/** Node-type for uldaq connections. * * @file * @author Manuel Pitz * @author Steffen Vogel * @copyright 2017-2018, Institute for Automation of Complex Power Systems, EONERC * @license GNU General Public License (version 3) * * VILLASnode * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *********************************************************************************/ #include #include #include #include #include static const struct { const char *name, Range range } ranges[] { { "bip60", BIP60VOLTS }, // -60 to +60 Volts { "bip30", BIP30VOLTS }, // -30 to +30 Volts { "bip15", BIP15VOLTS }, // -15 to +15 Volts { "bip20", BIP20VOLTS }, // -20 to +20 Volts { "bip10", BIP10VOLTS }, // -10 to +10 Volts { "bip5", BIP5VOLTS }, // -5 to +5 Volts { "bip4", BIP4VOLTS }, // -4 to +4 Volts { "bip2PT5", BIP2PT5VOLTS }, // -2.5 to +2.5 Volts { "bip2", BIP2VOLTS }, // -2 to +2.0 Volts { "bip1PT25", BIP1PT25VOLTS }, // -1.25 to +1.25 Volts { "bip1", BIP1VOLTS }, // -1 to +1 Volts { "bipPT625", BIPPT625VOLTS }, // -0.625 to +.625 Volts { "bipPT5", BIPPT5VOLTS }, // -0.5 to +.5 Volts { "bipPT25", BIPPT25VOLTS }, // -0.25 to +0.25 Volts { "bipPT125", BIPPT125VOLTS }, // -0.125 to +0.125 Volts { "bipPT2", BIPPT2VOLTS }, // -0.2 to +0.2 Volts { "bipPT1", BIPPT1VOLTS }, // -0.1 to +.1 Volts { "bipPT078", BIPPT078VOLTS }, // -0.078 to +0.078 Volts { "bipPT05", BIPPT05VOLTS }, // -0.05 to +.05 Volts { "bipPT01", BIPPT01VOLTS }, // -0.01 to +.01 Volts { "bipPT005", BIPPT005VOLTS }, // -0.005 to +.005 Volts { "uni60", UNI60VOLTS }, // 0.0 to +60 Volts { "uni30", UNI30VOLTS }, // 0.0 to +30 Volts { "uni15", UNI15VOLTS }, // 0.0 to +15 Volts { "uni20", UNI20VOLTS }, // 0.0 to +20 Volts { "uni10", UNI10VOLTS }, // 0.0 to +10 Volts { "uni5", UNI5VOLTS }, // 0.0 to +5 Volts { "uni4", UNI4VOLTS }, // 0.0 to +4 Volts { "uni2PT5", UNI2PT5VOLTS }, // 0.0 to +2.5 Volts { "uni2", UNI2VOLTS }, // 0.0 to +2.0 Volts { "uni1PT25", UNI1PT25VOLTS }, // 0.0 to +1.25 Volts { "uni1", UNI1VOLTS }, // 0.0 to +1 Volts { "uniPT625", UNIPT625VOLTS }, // 0.0 to +.625 Volts { "uniPT5", UNIPT5VOLTS }, // 0.0 to +.5 Volts { "uniPT25", UNIPT25VOLTS }, // 0.0 to +0.25 Volts { "uniPT125", UNIPT125VOLTS }, // 0.0 to +0.125 Volts { "uniPT2", UNIPT2VOLTS }, // 0.0 to +0.2 Volts { "uniPT1", UNIPT1VOLTS }, // 0.0 to +.1 Volts { "uniPT078", UNIPT078VOLTS }, // 0.0 to +0.078 Volts { "uniPT05", UNIPT05VOLTS }, // 0.0 to +.05 Volts { "uniPT01", UNIPT01VOLTS }, // 0.0 to +.01 Volts { "uniPT005", UNIPT005VOLTS } // 0.0 to +.005 Volts }; static Range uldaq_parse_range(const char *str) { for (int i = 0; i < ARRAY_LEN(ranges); i++) { if (!strcmp(ranges[i].name, str)) return ranges[i].range; } return -1; } int uldaq_init(struct node *n) { struct uldaq *u = (struct uldaq *) n->_vd; u->in.queue_len = 0; u->in.queues = NULL; u->in.sample_count = 10000; u->in.sample_rate = 1000; u->in.scan_options = (ScanOption) (SO_DEFAULTIO | SO_CONTINUOUS); u->in.flags = AINSCAN_FF_DEFAULT; } int uldaq_parse(struct node *n, json_t *cfg) { int ret; struct uldaq *u = (struct uldaq *) n->_vd; const char *range = NULL; size_t i; json_t *json_signals; json_t *json_signal; ret = json_unpack_ex(cfg, &err, 0, "{ s: { s: o, s: i, s: d } }", "in", "signals", &json_signals, "sample_count", &u->in.sample_count, "sample_rate", &u->in.sample_rate, "range", &range ); if (ret) jerror(&err, "Failed to parse configuration of node %s", node_name(n)); u->in.queue_len = list_length(&n->in.signals); u->in.queues = realloc(sizeof(struct AiQueueElement) * u->in.queue_len); json_array_foreach(json_signals, i, json_signal) { } } int