1
0
Fork 0
mirror of https://github.com/hermitcore/libhermit.git synced 2025-03-09 00:00:03 +01:00
libhermit/usr/ircce/RCCE_synch.c

617 lines
21 KiB
C
Raw Permalink Normal View History

///*************************************************************************************
// Synchronization functions.
// Single-bit and whole-cache-line flags are sufficiently different that we provide
// separate implementations of the synchronization routines for each case
//**************************************************************************************
//
// Author: Rob F. Van der Wijngaart
// Intel Corporation
// Date: 008/30/2010
//
//**************************************************************************************
//
// Copyright 2010 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "RCCE_lib.h"
#ifdef __hermit__
#include "rte_memcpy.h"
#define memcpy_scc rte_memcpy
#elif defined(COPPERRIDGE)
#include "scc_memcpy.h"
#else
#define memcpy_scc memcpy
#endif
#ifdef USE_BYTE_FLAGS
#include "RCCE_byte_synch.c"
#else
#ifdef SINGLEBITFLAGS
//////////////////////////////////////////////////////////////////
// LOCKING SYNCHRONIZATION USING ONE BIT PER FLAG
//////////////////////////////////////////////////////////////////
//--------------------------------------------------------------------------------------
// FUNCTION: RCCE_wait_until
//--------------------------------------------------------------------------------------
// wait until flag in local MPB becomes set or unset. To avoid reading stale data from
// the cache instead of new flag value from the MPB, issue MPB cache invalidation before
// each read, including within the spin cycle
//--------------------------------------------------------------------------------------
int RCCE_wait_until(RCCE_FLAG flag, RCCE_FLAG_STATUS val) {
t_vcharp cflag;
cflag = flag.line_address;
// avoid tests if we use the simplified API
#ifdef GORY
if (val != RCCE_FLAG_UNSET && val != RCCE_FLAG_SET)
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_STATUS_UNDEFINED));
if (!cflag)
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_NOT_ALLOCATED));
// check to see if flag is properly contained in the local comm buffer
if (cflag - RCCE_comm_buffer[RCCE_IAM]>=0 &&
cflag+RCCE_LINE_SIZE - (RCCE_comm_buffer[RCCE_IAM] + RCCE_BUFF_SIZE)<0){}
else {
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_NOT_IN_COMM_BUFFER));
}
#endif
// always flush/invalidate to ensure we read the most recent value of *flag
// keep reading it until it has the required value
do {
#ifdef _OPENMP
#pragma omp flush
#endif
RC_cache_invalidate();
}
while ((RCCE_bit_value(cflag, flag.location) != val));
return(RCCE_SUCCESS);
}
int RCCE_test_flag(RCCE_FLAG flag, RCCE_FLAG_STATUS val, int *result) {
t_vcharp cflag;
cflag = flag.line_address;
// avoid tests if we use the simplified API
#ifdef GORY
if (val != RCCE_FLAG_UNSET && val != RCCE_FLAG_SET)
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_STATUS_UNDEFINED));
if (!cflag)
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_NOT_ALLOCATED));
// check to see if flag is properly contained in the local comm buffer
if (cflag - RCCE_comm_buffer[RCCE_IAM]>=0 &&
cflag+RCCE_LINE_SIZE - (RCCE_comm_buffer[RCCE_IAM] + RCCE_BUFF_SIZE)<0){}
else {
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_NOT_IN_COMM_BUFFER));
}
#endif
// always flush/invalidate to ensure we read the most recent value of *flag
// keep reading it until it has the required value
#ifdef _OPENMP
#pragma omp flush
#endif
RC_cache_invalidate();
if(RCCE_bit_value(cflag, flag.location) != val) {
(*result) = 0;
}
else {
(*result) = 1;
}
return(RCCE_SUCCESS);
}
//--------------------------------------------------------------------------------------
// FUNCTION: RCCE_barrier
