/** Test procedures for VILLASfpga * * @author Steffen Vogel * @copyright 2016, Steffen Vogel * This file is part of VILLASnode. All Rights Reserved. Proprietary and confidential. * Unauthorized copying of this file, via any medium is strictly prohibited. *********************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #define TEST_LEN 0x1000 #define CPU_HZ 3392389000 /* Forward Declarations */ int fpga_test_intc(struct fpga *f); int fpga_test_timer(struct fpga *f); int fpga_test_fifo(struct fpga *f); int fpga_test_dma(struct fpga *f); int fpga_test_xsg(struct fpga *f); int fpga_test_hls_dft(struct fpga *f); int fpga_test_rtds_rtt(struct fpga *f); int fpga_tests(int argc, char *argv[], struct fpga *f) { int ret; struct { const char *name; int (*func)(struct fpga *f); } tests[] = { { "Interrupt Controller", fpga_test_intc }, { "Timer Counter", fpga_test_timer }, { "FIFO", fpga_test_fifo }, { "DMA", fpga_test_dma }, { "XSG: multiply_add", fpga_test_xsg }, { "HLS: hls_dft", fpga_test_hls_dft }, { "RTDS: tight rtt", fpga_test_rtds_rtt } }; for (int i = 0; i < ARRAY_LEN(tests); i++) { ret = tests[i].func(f); info("%s: %s", tests[i].name, (ret == 0) ? GRN("passed") : RED("failed")); } return 0; } int fpga_test_intc(struct fpga *f) { int ret; uint32_t isr; if (!f->intc) return -1; ret = intc_enable(f->intc, 0xFF00, 0); if (ret) error("Failed to enable interrupt"); /* Fake IRQs in software by writing to ISR */ XIntc_Out32((uintptr_t) f->map + f->intc->baseaddr + XIN_ISR_OFFSET, 0xFF00); /* Wait for 8 SW triggered IRQs */ for (int i = 0; i < 8; i++) intc_wait(f->intc, i+8); /* Check ISR if all SW IRQs have been deliverd */ isr = XIntc_In32((uintptr_t) f->map + f->intc->baseaddr + XIN_ISR_OFFSET); ret = intc_disable(f->intc, 0xFF00); if (ret) error("Failed to disable interrupt"); return (isr & 0xFF00) ? -1 : 0; /* ISR should get cleared by MSI_Grant_signal */ } int fpga_test_xsg(struct fpga *f) { int ret; double factor, err = 0; struct ip *xsg, *dma; struct model_param *p; struct dma_mem mem; xsg = ip_vlnv_lookup(&f->ips, NULL, "sysgen", "xsg_multiply", NULL); dma = ip_vlnv_lookup(&f->ips, "xilinx.com", "ip", "axi_dma", NULL); /* Check if required IP is available on FPGA */ if (!dma || !xsg || !dma) return -1; p = list_lookup(&xsg->model.parameters, "factor"); if (!p) error("Missing parameter 'factor' for model '%s'", xsg->name); ret = model_param_read(p, &factor); if (ret) error("Failed to read parameter 'factor' from model '%s'", xsg->name); info("Model param: factor = %f", factor); ret = switch_connect(f->sw, dma, xsg); if (ret) error("Failed to configure switch"); ret = switch_connect(f->sw, xsg, dma); if (ret) error("Failed to configure switch"); ret = dma_alloc(dma, &mem, 0x1000, 0); if (ret) error("Failed to allocate DMA memory"); float *src = (float *) mem.base_virt; float *dst = (float *) mem.base_virt + 0x800; for (int i = 0; i < 6; i++) src[i] = 1.1 * (i+1); ret = dma_ping_pong(dma, (char *) src, (char *) dst, 6 * sizeof(float)); if (ret) error("Failed to to ping pong DMA transfer: %d", ret); for (int i = 0; i < 6; i++) err += abs(factor * src[i] - dst[i]); info("Error after FPGA operation: err = %f", err); ret = switch_disconnect(f->sw, dma, xsg); if (ret) error("Failed to configure switch"); ret = switch_disconnect(f->sw, xsg, dma); if (ret) error("Failed to configure switch"); ret = dma_free(dma, &mem); if (ret) error("Failed to release DMA memory"); return err > 1e-3; } int fpga_test_hls_dft(struct fpga *f) { int ret; struct ip *hls, *rtds; rtds = ip_vlnv_lookup(&f->ips, "acs.eonerc.rwth-aachen.de", "user", "rtds_axis", NULL); hls = ip_vlnv_lookup(&f->ips, NULL, "hls", "hls_dft", NULL); /* Check if required IP is available on FPGA */ if (!hls || !rtds) return -1; ret = intc_enable(f->intc, (1 << rtds->irq), 0); if (ret) error("Failed to enable interrupt"); ret = switch_connect(f->sw, rtds, hls); if (ret) error("Failed to configure switch"); ret = switch_connect(f->sw, hls, rtds); if (ret) error("Failed to configure switch"); while(1) { /* Dump RTDS AXI Stream state */ rtds_axis_dump(rtds); sleep(1); } #if 0 int len = 2000; int NSAMPLES = 400; float src[len], dst[len]; for (int i = 0; i < len; i++) { src[i] = 4 + 5.0 * sin(2.0 * M_PI * 1 * i / NSAMPLES) + 2.0 * sin(2.0 * M_PI * 2 * i / NSAMPLES) + 1.0 * sin(2.0 * M_PI * 5 * i / NSAMPLES) + 0.5 * sin(2.0 * M_PI * 9 * i / NSAMPLES) + 0.2 * sin(2.0 * M_PI * 15 * i / NSAMPLES); fifo_write() } #endif ret = switch_disconnect(f->sw, rtds, hls); if (ret) error("Failed to configure