uldaq_start(struct node *n) { int ret; struct uldaq *u = (struct uldaq *) n->_vd; Range ranges[MAX_RANGE_COUNT]; int numRanges = 0; int descriptorIndex = 0; unsigned int numDevs = 1; UlError err = ERR_NO_ERROR; AiInputMode u->inputMode = AI_SINGLE_ENDED; int chanCount = 1;//change this to use more than one channel int index = 0; // allocate a buffer to receive the data double *buffer = (double *) alloc(chanCount * u->sample_count * sizeof(double)); if (buffer == 0) { warn("Out of memory, unable to create scan buffer"); ret = -1; } // Get descriptors for all of the available DAQ devices err = ulGetDaqDeviceInventory(u->interfaceType, u->devDescriptors, &numDevs); if (err != ERR_NO_ERROR) ret = -1; // verify at least one DAQ device is detected if (numDevs == 0) { warn("No DAQ devices are connected"); ret = -1; } // get a handle to the DAQ device associated with the first descriptor u->daqDeviceHandle = ulCreateDaqDevice(u->devDescriptors[0]); if (u->daqDeviceHandle == 0) { warn ("Unable to create a handle to the specified DAQ device"); ret = -1; } // get the analog input ranges err = getAiInfoRanges(u->daqDeviceHandle, u->inputMode, &numRanges, ranges); if (err != ERR_NO_ERROR) ret = -1; err = ulConnectDaqDevice(u->daqDeviceHandle); if (err != ERR_NO_ERROR) ret = -1; err = ulAInLoadQueue(u->daqDeviceHandle, u->queues, chanCount); if (err != ERR_NO_ERROR) ret = -1; Range range; // will be ignored when in queue mode int lowChan,highChan; // will be ignored when in queue mode // start the acquisition // // when using the queue, the lowChan, highChan, u->inputMode, and range // parameters are ignored since they are specified in u->queues err = ulAInScan(u->daqDeviceHandle, lowChan, highChan, u->inputMode, range, u->sample_count, &(u->sample_rate), u->scanOptions, u->flags, buffer); if (err == ERR_NO_ERROR) { ScanStatus status; TransferStatus transferStatus; // get the initial status of the acquisition ulAInScanStatus(u->daqDeviceHandle, &status, &transferStatus); } if (ret) return ret; return queue_signalled_init(&l->queue, l->queuelen, &memory_hugepage, QUEUE_SIGNALLED_EVENTFD); } int uldaq_stop(struct node *n) { int ret; struct uldaq *u = (struct uldaq *) n->_vd; // get the current status of the acquisition err = ulAInScanStatus(u->daqDeviceHandle, &status, &transferStatus); UlError err = ERR_NO_ERROR; // stop the acquisition if it is still running if (status == SS_RUNNING && err == ERR_NO_ERROR) ulAInScanStop(u->daqDeviceHandle); // TODO: error handling ulDisconnectDaqDevice(u->daqDeviceHandle); ulReleaseDaqDevice(u->daqDeviceHandle); return queue_signalled_destroy(&l->queue); } int uldaq_read(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release) { int avail; struct uldaq *u = (struct uldaq *) n->_vd; UlError err = ERR_NO_ERROR; if (status == SS_RUNNING && err == ERR_NO_ERROR) { // get the current status of the acquisition err = ulAInScanStatus(u->daqDeviceHandle, &status, &transferStatus); if (err == ERR_NO_ERROR) { index = transferStatus.currentIndex; int i=0;//we only read one channel double currentVal = buffer[index + i]; } } return avail; } static struct plugin p = { .name = "uldaq", .description = "Read USB analog to digital converters like UL201", .type = PLUGIN_TYPE_NODE, .node = { .vectorize = 0, .u->flags = NODE_TYPE_PROVIDES_SIGNALS, .size = sizeof(struct uldaq), .parse = loopback_parse, .print = loopback_print, .start = uldaq_start, .stop = uldaq_stop, .read = uldaq_read } }; REGISTER_PLUGIN(&p) LIST_INIT_STATIC(&p.node.instances)