//--------------------------------------------------------------------------------------
// very simple, linear barrier
//--------------------------------------------------------------------------------------
int RCCE_barrier(RCCE_COMM *comm) {
2016-06-02 17:11:22 +02:00
t_vchar cyclechar[RCCE_LINE_SIZE] __attribute__ ((aligned (RCCE_LINE_SIZE)));
t_vchar valchar [RCCE_LINE_SIZE] __attribute__ ((aligned (RCCE_LINE_SIZE)));
int counter, i, error;
int ROOT = 0;
t_vcharp gatherp, releasep;
RCCE_FLAG_STATUS cycle;
counter = 0;
gatherp = comm->gather.line_address;
if (RCCE_debug_synch)
fprintf(STDERR,"UE %d has checked into barrier\n", RCCE_IAM);
// flip local barrier variable
if (error = RCCE_get(cyclechar, gatherp, RCCE_LINE_SIZE, RCCE_IAM))
return(RCCE_error_return(RCCE_debug_synch,error));
cycle = RCCE_flip_bit_value(cyclechar, comm->gather.location);
if (error = RCCE_put(comm->gather.line_address, cyclechar, RCCE_LINE_SIZE, RCCE_IAM))
return(RCCE_error_return(RCCE_debug_synch,error));
if (RCCE_IAM==comm->member[ROOT]) {
// read "remote" gather flags; once all equal "cycle" (i.e counter==comm->size),
// we know all UEs have reached the barrier
while (counter != comm->size) {
// skip the first member (#0), because that is the ROOT
for (counter=i=1; i<comm->size; i++) {
// copy flag values out of comm buffer
if (error = RCCE_get(valchar, comm->gather.line_address, RCCE_LINE_SIZE,
comm->member[i]))
return(RCCE_error_return(RCCE_debug_synch,error));
if (RCCE_bit_value(valchar, comm->gather.location) == cycle) counter++;
}
}
// set release flags
for (i=1; i<comm->size; i++)
if (error = RCCE_flag_write(&(comm->release), cycle, comm->member[i]))
return(RCCE_error_return(RCCE_debug_synch,error));
}
else {
if (error = RCCE_wait_until(comm->release, cycle))
return(RCCE_error_return(RCCE_debug_synch,error));
}
if (RCCE_debug_synch) fprintf(STDERR,"UE %d has cleared barrier\n", RCCE_IAM);
return(RCCE_SUCCESS);
}
#else
//////////////////////////////////////////////////////////////////
// LOCKLESS SYNCHRONIZATION USING ONE WHOLE CACHE LINE PER FLAG //
//////////////////////////////////////////////////////////////////
//--------------------------------------------------------------------------------------
// FUNCTION: RCCE_wait_until
//--------------------------------------------------------------------------------------
// wait until flag in local MPB becomes set or unset. To avoid reading stale data from
// the cache instead of new flag value from the MPB, issue MPB cache invalidation before
// each read, including within the spin cycle
//--------------------------------------------------------------------------------------
int RCCE_wait_until(RCCE_FLAG flag, RCCE_FLAG_STATUS val) {
t_vcharp cflag;
cflag = (t_vcharp) flag;
#ifdef GORY
if (val != RCCE_FLAG_UNSET && val != RCCE_FLAG_SET)
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_STATUS_UNDEFINED));
if (!cflag)
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_NOT_ALLOCATED));
// check to see if flag is properly contained in the local comm buffer
if (cflag - RCCE_comm_buffer[RCCE_IAM]>=0 &&
cflag+RCCE_LINE_SIZE - (RCCE_comm_buffer[RCCE_IAM] + RCCE_BUFF_SIZE)<0){}
else {
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_NOT_IN_COMM_BUFFER));
}
#endif
#ifdef USE_REVERTED_FLAGS
flag = flag + RCCE_LINE_SIZE / sizeof(int) - 1;
#endif
// always flush/invalidate to ensure we read the most recent value of *flag
// keep reading it until it has the required value. We only need to read the
// first int of the MPB cache line containing the flag
#ifndef USE_FLAG_EXPERIMENTAL
do {
#ifdef _OPENMP
#pragma omp flush
#endif
RC_cache_invalidate();
} while ((*flag) != val);
#else
if (RCCE_debug_synch)
fprintf(STDERR,"UE %d wait flag: %x from address %X \n", RCCE_IAM,val,flag);
flag = RCCE_flag_buffer[RCCE_IAM]+(flag-RCCE_comm_buffer[RCCE_IAM]);
