
  int ret = json_unpack_ex(
      json, &err, 0, "{ s: i, s?: i, s?: i, s?: s, s?: s, s?: F, s?: F }",
      "address", &address, "bit", &bit, "integer_registers", &integer_registers,
      "word_endianess", &word_endianess_str, "byte_endianess",
      &byte_endianess_str, "offset", &offset, "scale", &scale);
  if (ret)
    throw ConfigError(json, err, "node-config-node-modbus-signal");

  if (integer_registers != -1 &&
      (integer_registers <= 0 || (size_t)integer_registers > MAX_REGISTERS))
    throw RuntimeError{"unsupported register block size"};

  Endianess word_endianess = Endianess::Big;
  if (word_endianess_str)
    word_endianess = parseEndianess(word_endianess_str);

  Endianess byte_endianess = Endianess::Big;
  if (byte_endianess_str)
    byte_endianess = parseEndianess(byte_endianess_str);

  auto mapping = RegisterMappingSingle{index, (modbus_addr_t)address};
  if (signal->type == SignalType::FLOAT) {
    if (integer_registers == -1) {
      mapping.conversion = FloatToFloat{
          .word_endianess = word_endianess,
          .byte_endianess = byte_endianess,
          .offset = offset,
          .scale = scale,
      };
    } else {
      auto integer_conversion = IntegerToInteger{
          .word_endianess = word_endianess,
          .byte_endianess = byte_endianess,
          .num_registers = (modbus_addr_t)integer_registers,
      };

      mapping.conversion = IntegerToFloat{
          .integer_conversion = integer_conversion,
          .offset = offset,
          .scale = scale,
      };
    }

    return mapping;
  } else if (signal->type == SignalType::INTEGER) {
    if (integer_registers == -1)
      integer_registers = 1;

    mapping.conversion = IntegerToInteger{
        .word_endianess = word_endianess,
        .byte_endianess = byte_endianess,
        .num_registers = (modbus_addr_t)integer_registers,
    };
  } else if (signal->type == SignalType::BOOLEAN) {
    if (bit < 0 || bit > 15)
      throw RuntimeError{
          "mappings from bit to bool must be in the range 0 to 16"};

    mapping.conversion = BitToBool{
        .bit = (uint8_t)bit,
    };
  } else {
    throw RuntimeError{"unsupported signal type"};
  }

  return mapping;
}

unsigned int ModbusNode::parseMappings(std::vector<RegisterMapping> &mappings,
                                       json_t *json) {
  assert(json_is_array(json));

  size_t i;
  json_t *signal_json;
  auto signals = getInputSignals(false);

  json_array_foreach(json, i, signal_json) {
    auto signal = signals->getByIndex(i);

    mappings.push_back(RegisterMappingSingle::parse(i, signal, signal_json));
  }

  return json_array_size(json);
}

int ModbusNode::parse(json_t *json) {
  if (auto ret = Node::parse(json))
    return ret;

  json_error_t err;
  char const *transport = nullptr;
  json_t *in_json = nullptr;
  json_t *out_json = nullptr;

  if (json_unpack_ex(
          json, &err, 0,
          "{ s: s, s?: F, s?: F, s?: i, s?: i, s?: F, s?: o, s?: o }",
          "transport", &transport, "response_timeout", &response_timeout,
          "reconnect_interval", &reconnect_interval, "min_block_usage",
          &min_block_usage, "max_block_size", &max_block_size, "rate", &rate,
          "in", &in_json, "out", &out_json))
    throw ConfigError(json, err, "node-config-node-modbus");

  if (in.enabled && rate < 0)
    throw RuntimeError{"missing polling rate for Modbus reads"};

  if (!strcmp(transport, "rtu"))
    connection_settings = Rtu::parse(json);
  else if (!strcmp(transport, "tcp"))
    connection_settings = Tcp::parse(json);
  else
    throw ConfigError(json, err, "node-config-node-modbus-transport");

  json_t *signals_json;

  if (in_json && (signals_json = json_object_get(in_json, "signals")))
    num_in_signals = parseMappings(in_mappings, signals_json);

  if (out_json && (signals_json = json_object_get(out_json, "signals")))
    num_out_signals = parseMappings(out_mappings, signals_json);

  return 0;
}

int ModbusNode::check() { return Node::check(); }

int ModbusNode::start() {
  if (modbus_connect(modbus_context) == -1)
    throw RuntimeError{"connection failure: {}", modbus_strerror(errno)};

  return Node::start();
}

int ModbusNode::stop() {
  modbus_close(modbus_context);

  return Node::stop();
}

std::vector<int> ModbusNode::getPollFDs() { return {read_task.getFD()}; }

std::vector<int> ModbusNode::getNetemFDs() {
  if (modbus_context != nullptr &&
      std::holds_alternative<Tcp>(connection_settings)) {
    return {modbus_get_socket(modbus_context)};
  }

  return {};
}

const std::string &ModbusNode::getDetails() {
  if (details.empty()) {
    if (auto tcp = std::get_if<Tcp>(&connection_settings)) {
      details = fmt::format("transport=tcp, remote={}, port={}", tcp->remote,
                            tcp->port);

      if (tcp->unit)
        details.append(fmt::format(", unit={}", *tcp->unit));
    }

    if (auto rtu = std::get_if<Rtu>(&connection_settings)) {
      details = fmt::format("transport=rtu, device={}, baudrate={}, parity={}, "
                            "data_bits={}, stop_bits={}, unit={}",
                            rtu->device.c_str(), rtu->baudrate,
                            static_cast<char>(rtu->parity), rtu->data_bits,
                            rtu->stop_bits, rtu->unit);
    }
  }

  return details;
}

// Register node
static char name[] = "modbus";
static char description[] = "Read and write Modbus registers";
static NodePlugin<ModbusNode, name, description,
                  (int)NodeFactory::Flags::SUPPORTS_READ |
                      (int)NodeFactory::Flags::SUPPORTS_WRITE |
                      (int)NodeFactory::Flags::SUPPORTS_POLL>
    p;