1
0
Fork 0
mirror of https://github.com/hermitcore/libhermit.git synced 2025-03-09 00:00:03 +01:00

remove ELF loader

This commit is contained in:
Stefan Lankes 2015-12-30 09:25:38 +01:00
parent 1dce82e27d
commit e666d91a5b
3 changed files with 0 additions and 628 deletions

View file

@ -1,181 +0,0 @@
/*
* Copyright (c) 2010, Stefan Lankes, RWTH Aachen University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @author Stefan Lankes
* @file arch/x86/include/asm/elf.h
* @brief Define constants and structures related to ELF
*
* This file keeps define constants for identification and definition of ELF files.\n
* ELF files consist of up to five parts:
* - ELF header
* - program header table
* - section header table
* - ELF sections
* - ELF segment
*/
#ifndef __ELF_H__
#define __ELF_H__
#include <hermit/config.h>
#include <asm/stddef.h>
#ifdef __cplusplus
extern "C" {
#endif
#define ELF_MAGIC 0x464C457F
#define ELF_ET_NONE 0x0000 // no type
#define ELF_ET_REL 0x0001 // relocatable
#define ELF_ET_EXEC 0x0002 // executeable
#define ELF_ET_DYN 0x0003 // Shared-Object-File
#define ELF_ET_CORE 0x0004 // Corefile
#define ELF_ET_LOPROC 0xFF00 // Processor-specific
#define ELF_ET_HIPROC 0x00FF // Processor-specific
#define ELF_EM_NONE 0x0000 // no type
#define ELF_EM_M32 0x0001 // AT&T WE 32100
#define ELF_EM_SPARC 0x0002 // SPARC
#define ELF_EM_386 0x0003 // Intel 80386
#define ELF_EM_68K 0x0004 // Motorola 68000
#define ELF_EM_88K 0x0005 // Motorola 88000
#define ELF_EM_860 0x0007 // Intel 80860
#define ELF_EM_MIPS 0x0008 // MIPS RS3000
#define ELF_EM_X86_64 0x003e // Intel X86_64
#define ELF_CLASS_NONE 0x0000
#define ELF_CLASS_32 0x0001 // 32bit file
#define ELF_CLASS_64 0x0002 // 64bit file
#define ELF_DATA_NONE 0x0000
#define ELF_DATA_2LSB 0x0001
#define ELF_DATA_2MSB 0x002
/* Legal values for p_type (segment type). */
#define ELF_PT_NULL 0 /* Program header table entry unused */
#define ELF_PT_LOAD 1 /* Loadable program segment */
#define ELF_PT_DYNAMIC 2 /* Dynamic linking information */
#define ELF_PT_INTERP 3 /* Program interpreter */
#define ELF_PT_NOTE 4 /* Auxiliary information */
#define ELF_PT_SHLIB 5
#define ELF_PT_PHDR 6 /* Entry for header table itself */
#define ELF_PT_TLS 7 /* Thread-local storage segment */
#define ELF_PT_NUM 8 /* Number of defined types */
#define ELF_PT_LOOS 0x60000000 /* Start of OS-specific */
#define ELF_PT_GNU_EH_FRAME 0x6474e550 /* GCC .eh_frame_hdr segment */
#define ELF_PT_GNU_STACK 0x6474e551 /* Indicates stack executability */
#define ELF_PT_GNU_RELRO 0x6474e552 /* Read-only after relocation */
#define ELF_PT_LOSUNW 0x6ffffffa
#define ELF_PT_SUNWBSS 0x6ffffffa /* Sun Specific segment */
#define ELF_PT_SUNWSTACK 0x6ffffffb /* Stack segment */
#define ELF_PT_HISUNW 0x6fffffff
#define ELF_PT_HIOS 0x6fffffff /* End of OS-specific */
#define ELF_PT_LOPROC 0x70000000 /* Start of processor-specific */
#define ELF_PT_HIPROC 0x7fffffff /* End of processor-specific */
/* These constants define the permissions on sections in the program
header, p_flags. */
#define PF_R 0x4
#define PF_W 0x2
#define PF_X 0x1
/** @brief Identification part of an ELF-file's header
*
* This structure keeps information about the file format
*/
typedef struct {
uint32_t magic;
uint8_t _class;
uint8_t data;
uint8_t version;
uint8_t pad[8];
uint8_t nident;
} __attribute__ ((packed)) elf_ident_t;
/** @brief Information about the executable
*
* ELF header\n
* This structure keeps information about the format of the executable itself.
