/** Traffic control (tc): setup interface queuing desciplines. * * VILLASnode uses these functions to setup the network emulation feature. * * @author Steffen Vogel * @copyright 2017, Institute for Automation of Complex Power Systems, EONERC * @license GNU General Public License (version 3) * * VILLASnode * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *********************************************************************************/ #include #include #include #include #include "kernel/kernel.h" #include "kernel/if.h" #include "kernel/tc.h" #include "kernel/nl.h" #include "utils.h" int tc_parse(struct rtnl_qdisc **netem, json_t *cfg) { const char *str; int ret, val; json_t *json_distribution = NULL; json_t *json_limit = NULL; json_t *json_delay = NULL; json_t *json_jitter = NULL; json_t *json_loss = NULL; json_t *json_duplicate = NULL; json_t *json_corruption = NULL; json_error_t err; ret = json_unpack_ex(cfg, &err, 0, "{ s?: o, s?: o, s?: o, s?: o, s?: o, s?: o, s?: o }", "distribution", &json_distribution, "limit", &json_limit, "delay", &json_delay, "jitter", &json_jitter, "loss", &json_loss, "duplicate", &json_duplicate, "corruption", &json_corruption ); if (ret) jerror(&err, "Failed to parse setting network emulation settings"); struct rtnl_qdisc *ne = rtnl_qdisc_alloc(); if (!ne) error("Failed to allocated memory!"); rtnl_tc_set_kind(TC_CAST(ne), "netem"); if (json_distribution) { str = json_string_value(json_distribution); if (!str) error("Setting 'distribution' must be a JSON string"); if (rtnl_netem_set_delay_distribution(ne, str)) error("Invalid delay distribution '%s' in netem config", str); } if (json_limit) { val = json_integer_value(json_limit); if (!json_is_integer(json_limit) || val <= 0) error("Setting 'limit' must be a positive integer"); rtnl_netem_set_limit(ne, val); } else rtnl_netem_set_limit(ne, 0); if (json_delay) { val = json_integer_value(json_delay); if (!json_is_integer(json_delay) || val <= 0) error("Setting 'delay' must be a positive integer"); rtnl_netem_set_delay(ne, val); } if (json_jitter) { val = json_integer_value(json_jitter); if (!json_is_integer(json_jitter) || val <= 0) error("Setting 'jitter' must be a positive integer"); rtnl_netem_set_jitter(ne, val); } if (json_loss) { val = json_integer_value(json_loss); if (!json_is_integer(json_loss) || val < 0 || val > 100) error("Setting 'loss' must be a positive integer within the range [ 0, 100 ]"); rtnl_netem_set_loss(ne, val); } if (json_duplicate) { val = json_integer_value(json_duplicate); if (!json_is_integer(json_duplicate) || val < 0 || val > 100) error("Setting 'duplicate' must be a positive integer within the range [ 0, 100 ]"); rtnl_netem_set_duplicate(ne, val); } if (json_corruption) { val = json_integer_value(json_corruption); if (!json_is_integer(json_corruption) || val < 0 || val > 100) error("Setting 'corruption' must be a positive integer within the range [ 0, 100 ]"); rtnl_netem_set_corruption_probability(ne, val); } *netem = ne; return 0; } char * tc_print(struct rtnl_qdisc *ne) { char *buf = NULL; if (rtnl_netem_get_limit(ne) > 0) strcatf(&buf, "limit %upkts", rtnl_netem_get_limit(ne)); if (rtnl_netem_get_delay(ne) > 0) { strcatf(&buf, "delay %.2fms ", rtnl_netem_get_delay(ne) / 1000.0); if (rtnl_netem_get_jitter(ne) > 0) { strcatf(&buf, "jitter %.2fms ", rtnl_netem_get_jitter(ne) / 1000.0); if (rtnl_netem_get_delay_correlation(ne) > 