while ((*flag) != val);
#endif
return(RCCE_SUCCESS);
}
#ifdef USE_TAGGED_FLAGS
int RCCE_wait_tagged(RCCE_FLAG flag, RCCE_FLAG_STATUS val, void *tag, int len) {
int i, j;
RCCE_FLAG flag_pos;
#ifndef USE_REVERTED_FLAGS
flag_pos = flag;
#else
flag_pos = flag + RCCE_LINE_SIZE / sizeof(int) - 1;
#endif
do {
#ifdef _OPENMP
#pragma omp flush
#endif
RC_cache_invalidate();
} while ((*flag_pos) != val);
if(tag) {
if( len > ( RCCE_LINE_SIZE - sizeof(int) ) ) len = RCCE_LINE_SIZE - sizeof(int);
#ifndef USE_REVERTED_FLAGS
memcpy_scc(tag, &((char*)flag)[sizeof(int)], len);
#else
memcpy_scc(tag, &((char*)flag)[0], len);
#endif
}
return(RCCE_SUCCESS);
}
#endif
int RCCE_test_flag(RCCE_FLAG flag, RCCE_FLAG_STATUS val, int *result) {
t_vcharp cflag;
cflag = (t_vcharp) flag;
#ifdef GORY
if (val != RCCE_FLAG_UNSET && val != RCCE_FLAG_SET)
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_STATUS_UNDEFINED));
if (!cflag)
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_NOT_ALLOCATED));
// check to see if flag is properly contained in the local comm buffer
if (cflag - RCCE_comm_buffer[RCCE_IAM]>=0 &&
cflag+RCCE_LINE_SIZE - (RCCE_comm_buffer[RCCE_IAM] + RCCE_BUFF_SIZE)<0){}
else {
return(RCCE_error_return(RCCE_debug_synch,RCCE_ERROR_FLAG_NOT_IN_COMM_BUFFER));
}
#endif
#ifdef USE_REVERTED_FLAGS
flag = flag + RCCE_LINE_SIZE / sizeof(int) - 1;
#endif
// always flush/invalidate to ensure we read the most recent value of *flag
// keep reading it until it has the required value. We only need to read the
// first int of the MPB cache line containing the flag
#ifdef _OPENMP
#pragma omp flush
#endif
#ifndef USE_FLAG_EXPERIMENTAL
RC_cache_invalidate();
#endif
if((*flag) != val) {
(*result) = 0;
}
else {
(*result) = 1;
}
return(RCCE_SUCCESS);
}
#ifdef USE_TAGGED_FLAGS
int RCCE_test_tagged(RCCE_FLAG flag, RCCE_FLAG_STATUS val, int *result, void *tag, int len) {
int i, j;
RCCE_FLAG flag_pos;
#ifndef USE_REVERTED_FLAGS
flag_pos = flag;
#else
flag_pos = flag + RCCE_LINE_SIZE / sizeof(int) -1;
#endif
RC_cache_invalidate();
if((*flag_pos) != val) {
(*result) = 0;
}
else {
(*result) = 1;
}
if((*result) && tag) {
if( len > ( RCCE_LINE_SIZE - sizeof(int) ) ) len = RCCE_LINE_SIZE - sizeof(int);
#ifndef USE_REVERTED_FLAGS
memcpy_scc(tag, &((char*)flag)[sizeof(int)], len);
#else
memcpy_scc(tag, &((char*)flag)[0], len);
#endif
}
return(RCCE_SUCCESS);
}
#endif
//--------------------------------------------------------------------------------------
// FUNCTION: RCCE_barrier
//--------------------------------------------------------------------------------------
// very simple, linear barrier
//--------------------------------------------------------------------------------------
int RCCE_barrier(RCCE_COMM *comm) {
2016-06-02 17:11:22 +02:00
volatile unsigned char cyclechar[RCCE_LINE_SIZE] __attribute__ ((aligned (RCCE_LINE_SIZE)));
volatile unsigned char valchar[RCCE_LINE_SIZE] __attribute__ ((aligned (RCCE_LINE_SIZE)));
volatile char *cycle;
volatile char *val;
int counter, i, error;
int ROOT = 0;
counter = 0;
cycle = (volatile char *)cyclechar;
val = (volatile char *)valchar;
if (RCCE_debug_synch)
fprintf(STDERR,"UE %d has checked into barrier\n", RCCE_IAM);
#ifdef USE_FAT_BARRIER
// flip local barrier variable
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_get(cyclechar, (t_vcharp)(comm->gather[RCCE_IAM]), RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_get_flag(cyclechar, (t_vcharp)(comm->gather[RCCE_IAM]), RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
*cycle = !(*cycle);
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_put((t_vcharp)(comm->gather[RCCE_IAM]), cyclechar, RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_put_flag((t_vcharp)(comm->gather[RCCE_IAM]), cyclechar, RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