*/
typedef struct {
elf_ident_t ident;
uint16_t type;
uint16_t machine;
uint32_t version;
size_t entry;
size_t ph_offset;
size_t sh_offset;
uint32_t flags;
uint16_t header_size;
uint16_t ph_entry_size;
uint16_t ph_entry_count;
uint16_t sh_entry_size;
uint16_t sh_entry_count;
uint16_t sh_str_table_index;
} __attribute__ ((packed)) elf_header_t;
/** @brief program header information
*
* program header table\n
* This structure keeps information about the program header.
*/
typedef struct
{
uint32_t type;
uint32_t flags;
uint64_t offset;
uint64_t virt_addr;
uint64_t phys_addr;
uint64_t file_size;
uint64_t mem_size;
uint64_t alignment;
} __attribute__ ((packed)) elf_program_header_t;
/** @brief Information about ELF section
*
* ELF section\n
* This structure keeps information about a specific ELF section
*/
typedef struct {
uint32_t name;
uint32_t type;
uint64_t flags;
uint64_t addr;
uint64_t offset;
uint64_t size;
uint32_t link;
uint32_t info;
uint64_t align;
uint64_t enttry_size;
} __attribute__ ((packed)) elf_section_header_t;
#ifdef __cplusplus
}
#endif
#endif

View file

@ -35,15 +35,8 @@
#include <hermit/vma.h>
#include <hermit/rcce.h>
#include <asm/tss.h>
#include <asm/elf.h>
#include <asm/page.h>
#include <lwip/sockets.h>
#include <lwip/err.h>
#include <lwip/stats.h>
#define START_ADDRESS 0x40200000
/*
* Note that linker symbols are not variables, they have no memory allocated for
* maintaining a value, rather their address is their value.
@ -202,431 +195,3 @@ int create_default_frame(task_t* task, entry_point_t ep, void* arg, uint32_t cor
return 0;
}
#define MAX_ARGS (PAGE_SIZE - 2*sizeof(int))
/** @brief Structure which keeps all
* relevant data for a new user task to start */
typedef struct {
/// Points to a copy of the executable
char* executable;
/// Socket descriptor if have no file node
int sd;
/// Argument count
int argc;
/// Environment var count
int envc;
/// Buffer for env and argv values
char buffer[MAX_ARGS];
} load_args_t;
/** @brief Internally used function to load tasks with a load_args_t structure
* keeping all the information needed to launch.
*
* This is where the serious loading action is done.
*/
static int load_task(load_args_t* largs)
{
uint32_t i;
uint64_t offset, idx;
uint64_t addr, npages;
size_t stack = 0, heap = 0;
size_t flags;
elf_header_t header;
elf_program_header_t prog_header;
//elf_section_header_t sec_header;
task_t* curr_task = per_core(current_task);
int ret = -EINVAL;
uint8_t hermit_exec = 0;
if (!largs)
return -EINVAL;
if (!largs->executable || (largs->sd < 0))
return -EINVAL;
//curr_task->sd = largs->sd;
memcpy(&header, largs->executable, sizeof(elf_header_t));
if (BUILTIN_EXPECT(header.ident.magic != ELF_MAGIC, 0))
goto Linvalid;
if (BUILTIN_EXPECT(header.type != ELF_ET_EXEC, 0))
goto Linvalid;
if (BUILTIN_EXPECT(header.machine != ELF_EM_X86_64, 0))
goto Linvalid;
if (BUILTIN_EXPECT(header.ident._class != ELF_CLASS_64, 0))
goto Linvalid;
if (BUILTIN_EXPECT(header.ident.data != ELF_DATA_2LSB, 0))
goto Linvalid;
if (header.entry <= KERNEL_SPACE)
goto Linvalid;
// interpret program header table
for (i=0; i<header.ph_entry_count; i++) {
memcpy(&prog_header, largs->executable + header.ph_offset+i*header.ph_entry_size, sizeof(elf_program_header_t));
switch(prog_header.type)
{
case ELF_PT_LOAD: // load program segment
if (!prog_header.virt_addr)
continue;
//kprintf("Load segment at 0x%zx (0x%zx bytes)\n", prog_header.virt_addr, prog_header.mem_size);
npages = (prog_header.virt_addr + prog_header.mem_size) - (prog_header.virt_addr & ~(PAGE_SIZE-1));
npages = (npages >> PAGE_BITS);
if ((prog_header.virt_addr + prog_header.mem_size) & (PAGE_SIZE-1))
