/** Node-type for uldaq connections. * * @file * @author Manuel Pitz * @author Steffen Vogel * @copyright 2017-2018, Institute for Automation of Complex Power Systems, EONERC * @license GNU General Public License (version 3) * * VILLASnode * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *********************************************************************************/ #include #include #include #include #include static const struct { const char *name; AiInputMode mode; } input_modes[] = { { "differential", AI_DIFFERENTIAL }, { "single-ended", AI_SINGLE_ENDED }, { "pseudo-differential", AI_PSEUDO_DIFFERENTIAL } }; static const struct { const char *name; DaqDeviceInterface interface; } interface_types[] = { { "usb", USB_IFC }, { "bluetooth", BLUETOOTH_IFC }, { "ethernet", ETHERNET_IFC }, { "any", ANY_IFC } }; static const struct { const char *name; Range range; float min, max; } ranges[] = { { "bipolar-60", BIP60VOLTS, -60.0, +60.0 }, { "bipolar-60", BIP60VOLTS, -60.0, +60.0 }, { "bipolar-30", BIP30VOLTS, -30.0, +30.0 }, { "bipolar-15", BIP15VOLTS, -15.0, +15.0 }, { "bipolar-20", BIP20VOLTS, -20.0, +20.0 }, { "bipolar-10", BIP10VOLTS, -10.0, +10.0 }, { "bipolar-5", BIP5VOLTS, -5.0, +5.0 }, { "bipolar-4", BIP4VOLTS, -4.0, +4.0 }, { "bipolar-2.5", BIP2PT5VOLTS, -2.5, +2.5 }, { "bipolar-2", BIP2VOLTS, -2.0, +2.0 }, { "bipolar-1.25", BIP1PT25VOLTS, -1.25, +1.25 }, { "bipolar-1", BIP1VOLTS, -1.0, +1.0 }, { "bipolar-0.625", BIPPT625VOLTS, -0.625, +0.625 }, { "bipolar-0.5", BIPPT5VOLTS, -0.5, +0.5 }, { "bipolar-0.25", BIPPT25VOLTS, -0.25, +0.25 }, { "bipolar-0.125", BIPPT125VOLTS, -0.125, +0.125 }, { "bipolar-0.2", BIPPT2VOLTS, -0.2, +0.2 }, { "bipolar-0.1", BIPPT1VOLTS, -0.1, +0.1 }, { "bipolar-0.078", BIPPT078VOLTS, -0.078, +0.078 }, { "bipolar-0.05", BIPPT05VOLTS, -0.05, +0.05 }, { "bipolar-0.01", BIPPT01VOLTS, -0.01, +0.01 }, { "bipolar-0.005", BIPPT005VOLTS, -0.005, +0.005 }, { "unipolar-60", UNI60VOLTS , 0.0, +60.0 }, { "unipolar-30", UNI30VOLTS , 0.0, +30.0 }, { "unipolar-15", UNI15VOLTS , 0.0, +15.0 }, { "unipolar-20", UNI20VOLTS , 0.0, +20.0 }, { "unipolar-10", UNI10VOLTS , 0.0, +10.0 }, { "unipolar-5", UNI5VOLTS , 0.0, +5.0 }, { "unipolar-4", UNI4VOLTS , 0.0, +4.0 }, { "unipolar-2.5", UNI2PT5VOLTS, 0.0, +2.5 }, { "unipolar-2", UNI2VOLTS , 0.0, +2.0 }, { "unipolar-1.25", UNI1PT25VOLTS, 0.0, +1.25 }, { "unipolar-1", UNI1VOLTS , 0.0, +1.0 }, { "unipolar-0.625", UNIPT625VOLTS, 0.0, +0.625 }, { "unipolar-0.5", UNIPT5VOLTS, 0.0, +0.5 }, { "unipolar-0.25", UNIPT25VOLTS, 0.0, +0.25 }, { "unipolar-0.125", UNIPT125VOLTS, 0.0, +0.125 }, { "unipolar-0.2", UNIPT2VOLTS, 0.0, +0.2 }, { "unipolar-0.1", UNIPT1VOLTS, 0.0, +0.1 }, { "unipolar-0.078", UNIPT078VOLTS, 0.0, +0.078 }, { "unipolar-0.05", UNIPT05VOLTS, 0.0, +0.05 }, { "unipolar-0.01", UNIPT01VOLTS, 0.0, +0.01 }, { "unipolar-0.005", UNIPT005VOLTS, 0.0, +0.005 } }; __attribute__((unused)) static UlError uldag_range_info(DaqDeviceHandle device_handle, AiInputMode input_mode, int *number_of_ranges, Range* ranges) { UlError err; long long num_ranges = 0; long long range; err = input_mode == AI_SINGLE_ENDED ? ulAIGetInfo(device_handle, AI_INFO_NUM_SE_RANGES, 0, &num_ranges) : ulAIGetInfo(device_handle, AI_INFO_NUM_DIFF_RANGES, 0, &num_ranges); if (err != ERR_NO_ERROR) return err; for (int i = 0; i < num_ranges; i++) { err = input_mode == AI_SINGLE_ENDED ? ulAIGetInfo(device_handle, AI_INFO_SE_RANGE, i, &range) : ulAIGetInfo(device_handle, AI_INFO_DIFF_RANGE, i, &range); if (err != ERR_NO_ERROR) return err; ranges[i] = (Range) range; } *number_of_ranges = (int) num_ranges; return ERR_NO_ERROR; } static AiInputMode uldaq_parse_input_mode(const char *str) { for (int i = 0; i < ARRAY_LEN(input_modes); i++) { if (!strcmp(input_modes[i].name, str)) return input_modes[i].mode; } return -1; } static DaqDeviceInterface uldaq_parse_interface_type(const char *str) { for (int i = 0; i < ARRAY_LEN(interface_types); i++) { if (!strcmp(interface_types[i].name, str)) return interface_types[i].interface; } return -1; } static const char * uldaq_print_interface_type(DaqDeviceInterface iftype) { for (int i = 0; i < ARRAY_LEN(interface_types); i++) { if (interface_types[i].interface == iftype) return interface_types[i].name; } return NULL; } static Range uldaq_parse_range(const char *str) { for (int i = 0; i < ARRAY_LEN(ranges); i++) { if (!strcmp(ranges[i].name, str)) return ranges[i].range; } return -1; } int uldaq_init(struct node *n) { struct uldaq *u = (struct uldaq *) n->_vd; u->device_interface_type = ANY_IFC; u->in.queues = NULL; u->in.sample_rate = 1000; u->in.scan_options = (ScanOption) (SO_DEFAULTIO | SO_CONTINUOUS); u->in.flags = AINSCAN_FF_DEFAULT; pthread_mutex_init(&u->in.mutex, NULL); pthread_cond_init(&u->in.cv, NULL); return 0; } int uldaq_destroy(struct node *n) { struct uldaq *u = (struct uldaq *) n->_vd; if (u->in.queues) free(u->in.queues); pthread_mutex_destroy(&u->in.mutex); pthread_cond_destroy(&u->in.cv); return 0; } int uldaq_parse(struct node *n, json_t *cfg) { int ret; struct uldaq *u = (struct uldaq *) n->_vd; const char *default_range_str = NULL; const char *default_input_mode_str = NULL; const char *interface_type = NULL; size_t i; json_t *json_signals; json_t *json_signal; json_error_t err; ret = json_unpack_ex(cfg, &err, 0, "{ s?: s, s: { s: o, s: F, s?: s, s?: s } }", "interface_type", &interface_type, "in", "signals", &json_signals, "sample_rate", &u->in.sample_rate, "range", &default_range_str, "input_mode", &default_input_mode_str ); if (ret) jerror(&err, "Failed to parse configuration of node %s", node_name(n)); if (interface_type) { int iftype = uldaq_parse_interface_type(interface_type); if (iftype < 0) error("Invalid interface type: %s for node '%s'", interface_type, node_name(n)); u->device_interface_type = iftype; } u->in.channel_count = list_length(&n->signals); u->in.queues = realloc(u->in.queues, sizeof(struct AiQueueElement) * u->in.channel_count); json_array_foreach(json_signals, i, json_signal) { const char *range_str = NULL, *input_mode_str = NULL; int channel = -1, input_mode, range; ret = json_unpack_ex(json_signal, &err, 0, "{ s?: s, s?: s, s?: i }", "range", &range_str, "input_mode", &input_mode_str, "channel", &channel ); if (ret) jerror(&err, "Failed to parse signal configuration of node %s", node_name(n)); if (!range_str) range_str = default_range_str; if (!input_mode_str) input_mode_str = default_input_mode_str; if (channel < 0) channel = i; if (!range_str) error("No input range specified for signal %zu of node %s.", i, node_name(n)); if (!input_mode_str) error("No input mode specified for signal %zu of node %s.", i, node_name(n)); range = uldaq_parse_range(range_str); if (range < 0) error("Invalid input range specified for signal %zu of node %s.", i, node_name(n)); input_mode = uldaq_parse_input_mode(input_mode_str); if (input_mode < 0) error("Invalid input mode specified for signal %zu of node %s.", i, node_name(n)); u->in.queues[i].range = range; u->in.queues[i].inputMode = input_mode; u->in.queues[i].channel = channel; } return ret; } char * uldaq_print(struct node *n) { struct uldaq *u = (struct uldaq *) n->_vd; char *buf = NULL; char *uid = u->device_descriptor.uniqueId; char *name = u->device_descriptor.productName; const char *iftype = uldaq_print_interface_type(u->device_interface_type); buf = strcatf(&buf, "device=%s (%s), interface=%s", uid, name, iftype); buf = strcatf(&buf, ", in.sample_rate=%f", u->in.sample_rate); return buf; } int uldaq_check(struct node *n) { struct uldaq *u = (struct uldaq *) n->_vd; (void) u; // unused for now if (n->in.vectorize < 100) { warn("vectorize setting of node '%s' must be larger than 100", node_name(n)); return -1; } for (size_t i = 0; i < list_length(&n->signals); i++) { struct signal *s = (struct signal *) list_at(&n->signals, i); if (s->type != SIGNAL_TYPE_FLOAT) { warn("Node '%s' only supports signals of type = float!", node_name(n)); return -1; } } return 0; } void uldaq_data_available(DaqDeviceHandle device_handle, DaqEventType event_type, unsigned long long event_data, void *ctx) { struct node *n = (struct node *) ctx; struct uldaq *u = (struct uldaq *) n->_vd; pthread_mutex_lock(&u->in.mutex); #if 0 UlError err; err = ulAInScanStatus(device_handle, &u->in.status, &u->in.transfer_status); if (err != ERR_NO_ERROR) warn("Failed to retrieve scan status in event callback"); #else u->in.transfer_status.currentIndex = (event_data - 1) * u->in.channel_count; #endif pthread_mutex_unlock(&u->in.mutex); /* Signal uldaq_read() about new data */ pthread_cond_signal(&u->in.cv); } int uldaq_start(struct node *n) { struct uldaq *u = (struct uldaq *) n->_vd; u->sequence = 0; u->buffer_pos = 0; unsigned num_devs = ULDAQ_MAX_DEV_COUNT; DaqDeviceDescriptor descriptors[num_devs]; UlError err; /* Allocate a buffer to receive the data */ u->in.buffer_len = u->in.channel_count * n->in.vectorize * 50; u->in.buffer = (double *) alloc(u->in.buffer_len * sizeof(double)); if (!u->in.buffer) { warn("Out of memory, unable to create scan buffer"); return -1; } /* Get descriptors for all of the available DAQ devices */ err = ulGetDaqDeviceInventory(u->device_interface_type, descriptors, &num_devs); if (err != ERR_NO_ERROR) { warn("Failed to retrieve DAQ device list for node '%s'", node_name(n)); return -1; } /* Verify at least one DAQ device is detected */ if (num_devs == 0) { warn("No DAQ devices found for node '%s'", node_name(n)); return -1; } /* Get a handle to the DAQ device associated with the first descriptor */ u->device_handle = ulCreateDaqDevice(descriptors[0]); if (u->device_handle == 0) { warn("Unabled to create handle for DAQ device for node '%s'", node_name(n)); return -1; } #if 0 int num_ranges; Range ranges[ULDAQ_MAX_RANGE_COUNT]; /* Get the analog input ranges */ err = uldag_range_info(u->device_handle, u->in.input_mode, &num_ranges, ranges); if (err != ERR_NO_ERROR) return -1; #endif err = ulConnectDaqDevice(u->device_handle); if (err != ERR_NO_ERROR) { warn("Failed to connect to DAQ device for node '%s'", node_name(n)); return -1; } err = ulAInLoadQueue(u->device_handle, u->in.queues, list_length(&n->signals)); if (err != ERR_NO_ERROR) { warn("Failed