1
0
Fork 0
mirror of https://github.com/hermitcore/libhermit.git synced 2025-03-09 00:00:03 +01:00

Merge branch 'devel' of github.com:RWTH-OS/HermitCore into devel

This commit is contained in:
Stefan Lankes 2016-09-04 22:51:14 +02:00
commit c135e39637
15 changed files with 456 additions and 379 deletions

View file

@ -204,6 +204,7 @@ int apic_is_enabled(void);
int apic_enable_timer(void);
int apic_disable_timer(void);
int apic_timer_deadline(uint32_t);
int apic_timer_is_running(void);
int apic_send_ipi(uint64_t dest, uint8_t irq);
int ioapic_inton(uint8_t irq, uint8_t apicid);
int ioapic_intoff(uint8_t irq, uint8_t apicid);

View file

@ -41,54 +41,12 @@
extern "C" {
#endif
/** @brief Disable IRQs
*
* This inline function just clears out the interrupt bit
*/
inline static void irq_disable(void) {
asm volatile("cli" ::: "memory");
}
/** @brief Disable IRQs (nested)
*
* Disable IRQs when unsure if IRQs were enabled at all.\n
* This function together with irq_nested_enable can be used
* in situations when interrupts shouldn't be activated if they
* were not activated before calling this function.
*
* @return The set of flags which have been set until now
*/
inline static uint8_t irq_nested_disable(void) {
size_t flags;
asm volatile("pushf; cli; pop %0": "=r"(flags) : : "memory");
if (flags & (1 << 9))
return 1;
return 0;
}
/** @brief Enable IRQs */
inline static void irq_enable(void) {
asm volatile("sti" ::: "memory");
}
/** @brief Enable IRQs (nested)
*
* If called after calling irq_nested_disable, this function will
* not activate IRQs if they were not active before.
*
* @param flags Flags to set. Could be the old ones you got from irq_nested_disable.
*/
inline static void irq_nested_enable(uint8_t flags) {
if (flags)
irq_enable();
}
/** @brief Determines, if the interrupt flags (IF) is set
*
* @return
* - 1 interrupt flag is set
* - 0 interrupt flag is cleared
*/
*/
inline static uint8_t is_irq_enabled(void)
{
size_t flags;
@ -98,6 +56,49 @@ inline static uint8_t is_irq_enabled(void)
return 0;
}
/** @brief Disable IRQs
*
* This inline function just clears out the interrupt bit
*/
inline static void irq_disable(void) {
asm volatile("cli" ::: "memory");
}
/** @brief Enable IRQs
*
* This inline function just sets the interrupt bit
*/
inline static void irq_enable(void) {
asm volatile("sti" ::: "memory");
}
/** @brief Disable IRQs (nested)
*
* Disable IRQs when unsure if IRQs were enabled at all.
* This function together with irq_nested_enable can be used
* in situations when interrupts shouldn't be activated if they
* were not activated before calling this function.
*
* @return Whether IRQs had been enabled or not before disabling
*/
inline static uint8_t irq_nested_disable(void) {
uint8_t was_enabled = is_irq_enabled();
irq_disable();
return was_enabled;
}
/** @brief Enable IRQs (nested)
*
* Can be used in conjunction with irq_nested_disable() to only enable
* interrupts again if they were enabled before.
*
* @param was_enabled Whether IRQs should be enabled or not
*/
inline static void irq_nested_enable(uint8_t was_enabled) {
if (was_enabled)
irq_enable();
}
#ifdef __cplusplus
}
#endif

View file

@ -56,6 +56,8 @@ typedef struct {
uint32_t status;
} i387_fsave_t;
#define FPU_STATE_INIT { {0, 0, 0, 0, 0, 0, 0, { [0 ... 19] = 0 }, 0} }
typedef struct {
uint16_t cwd;
uint16_t swd;

View file

@ -303,6 +303,15 @@ static inline void set_ipi_dest(uint32_t cpu_id) {
lapic_write(APIC_ICR2, tmp);
}
int apic_timer_is_running(void)
{
if (BUILTIN_EXPECT(apic_is_enabled(), 1)) {
return lapic_read(APIC_CCR) != 0;
}
return 0;
}
int apic_timer_deadline(uint32_t ticks)
{
if (BUILTIN_EXPECT(apic_is_enabled() && icr, 1)) {

View file

@ -361,6 +361,20 @@ isrstub_pseudo_error 9
%assign i i+1
%endrep
global wakeup
align 64
wakeup:
push byte 0 ; pseudo error code
push byte 121
jmp common_stub
global mmnif_irq
align 64
mmnif_irq:
push byte 0 ; pseudo error code
push byte 122
jmp common_stub
global apic_timer
align 64
apic_timer:
@ -396,20 +410,6 @@ apic_svr:
push byte 127
jmp common_stub
global wakeup
align 64
wakeup:
push byte 0 ; pseudo error code
push byte 121
jmp common_stub
global mmnif_irq
align 64
mmnif_irq:
push byte 0 ; pseudo error code
push byte 122
jmp common_stub
extern irq_handler
extern get_current_stack
extern finish_task_switch