if ((error = RCCE_put((t_vcharp)(comm->gather[RCCE_IAM]), cyclechar, RCCE_LINE_SIZE, comm->member[ROOT])))
return(RCCE_error_return(RCCE_debug_synch,error));
if (RCCE_IAM==comm->member[ROOT]) {
// read "remote" gather flags; once all equal "cycle" (i.e counter==comm->size),
// we know all UEs have reached the barrier
while (counter != comm->size) {
// skip the first member (#0), because that is the ROOT
for (counter=i=1; i<comm->size; i++) {
/* copy flag values out of comm buffer */
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_get(valchar, (t_vcharp)(comm->gather[i]), RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_get_flag(valchar, (t_vcharp)(comm->gather[i]), RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
if (*val == *cycle) counter++;
}
}
// set release flags
for (i=1; i<comm->size; i++) {
if ((error = RCCE_flag_write(&(comm->release), *cycle, comm->member[i])))
return(RCCE_error_return(RCCE_debug_synch,error));
}
}
else {
if ((error = RCCE_wait_until(comm->release, *cycle)))
return(RCCE_error_return(RCCE_debug_synch,error));
}
#else // !USE_FAT_BARRIER
// flip local barrier variable
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_get(cyclechar, (t_vcharp)(comm->gather), RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_get_flag(cyclechar, (t_vcharp)(comm->gather), RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
*cycle = !(*cycle);
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_put((t_vcharp)(comm->gather), cyclechar, RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_put_flag((t_vcharp)(comm->gather), cyclechar, RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
if (RCCE_IAM==comm->member[ROOT]) {
// read "remote" gather flags; once all equal "cycle" (i.e counter==comm->size),
// we know all UEs have reached the barrier
while (counter != comm->size) {
// skip the first member (#0), because that is the ROOT
for (counter=i=1; i<comm->size; i++) {
/* copy flag values out of comm buffer */
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_get(valchar, (t_vcharp)(comm->gather), RCCE_LINE_SIZE,
comm->member[i])))
#else
if ((error = RCCE_get_flag(valchar, (t_vcharp)(comm->gather), RCCE_LINE_SIZE,
comm->member[i])))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
if (*val == *cycle) counter++;
}
}
// set release flags
for (i=1; i<comm->size; i++) {
if ((error = RCCE_flag_write(&(comm->release), *cycle, comm->member[i])))
return(RCCE_error_return(RCCE_debug_synch,error));
}
}
else {
if ((error = RCCE_wait_until(comm->release, *cycle))) {
return(RCCE_error_return(RCCE_debug_synch,error));
}
}
#endif // !USE_FAT_BARRIER
if (RCCE_debug_synch) fprintf(STDERR,"UE %d has cleared barrier\n", RCCE_IAM);
return(RCCE_SUCCESS);
}
//--------------------------------------------------------------------------------------
// FUNCTION: RCCE_nb_barrier
//--------------------------------------------------------------------------------------
// non-blocking version of the linear barrier
//--------------------------------------------------------------------------------------
int RCCE_nb_barrier(RCCE_COMM *comm) {
2016-06-02 17:11:22 +02:00
volatile unsigned char cyclechar[RCCE_LINE_SIZE] __attribute__ ((aligned (RCCE_LINE_SIZE)));
volatile unsigned char valchar[RCCE_LINE_SIZE] __attribute__ ((aligned (RCCE_LINE_SIZE)));
int i, error;
int ROOT = 0;
#ifdef USE_FLAG_EXPERIMENTAL
volatile char *cycle;
volatile char *val;
cycle = (volatile char *)cyclechar;
val = (volatile char *)valchar;
#else
volatile int *cycle;
volatile int *val;
cycle = (volatile int *)cyclechar;
val = (volatile int *)valchar;
#endif
if(comm->label == 1) goto label1;
if(comm->label == 2) goto label2;
comm->count = 0;
if (RCCE_debug_synch)
fprintf(STDERR,"UE %d has checked into barrier\n", RCCE_IAM);