switch"); ret = switch_disconnect(f->sw, hls, rtds); if (ret) error("Failed to configure switch"); return 0; } int fpga_test_fifo(struct fpga *f) { int ret; ssize_t len; char src[255], dst[255]; struct ip *fifo; fifo = ip_vlnv_lookup(&f->ips, "xilinx.com", "ip", "axi_fifo_mm_s", NULL); if (!fifo) return -1; ret = intc_enable(f->intc, (1 << fifo->irq), 0); if (ret) error("Failed to enable interrupt"); ret = switch_connect(f->sw, fifo, fifo); if (ret) error("Failed to configure switch"); /* Get some random data to compare */ memset(dst, 0, sizeof(dst)); len = read_random((char *) src, sizeof(src)); if (len != sizeof(src)) error("Failed to get random data"); len = fifo_write(fifo, (char *) src, sizeof(src)); if (len != sizeof(src)) error("Failed to send to FIFO"); len = fifo_read(fifo, (char *) dst, sizeof(dst)); if (len != sizeof(dst)) error("Failed to read from FIFO"); ret = intc_disable(f->intc, (1 << fifo->irq)); if (ret) error("Failed to disable interrupt"); ret = switch_disconnect(f->sw, fifo, fifo); if (ret) error("Failed to configure switch"); /* Compare data */ return memcmp(src, dst, sizeof(src)); } int fpga_test_dma(struct fpga *f) { int ret = -1; struct dma_mem mem, src, dst; list_foreach(struct ip *dma, &f->ips) { INDENT if (!ip_vlnv_match(dma, "xilinx.com", "ip", "axi_dma", NULL)) continue; /* skip non DMA IP cores */ /* Simple DMA can only transfer up to 4 kb due to * PCIe page size burst limitation */ ssize_t len2, len = dma->dma.inst.HasSg ? 64 << 20 : 1 << 2; ret = dma_alloc(dma, &mem, 2 * len, 0); if (ret) return -1; ret = dma_mem_split(&mem, &src, &dst); if (ret) return -1; /* Get new random data */ len2 = read_random(src.base_virt, len); if (len2 != len) serror("Failed to get random data"); int irq_mm2s = dma->irq; int irq_s2mm = dma->irq + 1; ret = intc_enable(f->intc, (1 << irq_mm2s) | (1 << irq_s2mm), 0); if (ret) error("Failed to enable interrupt"); ret = switch_connect(f->sw, dma, dma); if (ret) error("Failed to configure switch"); /* Start transfer */ ret = dma_ping_pong(dma, src.base_phys, dst.base_phys, dst.len); if (ret) error("DMA ping pong failed"); ret = memcmp(src.base_virt, dst.base_virt, src.len); info("DMA %s (%s): %s", dma->name, dma->dma.inst.HasSg ? "scatter-gather" : "simple", ret ? RED("failed") : GRN("passed")); ret = switch_disconnect(f->sw, dma, dma); if (ret) error("Failed to configure switch"); ret = intc_disable(f->intc, (1 << irq_mm2s) | (1 << irq_s2mm)); if (ret) error("Failed to disable interrupt"); ret = dma_free(dma, &mem); if (ret) error("Failed to release DMA memory"); } return ret; } int fpga_test_timer(struct fpga *f) { int ret; struct ip *tmr; tmr = ip_vlnv_lookup(&f->ips, "xilinx.com", "ip", "axi_timer", NULL); if (!tmr) return -1; XTmrCtr *xtmr = &tmr->timer.inst; ret = intc_enable(f->intc, (1 << tmr->irq), 0); if (ret) error("Failed to enable interrupt"); XTmrCtr_SetOptions(xtmr, 0, XTC_EXT_COMPARE_OPTION | XTC_DOWN_COUNT_OPTION); XTmrCtr_SetResetValue(xtmr, 0, FPGA_AXI_HZ / 125); XTmrCtr_Start(xtmr, 0); uint64_t counter = intc_wait(f->intc, tmr->irq); info("Got IRQ: counter = %ju", counter); if (counter == 1) return 0; else warn("Counter was not 1"); intc_disable(f->intc, (1 << tmr->irq)); if (ret) error("Failed to disable interrupt"); return -1; } int fpga_test_rtds_rtt(struct fpga *f) { int ret; struct ip *dma, *rtds; struct dma_mem buf; size_t recvlen; /* Get IP cores */ rtds = ip_vlnv_lookup(&f->ips, "acs.eonerc.rwth-aachen.de", "user", "rtds_axis", NULL); dma = list_lookup(&f->ips, "dma_1"); /* Check if required IP is available on FPGA */ if (!dma || !rtds) return -1; ret = switch_connect(f->sw, rtds, dma); if (ret) error("Failed to configure switch"); ret = switch_connect(f->sw, dma, rtds); if (ret) error("Failed to configure switch"); ret = dma_alloc(dma, &buf, 0x100, 0); if (ret) error("Failed to allocate DMA memory"); while (1) { ret = dma_read(dma, buf.base_phys, buf.len); if (ret) error("Failed to start DMA read: %d", ret); ret = dma_read_complete(dma, NULL, &recvlen); if (ret) error("Failed to complete DMA read: %d", ret); ret = dma_write(dma, buf.base_phys, recvlen); if (ret) error("Failed to start DMA write: %d", ret); ret = dma_write_complete(dma, NULL, NULL); if (ret) error("Failed to complete DMA write: %d", ret); } ret = switch_disconnect(f->sw, rtds, dma); if (ret) error("Failed to configure switch"); ret = switch_disconnect(f->sw, dma, rtds); if (ret) error("Failed to configure switch"); ret = dma_free(dma, &buf); if (ret) error("Failed to release DMA memory"); return 0; }