npages++;
addr = get_pages(npages);
if (BUILTIN_EXPECT(!addr, 0)) {
kprintf("load_task: not enough memory for %d pages!\n", npages);
ret = -ENOMEM;
goto Lerr;
}
flags = PG_USER;
if (has_nx() && !(prog_header.flags & PF_X))
flags |= PG_XD;
// map page frames in the address space of the current task
if (page_map(prog_header.virt_addr & ~(PAGE_SIZE-1), addr, npages, flags|PG_RW)) {
kprintf("Could not map 0x%x at 0x%x\n", addr, prog_header.virt_addr);
ret = -ENOMEM;
goto Lerr;
}
//kprintf("Map 0x%zx - 0x%zx\n", prog_header.virt_addr & ~(PAGE_SIZE-1), (prog_header.virt_addr & ~(PAGE_SIZE-1)) + npages*PAGE_SIZE - 1);
// clear pages
memset((void*) (prog_header.virt_addr & ~(PAGE_SIZE-1)), 0x00, npages*PAGE_SIZE);
// update heap location
if (heap < prog_header.virt_addr + prog_header.mem_size)
heap = prog_header.virt_addr + prog_header.mem_size;
// load program
//kprintf("read programm 0x%zx - 0x%zx\n", prog_header.virt_addr, prog_header.virt_addr + prog_header.file_size);
memcpy((uint8_t*)prog_header.virt_addr, largs->executable + prog_header.offset, prog_header.file_size);
if (!(prog_header.flags & PF_W))
page_set_flags(prog_header.virt_addr, npages, flags);
flags = VMA_CACHEABLE|VMA_USER;
if (prog_header.flags & PF_R)
flags |= VMA_READ;
if (prog_header.flags & PF_W)
flags |= VMA_WRITE;
if (prog_header.flags & PF_X)
flags |= VMA_EXECUTE;
vma_add(prog_header.virt_addr, prog_header.virt_addr+npages*PAGE_SIZE-1, flags);
break;
case ELF_PT_GNU_STACK: // Indicates stack executability
// create user-level stack
npages = DEFAULT_STACK_SIZE >> PAGE_BITS;
if (DEFAULT_STACK_SIZE & (PAGE_SIZE-1))
npages++;
addr = get_pages(npages);
if (BUILTIN_EXPECT(!addr, 0)) {
kprintf("load_task: not enough memory!\n");
ret = -ENOMEM;
goto Lerr;
}
stack = (1ULL << 34ULL); // virtual address of the stack
flags = PG_USER|PG_RW;
if (has_nx() && !(prog_header.flags & PF_X))
flags |= PG_XD;
if (page_map(stack, addr, npages, flags)) {
kprintf("Could not map stack at 0x%x\n", stack);
ret = -ENOMEM;
goto Lerr;
}
//kprintf("Map stack at 0x%zx -- 0x%zx\n", stack, stack + npages*PAGE_SIZE - 1);
memset((void*) stack, 0x00, npages*PAGE_SIZE);
// create vma regions for the user-level stack
flags = VMA_CACHEABLE|VMA_USER;
if (prog_header.flags & PF_R)
flags |= VMA_READ;
if (prog_header.flags & PF_W)
flags |= VMA_WRITE;
if (prog_header.flags & PF_X)
flags |= VMA_EXECUTE;
vma_add(stack, stack+npages*PAGE_SIZE-1, flags);
break;
case ELF_PT_TLS:
kprintf("Found TLS segment. addr 0x%llx, mem size 0x%llx, file size 0x%llx\n", prog_header.virt_addr, prog_header.mem_size, prog_header.file_size);
#if 0
curr_task->tls_addr = prog_header.virt_addr;
curr_task->tls_mem_size = prog_header.mem_size;
curr_task->tls_file_size = prog_header.file_size;
#endif
break;
case ELF_PT_NOTE:
//kprintf("Found note segment: %s\n", (char*)prog_header.virt_addr + 12);
hermit_exec |= (strcmp((char*)prog_header.virt_addr + 12, "HermitCore") == 0);
break;
default:
kprintf("Unknown type 0x%lx in program header\n", prog_header.type);
}
}
// setup heap
if (!curr_task->heap)
curr_task->heap = (vma_t*) kmalloc(sizeof(vma_t));
if (BUILTIN_EXPECT(!curr_task->heap || !heap, 0)) {
kprintf("load_task: heap is missing!\n");
ret = -ENOMEM;
goto Lerr;
}
curr_task->heap->flags = VMA_HEAP|VMA_USER;
curr_task->heap->start = PAGE_FLOOR(heap);
curr_task->heap->end = PAGE_FLOOR(heap);
if (BUILTIN_EXPECT(!stack, 0)) {
kprintf("Stack is missing!\n");
ret = -ENOMEM;
goto Lerr;
}
if (BUILTIN_EXPECT(!hermit_exec, 0)) {
kprintf("Not a valid executable!\n");
ret = -EINVAL;
goto Lerr;
}
offset = DEFAULT_STACK_SIZE-16;
#if 0
// do we have to create a TLS segement?