View file

@ -91,7 +91,7 @@ extern void mmnif_irq(void);
* This array is actually an array of function pointers. We use
* this to handle custom IRQ handlers for a given IRQ
*/
static void* irq_routines[MAX_HANDLERS] = {[0 ... MAX_HANDLERS-1] = NULL};
static irq_handler_t irq_routines[MAX_HANDLERS] = {[0 ... MAX_HANDLERS-1] = NULL};
static uint64_t irq_counter[MAX_CORES][MAX_HANDLERS] = {[0 ... MAX_CORES-1][0 ... MAX_HANDLERS-1] = 0};
#ifdef MEASURE_IRQ
static int go = 0;
@ -281,40 +281,41 @@ int irq_init(void)
*/
size_t** irq_handler(struct state *s)
{
size_t** ret = NULL;
#ifdef MEASURE_IRQ
uint64_t diff = 0;
#endif
/* This is a blank function pointer */
void (*handler) (struct state * s);
#ifdef MEASURE_IRQ
if (go)
diff = rdtsc();
#endif
size_t** ret = NULL;
if(BUILTIN_EXPECT(s->int_no >= MAX_HANDLERS, 0)) {
kprintf("[%d] Invalid IRQ number %d\n", CORE_ID, s->int_no);
return NULL;
}
irq_counter[CORE_ID][s->int_no]++;
check_workqueues_in_irqhandler(s->int_no);
/*
* Find out if we have a custom handler to run for this
* IRQ and then finally, run it
*/
if (BUILTIN_EXPECT(s->int_no < MAX_HANDLERS, 1)) {
handler = irq_routines[s->int_no];
if (handler)
handler(s);
else
kprintf("Unhandle IRQ %d\n", s->int_no);
} else kprintf("Invalid interrupt number %d\n", s->int_no);
// Find out if we have a custom handler to run for this IRQ and run it
irq_handler_t handler = irq_routines[s->int_no];
// timer interrupt?
if ((s->int_no == 32) || (s->int_no == 123))
ret = scheduler(); // switch to a new task
else if ((s->int_no >= 32) && (get_highest_priority() > per_core(current_task)->prio))
if (handler) {
handler(s);
} else {
kprintf("[%d] Unhandled IRQ %d\n", CORE_ID, s->int_no);
}
// Check if timers have expired that would unblock tasks
check_workqueues_in_irqhandler((int) s->int_no);
if ((s->int_no == 32) || (s->int_no == 123)) {
// a timer interrupt may have caused unblocking of tasks
ret = scheduler();
} else if ((s->int_no >= 32) && (get_highest_priority() > per_core(current_task)->prio)) {
// there's a ready task with higher priority
ret = scheduler();
}
apic_eoi(s->int_no);

View file

@ -54,13 +54,15 @@ void check_ticks(void)
if (!cpu_freq)
return;
uint64_t curr_rdtsc = get_rdtsc();
uint64_t diff;
const uint64_t curr_rdtsc = has_rdtscp() ? rdtscp(NULL) : rdtsc();
rmb();
diff = ((curr_rdtsc - per_core(last_rdtsc)) * (uint64_t)TIMER_FREQ) / (1000000ULL*(uint64_t)get_cpu_frequency());
if (diff > 0) {
set_per_core(timer_ticks, per_core(timer_ticks) + diff);
const uint64_t diff_cycles = curr_rdtsc - per_core(last_rdtsc);
const uint64_t cpu_freq_hz = 1000000ULL * (uint64_t) get_cpu_frequency();
const uint64_t diff_ticks = (diff_cycles * (uint64_t) TIMER_FREQ) / cpu_freq_hz;
if (diff_ticks > 0) {
set_per_core(timer_ticks, per_core(timer_ticks) + diff_ticks);
set_per_core(last_rdtsc, curr_rdtsc);
rmb();
}
@ -187,7 +189,7 @@ int timer_init(void)
irq_install_handler(121, wakeup_handler);
#ifdef DYNAMIC_TICKS
boot_tsc = get_rdtsc();
boot_tsc = has_rdtscp() ? rdtscp(NULL) : rdtsc();
set_per_core(last_rdtsc, boot_tsc);
#endif

View file

@ -173,13 +173,13 @@ inline static int spinlock_irqsave_destroy(spinlock_irqsave_t* s) {
return 0;
}
/** @brief Unlock an irqsave spinlock on exit of critical section
/** @brief Lock spinlock on entry of critical section and disable interrupts
* @return
* - 0 on success
* - -EINVAL (-22) on failure
*/
inline static int spinlock_irqsave_lock(spinlock_irqsave_t* s) {
uint32_t flags;
uint8_t flags;
int32_t ticket;
if (BUILTIN_EXPECT(!s, 0))
@ -191,14 +191,10 @@ inline static int spinlock_irqsave_lock(spinlock_irqsave_t* s) {
return 0;
}
#if 1
ticket = atomic_int32_inc(&s->queue);
while (atomic_int32_read(&s->dequeue) != ticket) {
PAUSE;
}
#else
while( atomic_int32_test_and_set(&s->dequeue,0) );
#endif
s->coreid = CORE_ID;
s->flags = flags;
@ -207,13 +203,13 @@ inline static int spinlock_irqsave_lock(spinlock_irqsave_t* s) {
return 0;
}
/** @brief Unlock irqsave spinlock on exit of critical section and re-enable interrupts
/** @brief Unlock spinlock on exit of critical section and re-enable interrupts
* @return
* - 0 on success
* - -EINVAL (-22) on failure
*/
inline static int spinlock_irqsave_unlock(spinlock_irqsave_t* s) {
uint32_t flags;
uint8_t flags;
if (BUILTIN_EXPECT(!s, 0))
return -EINVAL;
@ -223,11 +219,9 @@ inline static int spinlock_irqsave_unlock(spinlock_irqsave_t* s) {
flags = s->flags;
s->coreid = (uint32_t) -1;
s->flags = 0;
#if 1
atomic_int32_inc(&s->dequeue);
#else
atomic_int32_set(&s->dequeue,1);
#endif
irq_nested_enable(flags);
}

