/** Node type: Real-time Protocol (RTP) * * @author Steffen Vogel * @author Marvin Klimke * @copyright 2014-2019, Institute for Automation of Complex Power Systems, EONERC * @license GNU General Public License (version 3) * * VILLASnode * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *********************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #undef ALIGN_MASK #include #include #include #include #include #include #include #include #include #ifdef WITH_NETEM #include #endif /* WITH_NETEM */ static pthread_t re_pthread; /* Forward declarations */ static struct plugin p; static int rtp_set_rate(struct node *n, double rate) { struct rtp *r = (struct rtp *) n->_vd; int ratio; switch (r->rtcp.throttle_mode) { case RTCP_THROTTLE_HOOK_LIMIT_RATE: limit_rate_set_rate(r->rtcp.throttle_hook, rate); break; case RTCP_THROTTLE_HOOK_DECIMATE: ratio = r->rate / rate; if (ratio == 0) ratio = 1; decimate_set_ratio(r->rtcp.throttle_hook, ratio); break; case RTCP_THROTTLE_DISABLED: return 0; default: return -1; } info("Set rate limiting for node %s to %f", node_name(n), rate); return 0; } static int rtp_aimd(struct node *n, double loss_frac) { struct rtp *r = (struct rtp *) n->_vd; int ret; double rate; if (!r->rtcp.enabled) return -1; if (loss_frac < 0.01) rate = r->aimd.last_rate + r->aimd.a; else rate = r->aimd.last_rate * r->aimd.b; r->aimd.last_rate = rate; ret = rtp_set_rate(n, rate); if (ret) return ret; if (r->aimd.log) fprintf(r->aimd.log, "%d\t%f\t%f\n", r->rtcp.num_rrs, loss_frac, rate); info("AIMD: %d\t%f\t%f", r->rtcp.num_rrs, loss_frac, rate); return 0; } int rtp_init(struct node *n) { struct rtp *r = (struct rtp *) n->_vd; /* Default values */ r->rate = 1; r->aimd.a = 10; r->aimd.b = 0.5; r->aimd.last_rate = 2000; r->aimd.log = NULL; r->rtcp.enabled = false; r->rtcp.throttle_mode = RTCP_THROTTLE_DISABLED; return 0; } int rtp_reverse(struct node *n) { struct rtp *r = (struct rtp *) n->_vd; struct sa tmp; tmp = r->in.saddr_rtp; r->in.saddr_rtp = r->out.saddr_rtp; r->out.saddr_rtp = tmp; tmp = r->in.saddr_rtcp; r->in.saddr_rtcp = r->out.saddr_rtcp; r->out.saddr_rtcp = tmp; return 0; } int rtp_parse(struct node *n, json_t *cfg) { int ret = 0; struct rtp *r = (struct rtp *) n->_vd; const char *local, *remote; const char *format = "villas.binary"; uint16_t port; json_error_t err; json_t *json_rtcp = NULL, *json_aimd = NULL; ret = json_unpack_ex(cfg, &err, 0, "{ s?: s, s?: F, s?: o, s?: o, s: { s: s }, s: { s: s } }", "format", &format, "rate", &r->rate, "rtcp", &json_rtcp, "aimd", &json_aimd, "out", "address", &remote, "in", "address", &local ); if (ret) jerror(&err, "Failed to parse configuration of node %s", node_name(n)); /* AIMD */ if (json_aimd) { ret = json_unpack_ex(json_aimd, &err, 0, "{ s?: F, s?: F, s?: F }", "a", &r->aimd.a, "b", &r->aimd.b, "start_rate", &r->aimd.last_rate ); if (ret) jerror(&err, "Failed to parse configuration of node %s", node_name(n)); } /* RTCP */ if (json_rtcp) { const char *mode = "aimd"; const char *throttle_mode = "decimate"; /* Enable if RTCP section is available */ r->rtcp.enabled = 1; ret = json_unpack_ex(json_rtcp, &err, 0, "{ s?: b, s?: s, s?: s }", "enabled", &r->rtcp.enabled, "mode", &mode, "throttle_mode", &throttle_mode ); if (ret) jerror(&err, "Failed to parse configuration of node %s", node_name(n)); /* RTCP Mode */ if (!strcmp(mode, "aimd")) r->rtcp.mode = RTCP_MODE_AIMD; else error("Unknown RTCP mode: %s", mode); /* RTCP Throttle mode */ if (r->rtcp.enabled == false) r->rtcp.throttle_mode = RTCP_THROTTLE_DISABLED; else if (!strcmp(throttle_mode, "decimate")) r->rtcp.throttle_mode = RTCP_THROTTLE_HOOK_DECIMATE; else if (!strcmp(throttle_mode, "limit_rate")) r->rtcp.throttle_mode = RTCP_THROTTLE_HOOK_LIMIT_RATE; else error("Unknown RTCP throttle mode: %s", throttle_mode); } /* Format */ r->format = format_type_lookup(format); if (!r->format) error("Invalid format '%s' for node %s", format, node_name(n)); /* Remote address */ ret = sa_decode(&r->out.saddr_rtp, remote, strlen(remote)); if (ret) { error("Failed to resolve remote address '%s' of node %s: %s", remote, node_name(n), strerror(ret)); } /* Assign even port number to RTP socket, next odd number to RTCP socket */ port = sa_port(&r->out.saddr_rtp) & ~1; sa_set_sa(&r->out.saddr_rtcp, &r->out.saddr_rtp.u.sa); sa_set_port(&r->out.saddr_rtp, port); sa_set_port(&r->out.saddr_rtcp, port+1); /* Local address */ ret = sa_decode(&r->in.saddr_rtp, local, strlen(local)); if (ret) { error("Failed to resolve local address '%s' of node %s: %s", local, node_name(n), strerror(ret)); } /* Assign even port number to RTP socket, next odd number to RTCP socket */ port = sa_port(&r->in.saddr_rtp) & ~1; sa_set_sa(&r->in.saddr_rtcp, &r->in.saddr_rtp.u.sa); sa_set_port(&r->in.saddr_rtp, port); sa_set_port(&r->in.saddr_rtcp, port+1); /** @todo parse * in addresses */ return ret; } char * rtp_print(struct node *n) { struct rtp *r = (struct rtp *) n->_vd; char *buf; char *local = socket_print_addr((struct sockaddr *) &r->in.saddr_rtp.u); char *remote = socket_print_addr((struct sockaddr *) &r->out.saddr_rtp.u); buf = strf("format=%s, in.address=%s, out.address=%s, rtcp.enabled=%s", format_type_name(r->format), local, remote, r->rtcp.enabled ? "yes" : "no"); if (r->rtcp.enabled) { const char *mode, *throttle_mode; switch (r->rtcp.mode) { case RTCP_MODE_AIMD: mode = "aimd"; } switch (r->rtcp.throttle_mode) { case RTCP_THROTTLE_HOOK_DECIMATE: throttle_mode = "decimate"; break; case RTCP_THROTTLE_HOOK_LIMIT_RATE: throttle_mode = "limit_rate"; break; case RTCP_THROTTLE_DISABLED: throttle_mode = "disabled"; break; default: throttle_mode = "unknown"; } strcatf(&buf, ", rtcp.mode=%s, rtcp.throttle_mode=%s", mode, throttle_mode); if (r->rtcp.mode == RTCP_MODE_AIMD) strcatf(&buf, ", aimd.a=%f, aimd.b=%f, aimd.start_rate=%f", r->aimd.a, r->aimd.b, r->aimd.last_rate); } free(local); free(remote); return buf; } static void rtp_handler(const struct sa *src, const struct rtp_header *hdr, struct mbuf *mb, void *arg) { int ret; struct node *n = (struct node *) arg; struct rtp *r = (struct rtp *) n->_vd; /* source, header not used */ (void) src; (void) hdr; void *d = mem_ref((void *) mb); ret = queue_signalled_push(&r->recv_queue, d); if (ret != 1) { warning("Failed to push to queue"); mem_deref(d); } } static void rtcp_handler(const struct sa *src, struct rtcp_msg *msg, void *arg) { struct node *n = (struct node *) arg; struct rtp *r = (struct rtp *) n->_vd; /* source not used */ (void) src; debug(5, "RTCP: recv %s", rtcp_type_name(msg->hdr.pt)); if (msg->hdr.pt == RTCP_SR) { if (msg->hdr.count > 0) { const struct rtcp_rr *rr = &msg->r.sr.rrv[0]; debug(5, "RTP: fraction lost = %d", rr->fraction); rtp_aimd(n, (double) rr->fraction / 256); } else debug(5, "RTCP: Received sender report with zero reception reports"); } r->rtcp.num_rrs++; } int rtp_start(struct node *n) { int ret; struct rtp *r = (struct rtp *) n->_vd; /* Initialize queue */ ret = queue_signalled_init(&r->recv_queue, 1024, &memory_heap, 0); if (ret) return ret; /* Initialize IO */ ret = io_init(&r->io, r->format, &n->in.signals, SAMPLE_HAS_ALL & ~SAMPLE_HAS_OFFSET); if (ret) return ret; /* Initialize memory buffer for sending */ r->send_mb = mbuf_alloc(RTP_INITIAL_BUFFER_LEN); if (!r->send_mb) return -1; ret = mbuf_fill(r->send_mb, 0, RTP_HEADER_SIZE); if (ret) return -1; ret = io_check(&r->io); if (ret) return ret; /* Initialize throttle hook */ if (r->rtcp.throttle_mode != RTCP_THROTTLE_DISABLED) { struct hook_type *throttle_hook_type; r->rtcp.throttle_hook = alloc(sizeof(struct hook)); if (!r->rtcp.throttle_hook) return -1; switch (r->rtcp.throttle_mode) { case RTCP_THROTTLE_HOOK_DECIMATE: throttle_hook_type = hook_type_lookup("decimate"); break; case RTCP_THROTTLE_HOOK_LIMIT_RATE: throttle_hook_type = hook_type_lookup("limit_rate"); break; default: throttle_hook_type = NULL; } if (!throttle_hook_type) return -1; ret = hook_init(r->rtcp.throttle_hook, throttle_hook_type, NULL, n); if (ret) return ret; vlist_push(&n->out.hooks, r->rtcp.throttle_hook); } ret = rtp_set_rate(n, r->aimd.last_rate); if (ret) return ret; /* Initialize RTP socket */ uint16_t port = sa_port(&r->in.saddr_rtp) & ~1; ret = rtp_listen(&r->rs, IPPROTO_UDP, &r->in.saddr_rtp, port, port+1, r->rtcp.enabled, rtp_handler, rtcp_handler, n); /* Start RTCP session */ if (r->rtcp.enabled) { r->rtcp.num_rrs = 0; rtcp_start(r->rs, node_name(n), &r->out.saddr_rtcp); if (r->rtcp.mode == RTCP_MODE_AIMD) { char date[32], fn[128]; time_t ts = time(NULL); struct tm tm; /* Convert time */ gmtime_r(&ts, &tm); strftime(date, sizeof(date), "%Y_%m_%d_%s", &tm); snprintf(fn, sizeof(fn), "aimd-rates-%s-%s.log", node_name_short(n), date); r->aimd.log = fopen(fn, "w+"); if (!r->aimd.log) return -1; fprintf(r->aimd.log, "# cnt\tfrac_loss\trate\n"); } } return ret; } int rtp_stop(struct node *n) { int ret; struct rtp *r = (struct rtp *) n->_vd; mem_deref(r->rs); ret = queue_signalled_close(&r->recv_queue); if (ret) warning("Problem closing queue"); ret = queue_signalled_destroy(&r->recv_queue); if (ret) warning("Problem destroying queue"); mem_deref(r->send_mb); if (r->rtcp.enabled && r->rtcp.mode == RTCP_MODE_AIMD) { ret = fclose(r->aimd.log); if (ret) return ret; } return io_destroy(&r->io); } static void * th_func(void *arg) { re_main(NULL); return NULL; } static void stop_handler(int sig, siginfo_t *si, void *ctx) { re_cancel(); } int rtp_type_start(struct super_node *sn) { int ret; /* Initialize library */ ret = libre_init(); if (ret) { warning("Error initializing libre"); return ret; } /* Add worker thread */ ret = pthread_create(&re_pthread, NULL, th_func, NULL); if (ret) { warning("Error creating rtp