if (curr_task->tls_addr && curr_task->tls_mem_size) {
if (curr_task->tls_mem_size >= DEFAULT_STACK_SIZE-128) {
kprintf("TLS is too large: 0x%zx\n", curr_task->tls_mem_size);
ret = -ENOMEM;
goto Lerr;
}
// set fs register to the TLS segment
writefs(stack+offset);
kprintf("Task %d set fs to 0x%zx\n", curr_task->id, stack+offset);
// copy default TLS segment to stack
offset -= curr_task->tls_mem_size;
if (curr_task->tls_file_size)
memcpy((void*) (stack+offset), (void*) curr_task->tls_addr, curr_task->tls_file_size);
}
#endif
// push strings on the stack
memset((void*) (stack+offset), 0, 4);
offset -= MAX_ARGS;
memcpy((void*) (stack+offset), largs->buffer, MAX_ARGS);
idx = offset;
// push argv on the stack
offset -= largs->argc * sizeof(char*);
for(i=0; i<largs->argc; i++) {
((char**) (stack+offset))[i] = (char*) (stack+idx);
while(((char*) stack)[idx] != '\0')
idx++;
idx++;
}
// push env on the stack
offset -= (largs->envc+1) * sizeof(char*);
for(i=0; i<largs->envc; i++) {
((char**) (stack+offset))[i] = (char*) (stack+idx);
while(((char*) stack)[idx] != '\0')
idx++;
idx++;
}
((char**) (stack+offset))[largs->envc] = NULL;
// align stack to be conform to the UNIX ABI
size_t old_offset = offset;
offset = offset & ~0xFULL;
offset -= sizeof(size_t);
// push pointer to env
offset -= sizeof(char**);
if (!(largs->envc))
*((char***) (stack+offset)) = NULL;
else
*((char***) (stack+offset)) = (char**) (stack + old_offset);
// push pointer to argv
offset -= sizeof(char**);
*((char***) (stack+offset)) = (char**) (stack + old_offset + (largs->envc+1) * sizeof(char*));
// push argc on the stack
offset -= sizeof(ssize_t);
*((ssize_t*) (stack+offset)) = (ssize_t) largs->argc;
if (largs->executable)
kfree(largs->executable);
kfree(largs);
// clear fpu state => currently not supported
curr_task->flags &= ~(TASK_FPU_USED|TASK_FPU_INIT);
// map readonly kernel info into the user-space => vsyscall
if (has_nx())
page_map(START_ADDRESS - PAGE_SIZE, base, 1, PG_USER|PG_XD);
else
page_map(START_ADDRESS - PAGE_SIZE, base, 1, PG_USER);
//kprintf("Map kernel info: 0x%zx - 0x%zx\n", START_ADDRESS - PAGE_SIZE, START_ADDRESS - 1);
vma_add(START_ADDRESS - PAGE_SIZE, START_ADDRESS - 1, VMA_READ|VMA_CACHEABLE|VMA_USER);
if (has_nx())
page_map(START_ADDRESS - 2*PAGE_SIZE, phy_rcce_internals, 1, PG_USER|PG_RW|PG_XD);
else
page_map(START_ADDRESS - 2*PAGE_SIZE, phy_rcce_internals, 1, PG_USER|PG_RW);
//kprintf("Map rcce info: 0x%zx - 0x%zx\n", START_ADDRESS - 2*PAGE_SIZE, START_ADDRESS - PAGE_SIZE - 1);
vma_add(START_ADDRESS - 2*PAGE_SIZE, START_ADDRESS - PAGE_SIZE - 11, VMA_READ|VMA_WRITE|VMA_CACHEABLE|VMA_USER);
//vma_dump();
enter_user_task(header.entry, stack+offset);
return 0;
Linvalid:
kprintf("Invalid executable!\n");
kprintf("magic number 0x%x\n", (uint32_t) header.ident.magic);
kprintf("header type 0x%x\n", (uint32_t) header.type);
kprintf("machine type 0x%x\n", (uint32_t) header.machine);