View file

@ -47,6 +47,7 @@ extern "C" {
/** @brief System call to terminate a user level process */
void NORETURN sys_exit(int);
/** @brief Task switcher
*
* Timer-interrupted use of this function for task switching
@ -57,6 +58,7 @@ void NORETURN sys_exit(int);
*/
size_t** scheduler(void);
/** @brief Initialize the multitasking subsystem
*
* This procedure sets the current task to the
@ -68,6 +70,7 @@ size_t** scheduler(void);
*/
int multitasking_init(void);
/** @brief Clone current task with a specific entry point
*
* @todo Don't acquire table_lock for the whole task creation.
@ -84,6 +87,7 @@ int multitasking_init(void);
*/
int clone_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio);
/** @brief Create a task with a specific entry point
*
* @todo Don't acquire table_lock for the whole task creation.
@ -100,6 +104,7 @@ int clone_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio);
*/
int create_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio, uint32_t core_id);
/** @brief create a kernel-level task on the current core.
*
* @param id The value behind this pointer will be set to the new task's id
@ -113,6 +118,7 @@ int create_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio, uint32_t c
*/
int create_kernel_task(tid_t* id, entry_point_t ep, void* args, uint8_t prio);
/** @brief create a kernel-level task.
*
* @param id The value behind this pointer will be set to the new task's id
@ -127,6 +133,7 @@ int create_kernel_task(tid_t* id, entry_point_t ep, void* args, uint8_t prio);
*/
int create_kernel_task_on_core(tid_t* id, entry_point_t ep, void* args, uint8_t prio, uint32_t core_id);
/** @brief Create a user level task.
*
* @param id The value behind this pointer will be set to the new task's id
@ -150,12 +157,14 @@ int create_user_task_on_core(tid_t* id, const char* fame, char** argv, uint8_t p
*/
int init_tls(void);
/** @brief Cleanup function for the task termination
*
* On termination, the task call this function to cleanup its address space.
*/
void finish_task_switch(void);
/** @brief determine the highest priority of all tasks, which are ready
*
* @return
@ -164,12 +173,14 @@ void finish_task_switch(void);
*/
uint32_t get_highest_priority(void);
/** @brief Call to rescheduling
*
* This is a purely assembled procedure for rescheduling
*/
void reschedule(void);
/** @brief Wake up a blocked task
*
* The task's status will be changed to TASK_READY
@ -180,6 +191,7 @@ void reschedule(void);
*/
int wakeup_task(tid_t);
/** @brief Block current task
*
* The current task's status will be changed to TASK_BLOCKED
@ -190,6 +202,7 @@ int wakeup_task(tid_t);
*/
int block_current_task(void);
/** @brief Get a process control block
*
* @param id ID of the task to retrieve
@ -202,6 +215,7 @@ int block_current_task(void);
*/
int get_task(tid_t id, task_t** task);
/** @brief Block current task until timer expires
*
* @param deadline Clock tick, when the timer expires
@ -211,17 +225,21 @@ int get_task(tid_t id, task_t** task);
*/
int set_timer(uint64_t deadline);
/** @brief check is a timer is expired
*
*/
void check_timers(void);
/** @brief Abort current task */
void NORETURN do_abort(void);
/** @brief This function shall be called by leaving kernel-level tasks */
void NORETURN leave_kernel_task(void);
/** @brief if a task exists with higher priority, HermitCore switch to it.
*/
void check_scheduling(void);
@ -230,23 +248,27 @@ void check_scheduling(void);
*/
int network_shutdown(void);
#ifdef DYNAMIC_TICKS
/** @brief check, if the tick counter has to be updated
*/
void check_ticks(void);
#endif
extern volatile uint32_t go_down;
/** @brief shutdown the whole system
*/
void shutdown_system(void);
extern volatile uint32_t go_down;
static inline void check_workqueues_in_irqhandler(int irq)
{
#ifdef DYNAMIC_TICKS
// Increment ticks
check_ticks();
#endif
check_timers();
if (irq < 0) {

View file

@ -136,6 +136,66 @@ typedef struct {
spinlock_irqsave_t lock;
} readyqueues_t;
static inline void task_list_remove_task(task_list_t* list, task_t* task)
{
if (task->prev)
task->prev->next = task->next;
if (task->next)
task->next->prev = task->prev;
if (list->last == task)
list->last = task->prev;
if (list->first == task)
list->first = task->next;
}
static inline void task_list_push_back(task_list_t* list, task_t* task)
{
if(BUILTIN_EXPECT((task == NULL) || (list == NULL), 0)) {
return;
}
if (list->last) {
task->prev = list->last;
task->next = NULL;
list->last->next = task;
list->last = task;
} else {
list->last = list->first = task;
task->next = task->prev = NULL;
}
}
static inline task_t* task_list_pop_front(task_list_t* list)
{
if(BUILTIN_EXPECT((list == NULL), 0)) {
return NULL;
}
task_t* task = list->first;
if(list->first) {
// advance list
list->first = list->first->next;
if(list->first) {
// first element has no previous element
list->first->prev = NULL;
} else {
// no first element => no last element either
list->last = NULL;
}
}
task->next = task->prev = NULL;
return task;
}
#ifdef __cplusplus
}
#endif

View file

@ -83,7 +83,9 @@ static inline void sleep(unsigned int sec) { timer_wait(sec*TIMER_FREQ); }
static inline int timer_deadline(uint32_t t) { return apic_timer_deadline(t); }
static inline void timer_disable() { apic_disable_timer(); }
static inline void timer_disable(void) { apic_disable_timer(); }
static inline int timer_is_running(void) { return apic_timer_is_running(); }
#ifdef __cplusplus
}