node type pthread"); return ret; } struct sigaction sa; sa.sa_flags = SA_SIGINFO; sa.sa_sigaction = stop_handler; ret = sigaction(SIGUSR1, &sa, NULL); if (ret) return ret; #ifdef WITH_NETEM struct vlist *interfaces = super_node_get_interfaces(sn); /* Gather list of used network interfaces */ for (size_t i = 0; i < vlist_length(&p.node.instances); i++) { struct node *n = (struct node *) vlist_at(&p.node.instances, i); struct rtp *r = (struct rtp *) n->_vd; struct interface *i = if_get_egress(&r->out.saddr_rtp.u.sa, interfaces); if (!i) error("Failed to find egress interface for node: %s", node_name(n)); vlist_push(&i->nodes, n); } #endif /* WITH_NETEM */ return ret; } int rtp_type_stop() { int ret; /* Join worker thread */ pthread_kill(re_pthread, SIGUSR1); ret = pthread_join(re_pthread, NULL); if (ret) { error("Error joining rtp node type pthread"); return ret; } libre_close(); return ret; } int rtp_read(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release) { int ret; struct rtp *r = (struct rtp *) n->_vd; struct mbuf *mb; /* Get data from queue */ ret = queue_signalled_pull(&r->recv_queue, (void **) &mb); if (ret < 0) { warning("Failed to pull from queue"); return ret; } /* Unpack data */ ret = io_sscan(&r->io, (char *) mb->buf + mb->pos, mbuf_get_left(mb), NULL, smps, cnt); mem_deref(mb); return ret; } int rtp_write(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release) { int ret; struct rtp *r = (struct rtp *) n->_vd; size_t wbytes; size_t avail; uint32_t ts = (uint32_t) time(NULL); retry: mbuf_set_pos(r->send_mb, RTP_HEADER_SIZE); avail = mbuf_get_space(r->send_mb); cnt = io_sprint(&r->io, (char *) r->send_mb->buf + r->send_mb->pos, avail, &wbytes, smps, cnt); if (cnt < 0) return -1; if (wbytes > avail) { ret = mbuf_resize(r->send_mb, wbytes + RTP_HEADER_SIZE); if (!ret) return -1; goto retry; } else mbuf_set_end(r->send_mb, r->send_mb->pos + wbytes); mbuf_set_pos(r->send_mb, RTP_HEADER_SIZE); /* Send dataset */ ret = rtp_send(r->rs, &r->out.saddr_rtp, false, false, RTP_PACKET_TYPE, ts, r->send_mb); if (ret) { warning("Error from rtp_send, reason: %d", ret); cnt = ret; } return cnt; } int rtp_poll_fds(struct node *n, int fds[]) { struct rtp *r = (struct rtp *) n->_vd; fds[0] = queue_signalled_fd(&r->recv_queue); return 1; } int rtp_netem_fds(struct node *n, int fds[]) { struct rtp *r = (struct rtp *) n->_vd; int m = 0; struct udp_sock *rtp = (struct udp_sock *) rtp_sock(r->rs); struct udp_sock *rtcp = (struct udp_sock *) rtcp_sock(r->rs); fds[m++] = udp_sock_fd(rtp, AF_INET); if (r->rtcp.enabled) fds[m++] = udp_sock_fd(rtcp, AF_INET); return m; } static struct plugin p = { .name = "rtp", #ifdef WITH_NETEM .description = "real-time transport protocol (libre, libnl3 netem support)", #else .description = "real-time transport protocol (libre)", #endif .type = PLUGIN_TYPE_NODE, .node = { .vectorize = 0, .size = sizeof(struct rtp), .type.start = rtp_type_start, .type.stop = rtp_type_stop, .init = rtp_init, .reverse = rtp_reverse, .parse = rtp_parse, .print = rtp_print, .start = rtp_start, .stop = rtp_stop, .read = rtp_read, .write = rtp_write, .poll_fds = rtp_poll_fds, .netem_fds = rtp_netem_fds } }; REGISTER_PLUGIN(&p) LIST_INIT_STATIC(&p.node.instances)