/** Node-type for signal generation. * * @file * @author Steffen Vogel * @copyright 2014-2020, Institute for Automation of Complex Power Systems, EONERC * @license GNU General Public License (version 3) * * VILLASnode * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *********************************************************************************/ #include #include #include #include #include #include #include using namespace villas; using namespace villas::node; using namespace villas::utils; static enum signal_generator::SignalType signal_generator_lookup_type(const char *type) { if (!strcmp(type, "random")) return signal_generator::SignalType::RANDOM; else if (!strcmp(type, "sine")) return signal_generator::SignalType::SINE; else if (!strcmp(type, "square")) return signal_generator::SignalType::SQUARE; else if (!strcmp(type, "triangle")) return signal_generator::SignalType::TRIANGLE; else if (!strcmp(type, "ramp")) return signal_generator::SignalType::RAMP; else if (!strcmp(type, "counter")) return signal_generator::SignalType::COUNTER; else if (!strcmp(type, "constant")) return signal_generator::SignalType::CONSTANT; else if (!strcmp(type, "mixed")) return signal_generator::SignalType::MIXED; else if (!strcmp(type, "pulse")) return signal_generator::SignalType::PULSE; throw std::invalid_argument("Invalid signal type"); } static const char * signal_generator_type_str(enum signal_generator::SignalType type) { switch (type) { case signal_generator::SignalType::CONSTANT: return "constant"; case signal_generator::SignalType::SINE: return "sine"; case signal_generator::SignalType::TRIANGLE: return "triangle"; case signal_generator::SignalType::SQUARE: return "square"; case signal_generator::SignalType::RAMP: return "ramp"; case signal_generator::SignalType::COUNTER: return "counter"; case signal_generator::SignalType::RANDOM: return "random"; case signal_generator::SignalType::MIXED: return "mixed"; case signal_generator::SignalType::PULSE: return "pulse"; default: return nullptr; } } int signal_generator_init(struct vnode *n) { struct signal_generator *s = (struct signal_generator *) n->_vd; new (&s->task) Task(CLOCK_MONOTONIC); s->rt = 1; s->limit = -1; s->values = 1; s->rate = 10; s->monitor_missed = 1; s->frequency = nullptr; s->amplitude = nullptr; s->stddev = nullptr; s->offset = nullptr; s->phase = nullptr; s->pulse_width = nullptr; s->pulse_low = nullptr; s->pulse_high = nullptr; return 0; } int signal_generator_destroy(struct vnode *n) { struct signal_generator *s = (struct signal_generator *) n->_vd; s->task.~Task(); if (s->frequency) delete s->frequency; if (s->amplitude) delete s->amplitude; if (s->stddev) delete s->stddev; if (s->offset) delete s->offset; return 0; } int signal_generator_prepare(struct vnode *n) { struct signal_generator *s = (struct signal_generator *) n->_vd; assert(vlist_length(&n->in.signals) == 0); for (unsigned i = 0; i < s->values; i++) { auto name = signal_generator_type_str((enum signal_generator::SignalType) s->type[i]); auto *sig = signal_create(name, nullptr, SignalType::FLOAT); vlist_push(&n->in.signals, sig); } return 0; } int signal_generator_parse(struct vnode *n, json_t *json) { struct signal_generator *s = (struct signal_generator *) n->_vd; int ret; json_error_t err; json_t *json_type = nullptr; json_t *json_amplitude = nullptr; json_t *json_offset = nullptr; json_t *json_frequency = nullptr; json_t *json_stddev = nullptr; json_t *json_pulse_width = nullptr; json_t *json_pulse_high = nullptr; json_t *json_pulse_low = nullptr; json_t *json_phase = nullptr; ret = json_unpack_ex(json, &err, 0, "{ s: o, s?: b, s?: i, s?: i, s?: F, s?: o, s?: o, s?: o, s?: o, s?: o, s?: o, s?: o, s?: o, s?: b }", "signal", &json_type, "realtime", &s->rt, "limit", &s->limit, "values", &s->values, "rate", &s->rate, "frequency", &json_frequency, "amplitude", &json_amplitude, "stddev", &json_stddev, "offset", &json_offset, "pulse_width", &json_pulse_width, "pulse_low", &json_pulse_low, "pulse_high", &json_pulse_high, "phase", &json_phase, "monitor_missed", &s->monitor_missed ); if (ret) throw ConfigError(json, err, "node-config-node-signal"); struct desc { json_t *json; double **array; double def_value; const char *name; }; std::list arrays = { { json_frequency, &s->frequency, 1, "frequency" }, { json_amplitude, &s->amplitude, 1, "amplitude" }, { json_stddev, &s->stddev, 0.2, "stddev" }, { json_offset, &s->offset, 0, "offset" }, { json_pulse_width, &s->pulse_width, 1, "pulse_width" }, { json_pulse_high, &s->pulse_high, 1, "pulse_high" }, { json_pulse_low, &s->pulse_low, 0, "pulse_low" }, { json_phase, &s->phase, 0, "phase" } }; size_t i; json_t *json_value; const char *type_str; signal_generator::SignalType type; s->type = new enum signal_generator::SignalType[s->values]; switch (json_typeof(json_type)) { case JSON_ARRAY: if (json_array_size(json_type) != s->values) throw ConfigError(json_type, "node-config-node-signal", "Length of values must match"); json_array_foreach(json_type, i, json_value) { type_str = json_string_value(json_value); if (!type_str) throw ConfigError(json_value, "node-config-node-signal", "Signal type must be a string"); s->type[i] = signal_generator_lookup_type(type_str); } break; case JSON_STRING: type_str = json_string_value(json_type); type = signal_generator_lookup_type(type_str); for (size_t i = 0; i < s->values; i++) { s->type[i] = (type == signal_generator::SignalType::MIXED ? (signal_generator::SignalType) (i % 7) : type); } break; default: throw ConfigError(json_type, "node-config-node-signal", "Invalid setting 'signal' for node {}", *n); } for (auto &a : arrays) { if (*a.array) delete *a.array; *a.array = new double[s->values]; if (a.json) { switch (json_typeof(a.json)) { case JSON_ARRAY: if (json_array_size(a.json) != s->values) throw ConfigError(a.json, "node-config-node-signal", "Length of values must match"); size_t i; json_t *json_value; json_array_foreach(a.json, i, json_value) { if (!json_is_number(json_value)) throw ConfigError(json_value, "node-config-node-signal", "Values must gives as array of integer or float values!"); (*a.array)[i] = json_number_value(json_value); } break; case JSON_INTEGER: case JSON_REAL: for (size_t i = 0; i < s->values; i++) (*a.array)[i] = json_number_value(a.json); break; default: throw ConfigError(a.json, "node-config-node-signal", "Values must given as array or scalar integer or float value!"); } } else { for (size_t i = 0; i < s->values; i++) (*a.array)[i] = a.def_value; } } return 0; } int signal_generator_start(struct vnode *n) { struct signal_generator *s = (struct signal_generator *) n->_vd; s->missed_steps = 0; s->counter = 0; s->started = time_now(); s->last = new double[s->values]; if (!s->last) throw MemoryAllocationError(); for (unsigned i = 0; i < s->values; i++) s->last[i] = s->offset[i]; /* Setup task */ if (s->rt) s->task.setRate(s->rate); return 0; } int signal_generator_stop(struct vnode *n) { struct signal_generator *s = (struct signal_generator *) n->_vd; if (s->rt) s->task.stop(); if (s->missed_steps > 0 && s->monitor_missed) n->logger->warn("Missed a total of {} steps.", s->missed_steps); delete[] s->last; return 0; } int signal_generator_read(struct vnode *n, struct sample * const smps[], unsigned cnt) { struct signal_generator *s = (struct signal_generator *) n->_vd; struct sample *t = smps[0]; struct timespec ts; int steps; assert(cnt == 1); if (s->rt) ts = time_now(); else { struct timespec offset = time_from_double(s->counter * 1.0 / s->rate); ts = time_add(&s->started, &offset); steps = 1; } double running = time_delta(&s->started, &ts); t->flags = (int) SampleFlags::HAS_TS_ORIGIN | (int) SampleFlags::HAS_DATA | (int) SampleFlags::HAS_SEQUENCE; t->ts.origin = ts; t->sequence = s->counter; t->length = MIN(s->values, t->capacity); t->signals = &n->in.signals; for (unsigned i = 0; i < t->length; i++) { switch (s->type[i]) { case signal_generator::SignalType::CONSTANT: t->data[i].f = s->offset[i] + s->amplitude[i]; break; case signal_generator::SignalType::SINE: t->data[i].f = s->offset[i] + s->amplitude[i] * sin(running * s->frequency[i] * 2 * M_PI + s->phase[i]); break; case signal_generator::SignalType::TRIANGLE: t->data[i].f = s->offset[i] + s->amplitude[i] * (fabs(fmod(running * s->frequency[i] + (s->phase[i] / (2 * M_PI)), 1) - .5) - 0.25) * 4; break; case signal_generator::SignalType::SQUARE: t->data[i].f = s->offset[i] + s->amplitude[i] * ( (fmod(running * s->frequency[i] + (s->phase[i] / (2 * M_PI)), 1) < .5) ? -1 : 1); break; case signal_generator::SignalType::RAMP: t->data[i].f = s->offset[i] + s->amplitude[i] * fmod(running, s->frequency[i]); break; case signal_generator::SignalType::COUNTER: t->data[i].f = s->offset[i] + s->amplitude[i] * s->counter; break; case signal_generator::SignalType::RANDOM: s->last[i] += box_muller(0, s->stddev[i]); t->data[i].f = s->last[i]; break; case signal_generator::SignalType::MIXED: break; case signal_generator::SignalType::PULSE: t->data[i].f = abs(fmod(running * s->frequency[i] + (s->phase[i] / (2 * M_PI)) , 1)) <= (s->pulse_width[i] / s->rate) ? s->pulse_high[i] : s->pulse_low[i]; t->data[i].f += s->offset[i]; break; } } if (s->limit > 0 && s->counter >= (unsigned) s->limit) { n->logger->info("Reached limit."); n->state = State::STOPPING; return -1; } /* Throttle output if desired */ if (s->rt) { /* Block until 1/p->rate seconds elapsed */ steps = s->task.wait(); if (steps > 1 && s->monitor_missed) { n->logger->debug("Missed steps: {}", steps-1); s->missed_steps += steps-1; } } s->counter += steps; return 1; } char * signal_generator_print(struct vnode *n) { struct signal_generator *s = (struct signal_generator *) n->_vd; char *buf = nullptr; strcatf(&buf, "rt=%s, rate=%.2f, values=%d", s->rt ? "yes" : "no", s->rate, s->values); if (s->limit > 0) strcatf(&buf, ", limit=%d", s->limit); return buf; } int signal_generator_poll_fds(struct vnode *n, int fds[]) { struct signal_generator *s = (struct signal_generator *) n->_vd; if (s->rt) { fds[0] = s->task.getFD(); return 1; } else return 0; } static struct vnode_type p; __attribute__((constructor(110))) static void register_plugin() { p.name = "signal"; p.description = "Signal generator"; p.vectorize = 1; p.flags = (int) NodeFlags::PROVIDES_SIGNALS; p.size = sizeof(struct signal_generator); p.init = signal_generator_init; p.destroy = signal_generator_destroy; p.parse = signal_generator_parse; p.prepare = signal_generator_prepare; p.print = signal_generator_print; p.start = signal_generator_start; p.stop = signal_generator_stop; p.read = signal_generator_read; p.poll_fds = signal_generator_poll_fds; if (!node_types) node_types = new NodeTypeList(); node_types->push_back(&p); }