View file

@ -44,7 +44,7 @@
#include <lwip/stats.h>
//TODO: don't use one big kernel lock to comminicate with all proxies
static spinlock_t lwip_lock = SPINLOCK_INIT;
static spinlock_irqsave_t lwip_lock = SPINLOCK_IRQSAVE_INIT;
extern spinlock_irqsave_t stdio_lock;
extern int32_t isle;
@ -85,7 +85,7 @@ void NORETURN sys_exit(int arg)
{
sys_exit_t sysargs = {__NR_exit, arg};
spinlock_lock(&lwip_lock);
spinlock_irqsave_lock(&lwip_lock);
if (libc_sd >= 0)
{
int s = libc_sd;
@ -93,7 +93,7 @@ void NORETURN sys_exit(int arg)
lwip_write(s, &sysargs, sizeof(sysargs));
libc_sd = -1;
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
// switch to LwIP thread
reschedule();
@ -102,7 +102,7 @@ void NORETURN sys_exit(int arg)
idle_poll = 0;
} else {
idle_poll = 0;
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
}
do_exit(arg);
@ -129,9 +129,9 @@ ssize_t sys_read(int fd, char* buf, size_t len)
return ret;
}
spinlock_lock(&lwip_lock);
spinlock_irqsave_lock(&lwip_lock);
if (libc_sd < 0) {
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
return -ENOSYS;
}
@ -147,7 +147,7 @@ ssize_t sys_read(int fd, char* buf, size_t len)
{
ret = lwip_read(s, buf+i, j-i);
if (ret < 0) {
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
return ret;
}
@ -155,7 +155,7 @@ ssize_t sys_read(int fd, char* buf, size_t len)
}
}
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
return j;
}
@ -189,10 +189,10 @@ ssize_t sys_write(int fd, const char* buf, size_t len)
return ret;
}
spinlock_lock(&lwip_lock);
spinlock_irqsave_lock(&lwip_lock);
if (libc_sd < 0)
{
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
spinlock_irqsave_lock(&stdio_lock);
for(i=0; i<len; i++)
@ -210,7 +210,7 @@ ssize_t sys_write(int fd, const char* buf, size_t len)
{
ret = lwip_write(s, (char*)buf+i, len-i);
if (ret < 0) {
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
return ret;
}
@ -223,7 +223,7 @@ ssize_t sys_write(int fd, const char* buf, size_t len)
i = ret;
} else i = len;
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
return i;
}
@ -266,7 +266,7 @@ int sys_open(const char* name, int flags, int mode)
int s, i, ret, sysnr = __NR_open;
size_t len;
spinlock_lock(&lwip_lock);
spinlock_irqsave_lock(&lwip_lock);
if (libc_sd < 0) {
ret = -EINVAL;
goto out;
@ -309,7 +309,7 @@ int sys_open(const char* name, int flags, int mode)
lwip_read(s, &ret, sizeof(ret));
out:
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
return ret;
}
@ -333,7 +333,7 @@ int sys_close(int fd)
return 0;
}
spinlock_lock(&lwip_lock);
spinlock_irqsave_lock(&lwip_lock);
if (libc_sd < 0) {
ret = 0;
goto out;
@ -346,7 +346,7 @@ int sys_close(int fd)
lwip_read(s, &ret, sizeof(ret));
out:
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
return ret;
}
@ -443,10 +443,10 @@ off_t sys_lseek(int fd, off_t offset, int whence)
sys_lseek_t sysargs = {__NR_lseek, fd, offset, whence};
int s;
spinlock_lock(&lwip_lock);
spinlock_irqsave_lock(&lwip_lock);
if (libc_sd < 0) {
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
return -ENOSYS;
}
@ -454,7 +454,7 @@ off_t sys_lseek(int fd, off_t offset, int whence)
lwip_write(s, &sysargs, sizeof(sysargs));
lwip_read(s, &off, sizeof(off));
spinlock_unlock(&lwip_lock);
spinlock_irqsave_unlock(&lwip_lock);
return off;
}

