/** Node type: infiniband * * @author Dennis Potter * @copyright 2018, Institute for Automation of Complex Power Systems, EONERC * @license GNU General Public License (version 3) * * VILLASnode * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *********************************************************************************/ #include #include #include #include #include #include #include #include int ib_post_recv_wrs(struct node *n) { struct infiniband *ib = (struct infiniband *) n->_vd; struct ibv_recv_wr wr, *bad_wr = NULL; int ret; struct ibv_sge sge; // Prepare receive Scatter/Gather element sge.addr = (uintptr_t)pool_get(&ib->mem.p_recv); sge.length = ib->mem.p_recv.blocksz; sge.lkey = ib->mem.mr_recv->lkey; // Prepare a receive Work Request wr.wr_id = (uintptr_t)sge.addr; wr.next = NULL; wr.sg_list = &sge; wr.num_sge = 1; // Post Work Request ret = ibv_post_recv(ib->id->qp, &wr, &bad_wr); return ret; } static void ib_create_busy_poll(struct node *n, struct rdma_cm_id *id) { struct infiniband *ib = (struct infiniband *) n->_vd; // Create completion queue and bind to channel ib->ctx.cq = ibv_create_cq(ib->id->verbs, ib->cq_size, NULL, NULL, 0); if(!ib->ctx.cq) error("Could not create completion queue in node %s.", node_name(n)); //ToDo: Create poll pthread } static void ib_create_event(struct node *n, struct rdma_cm_id *id) { int ret; struct infiniband *ib = (struct infiniband *) n->_vd; // Create completion channel ib->ctx.comp_channel = ibv_create_comp_channel(ib->id->verbs); if(!ib->ctx.comp_channel) error("Could not create completion channel in node %s.", node_name(n)); // Create completion queue and bind to channel ib->ctx.cq = ibv_create_cq(ib->id->verbs, ib->cq_size, NULL, ib->ctx.comp_channel, 0); if(!ib->ctx.cq) error("Could not create completion queue in node %s.", node_name(n)); // Request notifications from completion queue ret = ibv_req_notify_cq(ib->ctx.cq, 0); if(ret) error("Failed to request notifiy CQ in node %s: %s", node_name(n), gai_strerror(ret)); //ToDo: Create poll pthread } static void ib_build_ibv(struct node *n, struct rdma_cm_id *id) { struct infiniband *ib = (struct infiniband *) n->_vd; int ret; //Allocate protection domain ib->ctx.pd = ibv_alloc_pd(ib->id->verbs); if(!ib->ctx.pd) error("Could not allocate protection domain in node %s.", node_name(n)); // Initiate poll mode switch(ib->poll.poll_mode) { case EVENT: ib_create_event(n, id); break; case BUSY: ib_create_busy_poll(n, id); break; } // Prepare remaining Queue Pair (QP) attributes ib->qp_init.send_cq = ib->ctx.cq; ib->qp_init.recv_cq = ib->ctx.cq; //ToDo: Set maximum inline data // Create the actual QP ret = rdma_create_qp(id, ib->ctx.pd, &ib->qp_init); if(ret) error("Failed to create Queue Pair in node %s.", node_name(n)); info("Created Queue Pair."); // Allocate memory ib->mem.p_recv.state = STATE_DESTROYED; ib->mem.p_recv.queue.state = STATE_DESTROYED; // Set pool size to maximum size of Receive Queue pool_init(&ib->mem.p_recv, ib->qp_init.cap.max_recv_wr, sizeof(double), &memtype_heap); if(ret) { error("Failed to init recv memory pool of node %s: %s", node_name(n), gai_strerror(ret)); } //ToDo: initialize r_addr_key struct if mode is RDMA // Register memory for IB Device. Not necessary if data is send // exclusively inline ib->mem.mr_recv = ibv_reg_mr( ib->ctx.pd, (char*)&ib->mem.p_recv+ib->mem.p_recv.buffer_off, ib->mem.p_recv.len, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); if(!ib->mem.mr_recv) { error("Failed to register mr_recv with ibv_reg_mr of node %s.", node_name(n)); } info("Allocated receive memory."); if(ib->is_source) { ib->mem.p_send.state = STATE_DESTROYED; ib->mem.p_send.queue.state = STATE_DESTROYED; // Set pool size to maximum size of Receive Queue pool_init(&ib->mem.p_send, ib->qp_init.cap.max_send_wr, sizeof(double), &memtype_heap); if(ret) { error("Failed to init send memory of node %s: %s", node_name(n), gai_strerror(ret)); } //ToDo: initialize r_addr_key struct if mode is RDMA // Register memory for IB Device. Not necessary if data is send // exclusively inline ib->mem.mr_send = ibv_reg_mr( ib->ctx.pd, (char*)&ib->mem.p_send+ib->mem.p_send.buffer_off, ib->mem.p_send.len, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); if(!ib->mem.mr_send) { error("Failed to register mr_send with ibv_reg_mr of node %s.", node_name(n)); } info("Allocated send memory."); } // Post Receive Work Requests to be able to receive data // Fill complete Receive Queue during initialization for(int i=0; iqp_init.cap.max_recv_wr; i++) { ret = ib_post_recv_wrs(n); if(ret) { error("Failed to post initial receive Work Requests of node %s.", node_name(n)); } } info("Filled the complete Receive Queue."); } static int ib_addr_resolved(struct node *n, struct rdma_cm_id *id) { struct infiniband *ib = (struct infiniband *) n->_vd; int ret; info("Successfully resolved address."); // Build all components from IB Verbs ib_build_ibv(n, id); // Resolve address ret = rdma_resolve_route(id, ib->conn.timeout); if(ret) error("Failed to resolve route in node %s.", node_name(n)); //ToDo: create check if data can be send inline return 0; } static int ib_route_resolved(struct node *n, struct rdma_cm_id *id) { int ret; info("Successfully resolved route."); //ToDo: Post receive WRs struct rdma_conn_param cm_params; memset(&cm_params, 0, sizeof(cm_params)); // Send connection request ret = rdma_connect(id, &cm_params); if(ret) error("Failed to connect in node %s.", node_name(n)); info("Called rdma_connect."); return 0; } static int ib_connect_request(struct node *n, struct rdma_cm_id *id) { struct infiniband *ib = (struct infiniband *) n->_vd; int ret; info("Received a connection request!"); ib->id = id; ib_build_ibv(n, id); //ToDo: Post receive WRs struct rdma_conn_param cm_params; memset(&cm_params, 0, sizeof(cm_params)); // Accept connection request ret = rdma_accept(id, &cm_params); if(ret) error("Failed to connect in node %s.", node_name(n)); info("Successfully accepted connection request."); return 0; } static int ib_event(struct node *n, struct rdma_cm_event *event) { int ret = 0; switch(event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: ret = ib_addr_resolved(n, event->id); break; case RDMA_CM_EVENT_ADDR_ERROR: error("Address resolution (rdma_resolve_addr) failed!"); case RDMA_CM_EVENT_ROUTE_RESOLVED: ret = ib_route_resolved(n, event->id); break; case RDMA_CM_EVENT_ROUTE_ERROR: error("Route resolution (rdma_resovle_route) failed!"); case RDMA_CM_EVENT_CONNECT_REQUEST: ret = ib_connect_request(n, event->id); break; case RDMA_CM_EVENT_CONNECT_ERROR: error("An error has occurred trying to establish a connection!"); case RDMA_CM_EVENT_REJECTED: error("Connection request or response was rejected by the remote end point!"); case RDMA_CM_EVENT_ESTABLISHED: info("Connection established!"); ret = 1; break; default: error("Unknown event occurred: %u", event->event); } return ret; } int ib_reverse(struct node *n) { return 0; } int ib_parse(struct node *n, json_t *cfg) { struct infiniband *ib = (struct infiniband *) n->_vd; int ret; const char *local = NULL; const char *remote = NULL; const char *port_space = "RDMA_PC_TCP"; const char *poll_mode = "BUSY"; const char *qp_type = "IBV_QPT_RC"; int timeout = 1000; int cq_size = 10; int max_send_wr = 100; int max_recv_wr = 100; json_error_t err; ret = json_unpack_ex(cfg, &err, 0, "{ s?: s, s?: s, s?: s, s?: i, \ s?: s, s?: i, s?: s, s?: i, s?: i}", "remote", &remote, "local", &local, "rdma_port_space", &port_space, "resolution_timeout", &timeout, "poll_mode", &poll_mode, "cq_size", &cq_size, "qp_type", &qp_type, "max_send_wr", &max_send_wr, "max_recv_wr", &max_recv_wr ); if(ret) jerror(&err, "Failed to parse configuration of node %s", node_name(n)); // Translate IP:PORT to a struct addrinfo //ToDo: Fix fixed port ret = getaddrinfo(local, (char *)"13337", NULL, &ib->conn.src_addr); if(ret) { error("Failed to resolve local address '%s' of node %s: %s", local, node_name(n), gai_strerror(ret)); } // Translate port space if(strcmp(port_space, "RDMA_PS_IPOIB") == 0) ib->conn.port_space = RDMA_PS_IPOIB; else if(strcmp(port_space, "RDMA_PS_TCP") == 0) ib->conn.port_space = RDMA_PS_TCP; else if(strcmp(port_space, "RDMA_PS_UDP") == 0) ib->conn.port_space = RDMA_PS_UDP; else if(strcmp(port_space, "RDMA_PS_IB") == 0) ib->conn.port_space = RDMA_PS_IB; else { error("Failed to translate rdma_port_space in node %s. %s is not a valid \ port space supported by rdma_cma.h!", node_name(n), port_space); } // Set timeout ib->conn.timeout = timeout; // Translate poll mode if(strcmp(poll_mode, "EVENT") == 0) ib->poll.poll_mode = EVENT; else if(strcmp(poll_mode, "BUSY") == 0) ib->poll.poll_mode = BUSY; else { error("Failed to translate poll_mode in node %s. %s is not a valid \ poll mode!", node_name(n), poll_mode); } // Set completion queue size ib->cq_size = cq_size; // Translate QP type if(strcmp(qp_type, "IBV_QPT_RC") == 0) ib->qp_init.qp_type = IBV_QPT_RC; else if(strcmp(qp_type, "IBV_QPT_UC") == 0) ib->qp_init.qp_type = IBV_QPT_UC; else if(strcmp(qp_type, "IBV_QPT_UD") == 0) ib->qp_init.qp_type = IBV_QPT_UD; else { error("Failed to translate qp_type in node %s. %s is not a valid \ qp_type!", node_name(n), qp_type); } // Set max. send and receive Work Requests ib->qp_init.cap.max_send_wr = max_send_wr; ib->qp_init.cap.max_recv_wr = max_recv_wr; // Set remaining QP attributes ib->qp_init.cap.max_send_sge = 1; ib->qp_init.cap.max_recv_sge = 1; //Check if node is a source and connect to target if(remote) { ib->is_source = 1; // Translate address info //ToDo: Fix fixed port ret = getaddrinfo(remote, (char *)"13337", NULL, &ib->conn.dst_addr); if(ret) { error("Failed to resolve remote address '%s' of node %s: %s", remote, node_name(n), gai_strerror(ret)); } } else ib->is_source = 0; return 0; } char * ib_print(struct node *n) { return 0; } int ib_destroy(struct node *n) { return 0; } int ib_start(struct node *n) { struct infiniband *ib = (struct infiniband *) n->_vd; struct rdma_cm_event *event = NULL; int ret; // Create event channel ib->ec = rdma_create_event_channel(); if(!ib->ec) { error("Failed to create event channel in node %s!", node_name(n)); } ret = rdma_create_id(ib->ec, &ib->id, NULL, ib->conn.port_space); if(ret) { error("Failed to create rdma_cm_id of node %s: %s", node_name(n), gai_strerror(ret)); } info("Succesfully created rdma_cm_id."); // The ID will be overwritten for the target ib->listen_id = ib->id; // Bind rdma_cm_id to the HCA ret = rdma_bind_addr(ib->id, ib->conn.src_addr->ai_addr); if(ret) { error("Failed to bind to local device of node %s: %s", node_name(n), gai_strerror(ret)); } info("Bound rdma_cm_id to Infiniband device."); if(ib->is_source) { // Resolve address ret = rdma_resolve_addr(ib->id, NULL, ib->conn.dst_addr->ai_addr, ib->conn.timeout); if(ret) { error("Failed to resolve remote address after %ims of node %s: %s", ib->conn.timeout, node_name(n), gai_strerror(ret)); } } else { // Listen on rdma_cm_id for events ret = rdma_listen(ib->listen_id, 10); if(ret) { error("Failed to listen to rdma_cm_id on node %s", node_name(n)); } } // Several events should occur on the event channel, to make // sure the nodes are succesfully connected. info("Starting to monitor events on rdma_cm_id."); while(rdma_get_cm_event(ib->ec, &event) == 0) { struct rdma_cm_event event_copy; memcpy(&event_copy, event, sizeof(*event)); rdma_ack_cm_event(event); if(ib_event(n, &event_copy)) break; } return 0; } int ib_stop(struct node *n) { return 0; } int ib_init(struct super_node *n) { return 0; } int ib_deinit() { return 0; } int ib_read(struct node *n, struct sample *smps[], unsigned cnt) { //Create separate thread for polling! This impelemtation is just //for testing purposes struct infiniband *ib = (struct infiniband *) n->_vd; int ret; struct ibv_wc wc[cnt]; union { double f; int64_t i; } *data; ret = ibv_poll_cq(ib->ctx.cq, cnt, wc); if(ret) { data = malloc(ret*sizeof(double)); for(int i=0; ilength = ret; smps[0]->capacity = cnt; memcpy(smps[0]->data, data, ret*sizeof(double)); } return ret; } int ib_write(struct node *n, struct sample *smps[], unsigned cnt) { /* Send pool is not used at this moment! */ struct infiniband *ib = (struct infiniband *) n->_vd; int ret; struct ibv_send_wr wr[smps[0]->length], *bad_wr = NULL; struct ibv_sge sge[smps[0]->length]; memset(&wr, 0, sizeof(wr)); //ToDo: Place this into configuration and create checks if settings are valid int send_inline = 1; for(int i=0; ilength; i++) { // If data is send inline, it is not necessary to copy data to protected // memory region first. if(send_inline) { sge[i].addr = (uint64_t)&smps[0]->data[i].f; sge[i].length = sizeof(double); } else { //- copy value to send_region //- give pointer to start of array } // Set Send Work Request wr[i].wr_id = 0; //ToDo: set this to a useful value wr[i].sg_list = &sge[i]; wr[i].num_sge = 1; //ToDo: Right now only smps[0] is sg_list. This can be extended //furthermore we should break the transaction up if inline mode //is selected if(i == (smps[0]->length-1)) wr[i].next = NULL; else wr[i].next = &wr[i+1]; wr[i].send_flags = IBV_SEND_SIGNALED | (send_inline<<3); wr[i].imm_data = htonl(0); //ToDo: set this to a useful value wr[i].opcode = IBV_WR_SEND_WITH_IMM; } //Send linked list of Work Requests ret = ibv_post_send(ib->id->qp, wr, &bad_wr); if(ret) { error("Failed to send message in node %s: %s", node_name(n), gai_strerror(ret)); return -ret; } /* Debugging */ struct ibv_wc wc[5]; int size; while(1) { size = ibv_poll_cq(ib->ctx.cq, 5, wc); if(size) for(int j=0; j