kprintf("elf ident class 0x%x\n", (uint32_t) header.ident._class);
kprintf("elf identdata 0x%x\n", header.ident.data);
kprintf("program entry point 0x%lx\n", (size_t) header.entry);
Lerr:
if (largs->executable)
kfree(largs->executable);
kfree(largs);
return ret;
}
/** @brief This call is used to adapt create_task calls
* which want to have a start function and argument list */
static int user_entry(void* arg)
{
load_args_t* largs = (load_args_t*) arg;
int ret;
finish_task_switch();
if (BUILTIN_EXPECT(!arg, 0))
return -EINVAL;
ret = load_task(largs);
if (ret)
kprintf("Load task failed: %d\n", ret);
sys_exit(ret);
while(1) {
HALT;
}
}
int create_user_task_form_socket(tid_t* id, int sd, uint8_t prio)
{
int argc;
int ret, err = -EINVAL;
int len, total_len, i, j;
load_args_t* load_args = NULL;
char *dest;
uint32_t core_id;
uint32_t counter = 0;
core_id = get_next_core_id();
ret = read(sd, &argc, sizeof(int));
if ((ret != sizeof(int)) || (argc <= 0))
goto out;
load_args = kmalloc(sizeof(load_args_t));
if (BUILTIN_EXPECT(!load_args, 0)) {
err = -ENOMEM;
goto out;
}
load_args->executable = NULL;
load_args->sd = sd;
load_args->argc = argc;
load_args->envc = 0;
dest = load_args->buffer;
for(i=0, total_len=0; i<argc; i++)
{
ret = read(sd, &len, sizeof(int));
if ((ret != sizeof(int)) || (len <= 0))
goto out;
total_len += len;
if (total_len >= MAX_ARGS)
goto out;
j=0;
while(j < len)
{
ret = read(sd, dest, len-j);
if (ret < 0)
goto out;
dest += ret;
j += ret;
}
}
// terminate array with a NULL pointer
*dest = 0;
ret = read(sd, &len, sizeof(int));
if ((ret != sizeof(int)) || (len <= 0))
goto out;
//kprintf("length of the executable: %d\n", len);
load_args->executable = kmalloc(len);
if (!load_args->executable) {
err = -ENOMEM;
goto out;
}
j=0;
while(j < len)
{
ret = read(sd, load_args->executable+j, len-j);
if (ret < 0)
goto out;
j += ret;
}
/* create new task */
return create_task(id, user_entry, load_args, prio, core_id);
out:
kprintf("Unable to load task: %d\n", err);
if (load_args && load_args->executable)
kfree(load_args->executable);
if (load_args)
kfree(load_args);
closesocket(sd);
counter++;
return err;
}

View file

@ -127,18 +127,6 @@ int create_kernel_task(tid_t* id, entry_point_t ep, void* args, uint8_t prio);
*/
int create_kernel_task_on_core(tid_t* id, entry_point_t ep, void* args, uint8_t prio, uint32_t core_id);
/** @brief Create a user level task on the current core.
*
* @param id The value behind this pointer will be set to the new task's id
* @param sd Socket descriptor to load and to start the executable
* @param prio Desired priority of the new kernel task
*
* @return
* - 0 on success
* - -EINVAL (-22) or -ENOMEM (-12)on failure
*/
int create_user_task_form_socket(tid_t* id, int sd, uint8_t prio);
/** @brief Create a user level task.
*
* @param id The value behind this pointer will be set to the new task's id