View file

@ -54,8 +54,8 @@ extern atomic_int32_t cpu_online;
* A task's id will be its position in this array.
*/
static task_t task_table[MAX_TASKS] = { \
[0] = {0, TASK_IDLE, 0, NULL, NULL, NULL, TASK_DEFAULT_FLAGS, 0, 0, 0, NULL, 0, NULL, NULL, 0, 0, 0}, \
[1 ... MAX_TASKS-1] = {0, TASK_INVALID, 0, NULL, NULL, NULL, TASK_DEFAULT_FLAGS, 0, 0, 0, NULL, 0, NULL, NULL, 0, 0, 0}};
[0] = {0, TASK_IDLE, 0, NULL, NULL, NULL, TASK_DEFAULT_FLAGS, 0, 0, 0, NULL, 0, NULL, NULL, 0, 0, 0, NULL, FPU_STATE_INIT}, \
[1 ... MAX_TASKS-1] = {0, TASK_INVALID, 0, NULL, NULL, NULL, TASK_DEFAULT_FLAGS, 0, 0, 0, NULL, 0, NULL, NULL, 0, 0, 0, NULL, FPU_STATE_INIT}};
static spinlock_irqsave_t table_lock = SPINLOCK_IRQSAVE_INIT;
@ -68,28 +68,143 @@ static readyqueues_t readyqueues[1] = {[0] = {task_table+0, NULL, 0, 0, 0, {[0 .
DEFINE_PER_CORE(task_t*, current_task, task_table+0);
DEFINE_PER_CORE(char*, kernel_stack, NULL);
#if MAX_CORES > 1
DEFINE_PER_CORE(uint32_t, __core_id, 0);
#endif
extern const void boot_stack;
extern const void boot_ist;
/** @brief helper function for the assembly code to determine the current task
* @return Pointer to the task_t structure of current task
*/
task_t* get_current_task(void)
static void update_timer(task_t* first)
{
return per_core(current_task);
if(first) {
if(first->timeout > get_clock_tick()) {
timer_deadline((uint32_t) (first->timeout - get_clock_tick()));
} else {
// workaround: start timer so new head will be serviced
timer_deadline(1);
}
} else {
// prevent spurious interrupts
timer_disable();
}
}
static void timer_queue_remove(uint32_t core_id, task_t* task)
{
if(BUILTIN_EXPECT(!task, 0)) {
return;
}
task_list_t* timer_queue = &readyqueues[core_id].timers;
#ifdef DYNAMIC_TICKS
// if task is first in timer queue, we need to update the oneshot
// timer for the next task
if(timer_queue->first == task) {
update_timer(task->next);
}
#endif
task_list_remove_task(timer_queue, task);
}
static void timer_queue_push(uint32_t core_id, task_t* task)
{
task_list_t* timer_queue = &readyqueues[core_id].timers;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
task_t* first = timer_queue->first;
if(!first) {
timer_queue->first = timer_queue->last = task;
task->next = task->prev = NULL;
#ifdef DYNAMIC_TICKS
update_timer(task);
#endif
} else {
// lookup position where to insert task
task_t* tmp = first;
while(tmp && (task->timeout >= tmp->timeout))
tmp = tmp->next;
if(!tmp) {
// insert at the end of queue
task->next = NULL;
task->prev = timer_queue->last;
// there has to be a last element because there is also a first one
timer_queue->last->next = task;
timer_queue->last = task;
} else {
task->next = tmp;
task->prev = tmp->prev;
tmp->prev = task;
if(task->prev)
task->prev->next = task;
if(timer_queue->first == tmp) {
timer_queue->first = task;
#ifdef DYNAMIC_TICKS
update_timer(task);
#endif
}
}
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
}
static void readyqueues_push_back(uint32_t core_id, task_t* task)
{
// idle task (prio=0) doesn't have a queue
task_list_t* readyqueue = &readyqueues[core_id].queue[task->prio - 1];
task_list_push_back(readyqueue, task);
// update priority bitmap
readyqueues[core_id].prio_bitmap |= (1 << task->prio);
// increase the number of ready tasks
readyqueues[core_id].nr_tasks++;
}
static void readyqueues_remove(uint32_t core_id, task_t* task)
{
// idle task (prio=0) doesn't have a queue
task_list_t* readyqueue = &readyqueues[core_id].queue[task->prio - 1];
task_list_remove_task(readyqueue, task);
// no valid task in queue => update priority bitmap
if (readyqueue->first == NULL)
readyqueues[core_id].prio_bitmap &= ~(1 << task->prio);
// reduce the number of ready tasks
readyqueues[core_id].nr_tasks--;
}
void check_scheduling(void)
{
if (!is_irq_enabled())
return;
if (msb(readyqueues[CORE_ID].prio_bitmap) > per_core(current_task)->prio)
if (get_highest_priority() > per_core(current_task)->prio)
reschedule();
}
uint32_t get_highest_priority(void)
{
uint32_t prio = msb(readyqueues[CORE_ID].prio_bitmap);
@ -99,6 +214,7 @@ uint32_t get_highest_priority(void)
return prio;
}
int multitasking_init(void)
{
uint32_t core_id = CORE_ID;
@ -120,9 +236,12 @@ int multitasking_init(void)
return 0;
}
/* interrupt handler to save / restore the FPU context */
void fpu_handler(struct state *s)
{
(void) s;
task_t* task = per_core(current_task);
uint32_t core_id = CORE_ID;
@ -150,6 +269,7 @@ void fpu_handler(struct state *s)
restore_fpu_state(&task->fpu);
}
int set_idle_task(void)
{
uint32_t i, core_id = CORE_ID;
@ -182,6 +302,7 @@ int set_idle_task(void)
return ret;
}
int init_tls(void)
{
task_t* curr_task = per_core(current_task);
@ -209,15 +330,17 @@ int init_tls(void)
return 0;
}
void finish_task_switch(void)
{
task_t* old;
uint8_t prio;
const uint32_t core_id = CORE_ID;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
if ((old = readyqueues[core_id].old_task) != NULL) {
readyqueues[core_id].old_task = NULL;
if (old->status == TASK_FINISHED) {
/* cleanup task */
if (old->stack) {
@ -237,7 +360,6 @@ void finish_task_switch(void)
}
old->last_stack_pointer = NULL;
readyqueues[core_id].old_task = NULL;
if (readyqueues[core_id].fpu_owner == old->id)
readyqueues[core_id].fpu_owner = 0;
@ -245,26 +367,15 @@ void finish_task_switch(void)
/* signalizes that this task could be reused */
old->status = TASK_INVALID;
} else {
prio = old->prio;
if (!readyqueues[core_id].queue[prio-1].first) {
old->next = old->prev = NULL;
readyqueues[core_id].queue[prio-1].first = readyqueues[core_id].queue[prio-1].last = old;
} else {
old->next = NULL;
old->prev = readyqueues[core_id].queue[prio-1].last;
readyqueues[core_id].queue[prio-1].last->next = old;
readyqueues[core_id].queue[prio-1].last = old;
}
readyqueues[core_id].old_task = NULL;
readyqueues[core_id].prio_bitmap |= (1 << prio);
// re-enqueue old task
readyqueues_push_back(core_id, old);
}
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
}
/** @brief A procedure to be called by
* procedures which are called by exiting tasks. */
void NORETURN do_exit(int arg)
{
task_t* curr_task = per_core(current_task);