to load input queue to DAQ device for node '%s'", node_name(n)); return -1; } /* Enable the event to be notified every time samples are available */ err = ulEnableEvent(u->device_handle, DE_ON_DATA_AVAILABLE, n->in.vectorize, uldaq_data_available, n); /* Start the acquisition */ err = ulAInScan(u->device_handle, 0, 0, 0, 0, u->in.buffer_len / u->in.channel_count, &u->in.sample_rate, u->in.scan_options, u->in.flags, u->in.buffer); if (err != ERR_NO_ERROR) { warn("Failed to start acquisition on DAQ device for node '%s'", node_name(n)); return -1; } /* Get the initial status of the acquisition */ err = ulAInScanStatus(u->device_handle, &u->in.status, &u->in.transfer_status); if (err != ERR_NO_ERROR) { warn("Failed to retrieve scan status on DAQ device for node '%s'", node_name(n)); return -1; } if (u->in.status != SS_RUNNING) { warn ("Acquisition did not start on DAQ device for node '%s'", node_name(n)); return -1; } return 0; } int uldaq_stop(struct node *n) { struct uldaq *u = (struct uldaq *) n->_vd; UlError err; //pthread_mutex_lock(&u->in.mutex); /* Get the current status of the acquisition */ err = ulAInScanStatus(u->device_handle, &u->in.status, &u->in.transfer_status); if (err != ERR_NO_ERROR) return -1; /* Stop the acquisition if it is still running */ if (u->in.status == SS_RUNNING) { err = ulAInScanStop(u->device_handle); if (err != ERR_NO_ERROR) return -1; } //pthread_mutex_unlock(&u->in.mutex); err = ulDisconnectDaqDevice(u->device_handle); if (err != ERR_NO_ERROR) return -1; err = ulReleaseDaqDevice(u->device_handle); if (err != ERR_NO_ERROR) return -1; return 0; } int uldaq_read(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release) { struct uldaq *u = (struct uldaq *) n->_vd; /* Wait for data available condition triggered by event callback */ pthread_mutex_lock(&u->in.mutex); pthread_cond_wait(&u->in.cv, &u->in.mutex); if (u->in.status != SS_RUNNING) return -1; if (cnt != n->in.vectorize) return -1; //long long start_index = u->in.transfer_status.currentIndex - (n->in.vectorize-1) * u->in.channel_count; long long start_index = u->buffer_pos; if(start_index < 0){ start_index += u->in.buffer_len; } #if 0 debug(2, "total count = %lld", u->in.transfer_status.currentTotalCount); debug(2, "index = %lld", u->in.transfer_status.currentIndex); debug(2, "scan count = %lld", u->in.transfer_status.currentScanCount); debug(2, "start index= %lld", start_index); #endif for (int j = 0; j < n->in.vectorize; j++) { struct sample *smp = smps[j]; long long scan_index = start_index + j * u->in.channel_count; for (int i = 0; i < u->in.channel_count; i++) { long long channel_index = (scan_index + i) % u->in.buffer_len; smp->data[i].f = u->in.buffer[channel_index]; } smp->length = u->in.channel_count; smp->signals = &n->signals; smp->sequence = u->sequence++; smp->flags = SAMPLE_HAS_SEQUENCE | SAMPLE_HAS_DATA; } u->buffer_pos += u->in.channel_count * n->in.vectorize; pthread_mutex_unlock(&u->in.mutex); return cnt; } static struct plugin p = { .name = "uldaq", .description = "Read USB analog to digital converters like UL201", .type = PLUGIN_TYPE_NODE, .node = { .vectorize = 0, .flags = 0, .size = sizeof(struct uldaq), .parse = uldaq_parse, .init = uldaq_init, .destroy= uldaq_destroy, .print = uldaq_print, .start = uldaq_start, .stop = uldaq_stop, .read = uldaq_read } }; REGISTER_PLUGIN(&p) LIST_INIT_STATIC(&p.node.instances)