0) strcatf(&buf, "%u%% ", rtnl_netem_get_delay_correlation(ne)); } } if (rtnl_netem_get_loss(ne) > 0) { strcatf(&buf, "loss %u%% ", rtnl_netem_get_loss(ne)); if (rtnl_netem_get_loss_correlation(ne) > 0) strcatf(&buf, "%u%% ", rtnl_netem_get_loss_correlation(ne)); } if (rtnl_netem_get_reorder_probability(ne) > 0) { strcatf(&buf, " reorder%u%% ", rtnl_netem_get_reorder_probability(ne)); if (rtnl_netem_get_reorder_correlation(ne) > 0) strcatf(&buf, "%u%% ", rtnl_netem_get_reorder_correlation(ne)); } if (rtnl_netem_get_corruption_probability(ne) > 0) { strcatf(&buf, "corruption %u%% ", rtnl_netem_get_corruption_probability(ne)); if (rtnl_netem_get_corruption_correlation(ne) > 0) strcatf(&buf, "%u%% ", rtnl_netem_get_corruption_correlation(ne)); } if (rtnl_netem_get_duplicate(ne) > 0) { strcatf(&buf, "duplication %u%% ", rtnl_netem_get_duplicate(ne)); if (rtnl_netem_get_duplicate_correlation(ne) > 0) strcatf(&buf, "%u%% ", rtnl_netem_get_duplicate_correlation(ne)); } return buf; } int tc_prio(struct interface *i, struct rtnl_qdisc **qd, tc_hdl_t handle, tc_hdl_t parent, int bands) { int ret; struct nl_sock *sock = nl_init(); struct rtnl_qdisc *q = rtnl_qdisc_alloc(); ret = kernel_module_load("sch_prio"); if (ret) error("Failed to load kernel module: sch_prio (%d)", ret); /* This is the default priomap used by the tc-prio qdisc * We will use the first 'bands' bands internally */ uint8_t map[] = QDISC_PRIO_DEFAULT_PRIOMAP; for (int i = 0; i < ARRAY_LEN(map); i++) map[i] += bands; rtnl_tc_set_link(TC_CAST(q), i->nl_link); rtnl_tc_set_parent(TC_CAST(q), parent); rtnl_tc_set_handle(TC_CAST(q), handle); rtnl_tc_set_kind(TC_CAST(q), "prio"); rtnl_qdisc_prio_set_bands(q, bands + 3); rtnl_qdisc_prio_set_priomap(q, map, sizeof(map)); ret = rtnl_qdisc_add(sock, q, NLM_F_CREATE | NLM_F_REPLACE); *qd = q; debug(LOG_TC | 3, "Added prio qdisc with %d bands to interface '%s'", bands, rtnl_link_get_name(i->nl_link)); return ret; } int tc_netem(struct interface *i, struct rtnl_qdisc **qd, tc_hdl_t handle, tc_hdl_t parent) { int ret; struct nl_sock *sock = nl_init(); struct rtnl_qdisc *q = *qd; ret = kernel_module_load("sch_netem"); if (ret) error("Failed to load kernel module: sch_netem (%d)", ret); rtnl_tc_set_link(TC_CAST(q), i->nl_link); rtnl_tc_set_parent(TC_CAST(q), parent); rtnl_tc_set_handle(TC_CAST(q), handle); //rtnl_tc_set_kind(TC_CAST(q), "netem"); ret = rtnl_qdisc_add(sock, q, NLM_F_CREATE); *qd = q; debug(LOG_TC | 3, "Added netem qdisc to interface '%s'", rtnl_link_get_name(i->nl_link)); return ret; } int tc_mark(struct interface *i, struct rtnl_cls **cls, tc_hdl_t flowid, uint32_t mark) { int ret; struct nl_sock *sock = nl_init(); struct rtnl_cls *c = rtnl_cls_alloc(); ret = kernel_module_load("cls_fw"); if (ret) error("Failed to load kernel module: cls_fw"); rtnl_tc_set_link(TC_CAST(c), i->nl_link); rtnl_tc_set_handle(TC_CAST(c), mark); rtnl_tc_set_kind(TC_CAST(c), "fw"); rtnl_cls_set_protocol(c, ETH_P_ALL); rtnl_fw_set_classid(c, flowid); rtnl_fw_set_mask(c, 0xFFFFFFFF); ret = rtnl_cls_add(sock, c, NLM_F_CREATE); *cls = c; debug(LOG_TC | 3, "Added fwmark classifier with mark %d to interface '%s'", mark, rtnl_link_get_name(i->nl_link)); return ret; } int tc_reset(struct interface *i) { struct nl_sock *sock = nl_init(); /* We restore the default pfifo_fast qdisc, by deleting ours */ return rtnl_qdisc_delete(sock, i->tc_qdisc); }