@ -298,7 +409,7 @@ void NORETURN do_exit(int arg)
}
}
/** @brief A procedure to be called by kernel tasks */
void NORETURN leave_kernel_task(void) {
int result;
@ -306,11 +417,12 @@ void NORETURN leave_kernel_task(void) {
do_exit(result);
}
/** @brief Aborting a task is like exiting it with result -1 */
void NORETURN do_abort(void) {
do_exit(-1);
}
static uint32_t get_next_core_id(void)
{
uint32_t i;
@ -334,6 +446,7 @@ static uint32_t get_next_core_id(void)
return core_id;
}
int clone_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio)
{
int ret = -EINVAL;
@ -434,6 +547,7 @@ out:
return ret;
}
int create_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio, uint32_t core_id)
{
int ret = -ENOMEM;
@ -537,6 +651,7 @@ out:
return ret;
}
int create_kernel_task_on_core(tid_t* id, entry_point_t ep, void* args, uint8_t prio, uint32_t core_id)
{
if (prio > MAX_PRIO)
@ -545,6 +660,7 @@ int create_kernel_task_on_core(tid_t* id, entry_point_t ep, void* args, uint8_t
return create_task(id, ep, args, prio, core_id);
}
int create_kernel_task(tid_t* id, entry_point_t ep, void* args, uint8_t prio)
{
if (prio > MAX_PRIO)
@ -553,23 +669,17 @@ int create_kernel_task(tid_t* id, entry_point_t ep, void* args, uint8_t prio)
return create_task(id, ep, args, prio, CORE_ID);
}
/** @brief Wakeup a blocked task
* @param id The task's tid_t structure
* @return
* - 0 on success
* - -EINVAL (-22) on failure
*/
int wakeup_task(tid_t id)
{
task_t* task;
uint32_t core_id, prio;
uint32_t core_id;
int ret = -EINVAL;
uint8_t flags;
flags = irq_nested_disable();
task = task_table + id;
prio = task->prio;
task = &task_table[id];
core_id = task->last_core;
if (task->status == TASK_BLOCKED) {
@ -577,56 +687,18 @@ int wakeup_task(tid_t id)
ret = 0;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
// increase the number of ready tasks
readyqueues[core_id].nr_tasks++;
// do we need to remove from timer queue?
// if task is in timer queue, remove it
if (task->flags & TASK_TIMER) {
task->flags &= ~TASK_TIMER;
if (task->prev)
task->prev->next = task->next;
if (task->next)
task->next->prev = task->prev;
if (readyqueues[core_id].timers.first == task) {
readyqueues[core_id].timers.first = task->next;
#ifdef DYNAMIC_TICKS
const task_t* first = readyqueues[core_id].timers.first;
if(first) {
if(first->timeout > get_clock_tick()) {
timer_deadline(first->timeout - get_clock_tick());
} else {
// workaround: start timer so new head will be serviced
timer_deadline(1);
}
} else {
// prevent spurious interrupts
timer_disable();
}
#endif
}
if (readyqueues[core_id].timers.last == task)
readyqueues[core_id].timers.last = task->prev;
timer_queue_remove(core_id, task);
}
// add task to the runqueue
if (!readyqueues[core_id].queue[prio-1].last) {
readyqueues[core_id].queue[prio-1].last = readyqueues[core_id].queue[prio-1].first = task;
task->next = task->prev = NULL;
readyqueues[core_id].prio_bitmap |= (1 << prio);
} else {
task->prev = readyqueues[core_id].queue[prio-1].last;
task->next = NULL;
readyqueues[core_id].queue[prio-1].last->next = task;
readyqueues[core_id].queue[prio-1].last = task;
}
// add task to the ready queue
readyqueues_push_back(core_id, task);
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
#if 0 //def DYNAMIC_TICKS
// send IPI to be sure that the scheuler recognize the new task
if (core_id != CORE_ID)
apic_send_ipi(core_id, 121);
#endif
}
irq_nested_enable(flags);
@ -634,54 +706,30 @@ int wakeup_task(tid_t id)
return ret;
}
/** @brief Block current task
*
* The current task's status will be changed to TASK_BLOCKED
*
* @return
* - 0 on success
* - -EINVAL (-22) on failure
*/
int block_current_task(void)
int block_task(tid_t id)
{
task_t* curr_task;
tid_t id;
uint32_t prio, core_id;
task_t* task;
uint32_t core_id;
int ret = -EINVAL;
uint8_t flags;
flags = irq_nested_disable();
curr_task = per_core(current_task);
id = curr_task->id;
prio = curr_task->prio;
core_id = CORE_ID;
task = &task_table[id];
core_id = task->last_core;
if (task_table[id].status == TASK_RUNNING) {
task_table[id].status = TASK_BLOCKED;
ret = 0;
if (task->status == TASK_RUNNING) {
task->status = TASK_BLOCKED;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
// reduce the number of ready tasks
readyqueues[core_id].nr_tasks--;
// remove task from queue
if (task_table[id].prev)
task_table[id].prev->next = task_table[id].next;
if (task_table[id].next)
task_table[id].next->prev = task_table[id].prev;
if (readyqueues[core_id].queue[prio-1].first == task_table+id)
readyqueues[core_id].queue[prio-1].first = task_table[id].next;
if (readyqueues[core_id].queue[prio-1].last == task_table+id) {
readyqueues[core_id].queue[prio-1].last = task_table[id].prev;
if (!readyqueues[core_id].queue[prio-1].last)
readyqueues[core_id].queue[prio-1].last = readyqueues[core_id].queue[prio-1].first;
}
// remove task from ready queue
readyqueues_remove(core_id, task);
// No valid task in queue => update prio_bitmap
if (!readyqueues[core_id].queue[prio-1].first)
readyqueues[core_id].prio_bitmap &= ~(1 << prio);
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
ret = 0;
}
irq_nested_enable(flags);
@ -689,148 +737,71 @@ int block_current_task(void)
return ret;
}
int block_current_task(void)
{
return block_task(per_core(current_task)->id);
}
int set_timer(uint64_t deadline)
{
task_t* curr_task;
task_t* tmp;
uint32_t core_id, prio;
uint32_t flags;
uint32_t core_id;
uint8_t flags;
int ret = -EINVAL;
flags = irq_nested_disable();
curr_task = per_core(current_task);
prio = curr_task->prio;
core_id = CORE_ID;
if (curr_task->status == TASK_RUNNING) {
curr_task->status = TASK_BLOCKED;
curr_task->timeout = deadline;
// blocks task and removes from ready queue
block_task(curr_task->id);
curr_task->flags |= TASK_TIMER;
curr_task->timeout = deadline;
timer_queue_push(core_id, curr_task);
ret = 0;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
// reduce the number of ready tasks
readyqueues[core_id].nr_tasks--;
// remove task from queue
if (curr_task->prev)
curr_task->prev->next = curr_task->next;
if (curr_task->next)