#ifdef USE_FAT_BARRIER
// flip local barrier variable
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_get(cyclechar, (t_vcharp)(comm->gather[RCCE_IAM]), RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_get_flag(cyclechar, (t_vcharp)(comm->gather[RCCE_IAM]), RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
*cycle = !(*cycle);
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_put((t_vcharp)(comm->gather[RCCE_IAM]), cyclechar, RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_put_flag((t_vcharp)(comm->gather[RCCE_IAM]), cyclechar, RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
if ((error = RCCE_put((t_vcharp)(comm->gather[RCCE_IAM]), cyclechar, RCCE_LINE_SIZE, comm->member[ROOT])))
return(RCCE_error_return(RCCE_debug_synch,error));
if (RCCE_IAM==comm->member[ROOT]) {
// read "remote" gather flags; once all equal "cycle" (i.e counter==comm->size),
// we know all UEs have reached the barrier
comm->cycle = *cycle;
label1:
while (comm->count != comm->size) {
// skip the first member (#0), because that is the ROOT
for (comm->count=i=1; i<comm->size; i++) {
/* copy flag values out of comm buffer */
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_get(valchar, (t_vcharp)(comm->gather[i]), RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_get_flag(valchar, (t_vcharp)(comm->gather[i]), RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
if (*val == comm->cycle) comm->count++;
}
if(comm->count != comm->size) {
comm->label = 1;
return(RCCE_PENDING);
}
}
// set release flags
for (i=1; i<comm->size; i++) {
if ((error = RCCE_flag_write(&(comm->release), comm->cycle, comm->member[i])))
return(RCCE_error_return(RCCE_debug_synch,error));
}
}
else {
int test;
comm->cycle = *cycle;
label2:
RCCE_test_flag(comm->release, comm->cycle, &test);
if(!test) {
comm->label = 2;
return(RCCE_PENDING);
}
}
comm->label = 0;
#else // !USE_FAT_BARRIER
// flip local barrier variable
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_get(cyclechar, (t_vcharp)(comm->gather[0]), RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_get_flag(cyclechar, (t_vcharp)(comm->gather[0]), RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
*cycle = !(*cycle);
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_put((t_vcharp)(comm->gather[0]), cyclechar, RCCE_LINE_SIZE, RCCE_IAM)))
#else
if ((error = RCCE_put_flag((t_vcharp)(comm->gather[0]), cyclechar, RCCE_LINE_SIZE, RCCE_IAM)))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
if (RCCE_IAM==comm->member[ROOT]) {
// read "remote" gather flags; once all equal "cycle" (i.e counter==comm->size),
// we know all UEs have reached the barrier
comm->cycle = *cycle;
label1:
while (comm->count != comm->size) {
// skip the first member (#0), because that is the ROOT
for (comm->count=i=1; i<comm->size; i++) {
/* copy flag values out of comm buffer */
#ifndef USE_FLAG_EXPERIMENTAL
if ((error = RCCE_get(valchar, (t_vcharp)(comm->gather[0]), RCCE_LINE_SIZE,
comm->member[i])))
#else
if ((error = RCCE_get_flag(valchar, (t_vcharp)(comm->gather[0]), RCCE_LINE_SIZE,
comm->member[i])))
#endif
return(RCCE_error_return(RCCE_debug_synch,error));
if (*val == comm->cycle) comm->count++;
}
if(comm->count != comm->size) {
comm->label = 1;
return(RCCE_PENDING);
}
}
// set release flags
for (i=1; i<comm->size; i++) {
if ((error = RCCE_flag_write(&(comm->release), comm->cycle, comm->member[i])))
return(RCCE_error_return(RCCE_debug_synch,error));
}
}
else {
int test;
comm->cycle = *cycle;
label2:
RCCE_test_flag(comm->release, comm->cycle, &test);
if(!test) {
comm->label = 2;
return(RCCE_PENDING);
}
}
comm->label = 0;
#endif // !USE_FAT_BARRIER
if (RCCE_debug_synch) fprintf(STDERR,"UE %d has cleared barrier\n", RCCE_IAM);
return(RCCE_SUCCESS);
}
#endif
void RCCE_fence() {
return;
}
#endif