curr_task->next->prev = curr_task->prev;
if (readyqueues[core_id].queue[prio-1].first == curr_task)
readyqueues[core_id].queue[prio-1].first = curr_task->next;
if (readyqueues[core_id].queue[prio-1].last == curr_task) {
readyqueues[core_id].queue[prio-1].last = curr_task->prev;
if (!readyqueues[core_id].queue[prio-1].last)
readyqueues[core_id].queue[prio-1].last = readyqueues[core_id].queue[prio-1].first;
}
// No valid task in queue => update prio_bitmap
if (!readyqueues[core_id].queue[prio-1].first)
readyqueues[core_id].prio_bitmap &= ~(1 << prio);
// add task to the timer queue
tmp = readyqueues[core_id].timers.first;
if (!tmp) {
readyqueues[core_id].timers.first = readyqueues[core_id].timers.last = curr_task;
curr_task->prev = curr_task->next = NULL;
#ifdef DYNAMIC_TICKS
timer_deadline(deadline-get_clock_tick());
#endif
} else {
while(tmp && (deadline >= tmp->timeout))
tmp = tmp->next;
if (!tmp) {
curr_task->next = NULL;
curr_task->prev = readyqueues[core_id].timers.last;
if (readyqueues[core_id].timers.last)
readyqueues[core_id].timers.last->next = curr_task;
readyqueues[core_id].timers.last = curr_task;
// obsolete lines...
//if (!readyqueues[core_id].timers.first)
// readyqueues[core_id].timers.first = curr_task;
} else {
curr_task->prev = tmp->prev;
curr_task->next = tmp;
tmp->prev = curr_task;
if (curr_task->prev)
curr_task->prev->next = curr_task;
if (readyqueues[core_id].timers.first == tmp) {
readyqueues[core_id].timers.first = curr_task;
#ifdef DYNAMIC_TICKS
timer_deadline(deadline-get_clock_tick());
#endif
}
}
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
} else kprintf("Task is already blocked. No timer will be set!\n");
} else {
kprintf("Task is already blocked. No timer will be set!\n");
}
irq_nested_enable(flags);
return ret;
}
void check_timers(void)
{
uint32_t core_id = CORE_ID;
uint32_t prio;
uint64_t current_tick;
readyqueues_t* readyqueue = &readyqueues[CORE_ID];
spinlock_irqsave_lock(&readyqueue->lock);
spinlock_irqsave_lock(&readyqueues[core_id].lock);
// since IRQs are disabled, get_clock_tick() won't increase here
const uint64_t current_tick = get_clock_tick();
// check timers
current_tick = get_clock_tick();
while (readyqueues[core_id].timers.first && readyqueues[core_id].timers.first->timeout <= current_tick)
// wakeup tasks whose deadline has expired
task_t* task;
while ((task = readyqueue->timers.first) && (task->timeout <= current_tick))
{
task_t* task = readyqueues[core_id].timers.first;
// remove timer from queue
readyqueues[core_id].timers.first = readyqueues[core_id].timers.first->next;
if (readyqueues[core_id].timers.first) {
readyqueues[core_id].timers.first->prev = NULL;
#ifdef DYNAMIC_TICKS
if (readyqueues[core_id].timers.first->timeout > get_clock_tick())
timer_deadline(readyqueues[core_id].timers.first->timeout-current_tick);
#endif
} else readyqueues[core_id].timers.last = NULL;
task->flags &= ~TASK_TIMER;
// wakeup task
if (task->status == TASK_BLOCKED) {
task->status = TASK_READY;
prio = task->prio;
// increase the number of ready tasks
readyqueues[core_id].nr_tasks++;
// add task to the runqueue
if (!readyqueues[core_id].queue[prio-1].first) {
readyqueues[core_id].queue[prio-1].last = readyqueues[core_id].queue[prio-1].first = task;
task->next = task->prev = NULL;
readyqueues[core_id].prio_bitmap |= (1 << prio);
} else {
task->prev = readyqueues[core_id].queue[prio-1].last;
task->next = NULL;
readyqueues[core_id].queue[prio-1].last->next = task;
readyqueues[core_id].queue[prio-1].last = task;
}
}
// pops task from timer queue, so next iteration has new first element
wakeup_task(task->id);
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
spinlock_irqsave_unlock(&readyqueue->lock);
}
size_t** scheduler(void)
{
task_t* orig_task;
task_t* curr_task;
const int32_t core_id = CORE_ID;
uint32_t prio;
const uint32_t core_id = CORE_ID;
uint64_t prio;
orig_task = curr_task = per_core(current_task);
curr_task->last_core = core_id;
@ -850,8 +821,12 @@ size_t** scheduler(void)
set_per_core(current_task, curr_task);
}
prio = msb(readyqueues[core_id].prio_bitmap); // determines highest priority
if (prio > MAX_PRIO) {
// determine highest priority
prio = msb(readyqueues[core_id].prio_bitmap);
const int readyqueue_empty = prio > MAX_PRIO;
if (readyqueue_empty) {
if ((curr_task->status == TASK_RUNNING) || (curr_task->status == TASK_IDLE))
goto get_task_out;
curr_task = readyqueues[core_id].idle;
@ -861,26 +836,33 @@ size_t** scheduler(void)
if ((curr_task->prio > prio) && (curr_task->status == TASK_RUNNING))
goto get_task_out;
// mark current task for later cleanup by finish_task_switch()
if (curr_task->status == TASK_RUNNING) {
curr_task->status = TASK_READY;
readyqueues[core_id].old_task = curr_task;
}
curr_task = readyqueues[core_id].queue[prio-1].first;
set_per_core(current_task, curr_task);
if (BUILTIN_EXPECT(curr_task->status == TASK_INVALID, 0)) {
kprintf("Upps!!!!!!! Got invalid task %d, orig task %d\n", curr_task->id, orig_task->id);
}
curr_task->status = TASK_RUNNING;
// get new task from its ready queue
curr_task = task_list_pop_front(&readyqueues[core_id].queue[prio-1]);
// remove new task from queue
// by the way, priority 0 is only used by the idle task and doesn't need own queue
readyqueues[core_id].queue[prio-1].first = curr_task->next;
if (!curr_task->next) {
readyqueues[core_id].queue[prio-1].last = NULL;
if(BUILTIN_EXPECT(curr_task == NULL, 0)) {
kprintf("Kernel panic: No task in readyqueue\n");
while(1);
}
if (BUILTIN_EXPECT(curr_task->status == TASK_INVALID, 0)) {
kprintf("Kernel panic: Got invalid task %d, orig task %d\n",
curr_task->id, orig_task->id);
while(1);
}
// if we removed the last task from queue, update priority bitmap
if(readyqueues[core_id].queue[prio-1].first == NULL) {
readyqueues[core_id].prio_bitmap &= ~(1 << prio);
}
curr_task->next = curr_task->prev = NULL;
// finally make it the new current task
curr_task->status = TASK_RUNNING;
set_per_core(current_task, curr_task);
}
get_task_out:
@ -915,6 +897,7 @@ int get_task(tid_t id, task_t** task)
return 0;
}
void reschedule(void)
{
size_t** stack;

View file

@ -38,7 +38,7 @@
/// A linked list for each binary size exponent
static buddy_t* buddy_lists[BUDDY_LISTS] = { [0 ... BUDDY_LISTS-1] = NULL };
/// Lock for the buddy lists
static spinlock_t buddy_lock = SPINLOCK_INIT;
static spinlock_irqsave_t buddy_lock = SPINLOCK_IRQSAVE_INIT;
/** @brief Check if larger free buddies are available */
static inline int buddy_large_avail(uint8_t exp)
@ -66,7 +66,7 @@ static inline int buddy_exp(size_t sz)
/** @brief Get a free buddy by potentially splitting a larger one */
static buddy_t* buddy_get(int exp)
{
spinlock_lock(&buddy_lock);
spinlock_irqsave_lock(&buddy_lock);
buddy_t** list = &buddy_lists[exp-BUDDY_MIN];
buddy_t* buddy = *list;
buddy_t* split;
@ -92,7 +92,7 @@ static buddy_t* buddy_get(int exp)
}
out:
spinlock_unlock(&buddy_lock);
spinlock_irqsave_unlock(&buddy_lock);
return buddy;
}
@ -103,11 +103,11 @@ out:
*/
static void buddy_put(buddy_t* buddy)
{
spinlock_lock(&buddy_lock);
spinlock_irqsave_lock(&buddy_lock);
buddy_t** list = &buddy_lists[buddy->prefix.exponent-BUDDY_MIN];
buddy->next = *list;
*list = buddy;
spinlock_unlock(&buddy_lock);
spinlock_irqsave_unlock(&buddy_lock);
}
void buddy_dump(void)

View file

@ -48,7 +48,7 @@ extern const void kernel_end;
*/
static vma_t vma_boot = { VMA_MIN, VMA_MIN, VMA_HEAP };
static vma_t* vma_list = &vma_boot;
static spinlock_t vma_lock = SPINLOCK_INIT;
static spinlock_irqsave_t vma_lock = SPINLOCK_IRQSAVE_INIT;
// TODO: we might move the architecture specific VMA regions to a
// seperate function arch_vma_init()
@ -86,7 +86,7 @@ out:
size_t vma_alloc(size_t size, uint32_t flags)
{
spinlock_t* lock = &vma_lock;
spinlock_irqsave_t* lock = &vma_lock;
vma_t** list = &vma_list;
//kprintf("vma_alloc: size = %#lx, flags = %#x\n", size, flags);
@ -98,7 +98,7 @@ size_t vma_alloc(size_t size, uint32_t flags)
size_t base = VMA_MIN;
size_t limit = VMA_MAX;
spinlock_lock(lock);
spinlock_irqsave_lock(lock);
// first fit search for free memory area
vma_t* pred = NULL; // vma before current gap
@ -115,7 +115,7 @@ size_t vma_alloc(size_t size, uint32_t flags)
} while (pred || succ);
fail:
spinlock_unlock(lock); // we were unlucky to find a free gap
spinlock_irqsave_unlock(lock); // we were unlucky to find a free gap
return 0;
@ -143,14 +143,14 @@ found:
*list = new;
}
spinlock_unlock(lock);
spinlock_irqsave_unlock(lock);
return start;
}
int vma_free(size_t start, size_t end)
{
spinlock_t* lock = &vma_lock;
spinlock_irqsave_t* lock = &vma_lock;
vma_t* vma;
vma_t** list = &vma_list;
@ -159,7 +159,7 @@ int vma_free(size_t start, size_t end)
if (BUILTIN_EXPECT(start >= end, 0))
return -EINVAL;
spinlock_lock(lock);
spinlock_irqsave_lock(lock);
// search vma
vma = *list;
@ -169,7 +169,7 @@ int vma_free(size_t start, size_t end)
}
if (BUILTIN_EXPECT(!vma, 0)) {
spinlock_unlock(lock);
spinlock_irqsave_unlock(lock);
return -EINVAL;
}
@ -190,7 +190,7 @@ int vma_free(size_t start, size_t end)
else {
vma_t* new = kmalloc(sizeof(vma_t));
if (BUILTIN_EXPECT(!new, 0)) {
spinlock_unlock(lock);
spinlock_irqsave_unlock(lock);
return -ENOMEM;
}
@ -205,14 +205,14 @@ int vma_free(size_t start, size_t end)
new->prev = vma;
}
spinlock_unlock(lock);
spinlock_irqsave_unlock(lock);
return 0;
}
int vma_add(size_t start, size_t end, uint32_t flags)
{
spinlock_t* lock = &vma_lock;
spinlock_irqsave_t* lock = &vma_lock;
vma_t** list = &vma_list;
int ret = 0;
@ -221,7 +221,7 @@ int vma_add(size_t start, size_t end, uint32_t flags)
//kprintf("vma_add: start = %#lx, end = %#lx, flags = %#x\n", start, end, flags);
spinlock_lock(lock);
spinlock_irqsave_lock(lock);
// search gap
vma_t* pred = NULL;
@ -267,7 +267,7 @@ int vma_add(size_t start, size_t end, uint32_t flags)
}
fail:
spinlock_unlock(lock);
spinlock_irqsave_unlock(lock);
return ret;
}
@ -286,7 +286,7 @@ void vma_dump(void)
}
kputs("VMAs:\n");
spinlock_lock(&vma_lock);
spinlock_irqsave_lock(&vma_lock);
print_vma(&vma_boot);
spinlock_unlock(&vma_lock);
spinlock_irqsave_unlock(&vma_lock);
}