1
0
Fork 0
mirror of https://github.com/hermitcore/libhermit.git synced 2025-03-09 00:00:03 +01:00
libhermit/arch/x86/include/asm/processor.h

1023 lines
27 KiB
C

/*
* Copyright (c) 2010, Stefan Lankes, RWTH Aachen University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @author Stefan Lankes
* @file arch/x86/include/asm/processor.h
* @brief CPU-specific functions
*
* This file contains structures and functions related to CPU-specific assembler commands.
*/
#ifndef __ARCH_PROCESSOR_H__
#define __ARCH_PROCESSOR_H__
#include <hermit/stddef.h>
#include <asm/gdt.h>
#include <asm/apic.h>
#include <asm/irqflags.h>
#include <asm/pci.h>
#include <asm/tss.h>
#ifdef __cplusplus
extern "C" {
#endif
// feature list 0x00000001 (ebx)
#define CPU_FEATURE_FPU (1 << 0)
#define CPU_FEATURE_PSE (1 << 3)
#define CPU_FEATURE_MSR (1 << 5)
#define CPU_FEATURE_PAE (1 << 6)
#define CPU_FEATURE_MCE (1 << 7)
#define CPU_FEATURE_APIC (1 << 9)
#define CPU_FEATURE_SEP (1 << 11)
#define CPU_FEATURE_PGE (1 << 13)
#define CPU_FEATURE_PAT (1 << 16)
#define CPU_FEATURE_PSE36 (1 << 17)
#define CPU_FEATURE_CLFLUSH (1 << 19)
#define CPU_FEATURE_MMX (1 << 23)
#define CPU_FEATURE_FXSR (1 << 24)
#define CPU_FEATURE_SSE (1 << 25)
#define CPU_FEATURE_SSE2 (1 << 26)
// feature list 0x00000001 (ecx)
#define CPU_FEATURE_MWAIT (1 << 3)
#define CPU_FEATURE_VMX (1 << 5)
#define CPU_FEATURE_EST (1 << 7)
#define CPU_FEATURE_SSE3 (1 << 9)
#define CPU_FEATURE_FMA (1 << 12)
#define CPU_FEATURE_DCA (1 << 18)
#define CPU_FEATURE_SSE4_1 (1 << 19)
#define CPU_FEATURE_SSE4_2 (1 << 20)
#define CPU_FEATURE_X2APIC (1 << 21)
#define CPU_FEATURE_MOVBE (1 << 22)
#define CPU_FEATURE_XSAVE (1 << 26)
#define CPU_FEATURE_OSXSAVE (1 << 27)
#define CPU_FEATURE_AVX (1 << 28)
#define CPU_FEATURE_RDRAND (1 << 30)
#define CPU_FEATURE_HYPERVISOR (1 << 31)
// CPUID.80000001H:EDX feature list
#define CPU_FEATURE_SYSCALL (1 << 11)
#define CPU_FEATURE_NX (1 << 20)
#define CPU_FEATURE_1GBHP (1 << 26)
#define CPU_FEATURE_RDTSCP (1 << 27)
#define CPU_FEATURE_LM (1 << 29)
// feature list 0x00000007:0
#define CPU_FEATURE_FSGSBASE (1 << 0)
#define CPU_FEATURE_TSC_ADJUST (1 << 1)
#define CPU_FEATURE_SGX (1 << 2)
#define CPU_FEATURE_BMI1 (1 << 3)
#define CPU_FEATURE_HLE (1 << 4)
#define CPU_FEATURE_AVX2 (1 << 5)
#define CPU_FEATURE_SMEP (1 << 7)
#define CPU_FEATURE_BMI2 (1 << 8)
#define CPU_FEATURE_ERMS (1 << 9)
#define CPU_FEATURE_INVPCID (1 << 10)
#define CPU_FEATURE_RTM (1 << 11)
#define CPU_FEATURE_CQM (1 << 12)
#define CPU_FEATURE_MPX (1 << 14)
#define CPU_FEATURE_AVX512F (1 << 16)
#define CPU_FEATURE_RDSEED (1 << 18)
#define CPU_FEATURE_ADX (1 << 19)
#define CPU_FEATURE_SMAP (1 << 20)
#define CPU_FEATURE_PCOMMIT (1 << 22)
#define CPU_FEATURE_CLFLUSHOPT (1 << 23)
#define CPU_FEATURE_CLWB (1 << 24)
#define CPU_FEATURE_AVX512PF (1 << 26)
#define CPU_FEATURE_AVX512ER (1 << 27)
#define CPU_FEATURE_AVX512CD (1 << 28)
#define CPU_FEATURE_SHA_NI (1 << 29)
#define CPU_FEATURE_AVX512BW (1 << 30)
#define CPU_FEATURE_AVX512VL (1 <<31)
// feature list 0x00000006
#define CPU_FEATURE_IDA (1 << 1)
#define CPU_FEATURE_ARAT (1 << 2)
#define CPU_FEATURE_EPB (1 << 3)
#define CPU_FEATURE_HWP (1 << 7)
#define CPU_FEATURE_HWP_EPP (1 << 10)
/*
* EFLAGS bits
*/
#define EFLAGS_CF (1UL << 0) /* Carry Flag */
#define EFLAGS_FIXED (1UL << 1) /* Bit 1 - always on */
#define EFLAGS_PF (1UL << 2) /* Parity Flag */
#define EFLAGS_AF (1UL << 4) /* Auxiliary carry Flag */
#define EFLAGS_ZF (1UL << 6) /* Zero Flag */
#define EFLAGS_SF (1UL << 7) /* Sign Flag */
#define EFLAGS_TF (1UL << 8) /* Trap Flag */
#define EFLAGS_IF (1UL << 9) /* Interrupt Flag */
#define EFLAGS_DF (1UL << 10) /* Direction Flag */
#define EFLAGS_OF (1UL << 11) /* Overflow Flag */
#define EFLAGS_IOPL (1UL << 12) /* I/O Privilege Level (2 bits) */
#define EFLAGS_NT (1UL << 14) /* Nested Task */
#define EFLAGS_RF (1UL << 16) /* Resume Flag */
#define EFLAGS_VM (1UL << 17) /* Virtual Mode */
#define EFLAGS_AC (1UL << 18) /* Alignment Check/Access Control */
#define EFLAGS_VIF (1UL << 19) /* Virtual Interrupt Flag */
#define EFLAGS_VIP (1UL << 20) /* Virtual Interrupt Pending */
#define EFLAGS_ID (1UL << 21) /* CPUID detection */
// x86 control registers
/// Protected Mode Enable
#define CR0_PE (1 << 0)
/// Monitor coprocessor
#define CR0_MP (1 << 1)
/// Enable FPU emulation
#define CR0_EM (1 << 2)
/// Task switched
#define CR0_TS (1 << 3)
/// Extension type of coprocessor
#define CR0_ET (1 << 4)
/// Enable FPU error reporting
#define CR0_NE (1 << 5)
/// Enable write protected pages
#define CR0_WP (1 << 16)
/// Enable alignment checks
#define CR0_AM (1 << 18)
/// Globally enables/disable write-back caching
#define CR0_NW (1 << 29)
/// Globally disable memory caching
#define CR0_CD (1 << 30)
/// Enable paging
#define CR0_PG (1 << 31)
/// Virtual 8086 Mode Extensions
#define CR4_VME (1 << 0)
/// Protected-mode Virtual Interrupts
#define CR4_PVI (1 << 1)
/// Disable Time Stamp Counter register (rdtsc instruction)
#define CR4_TSD (1 << 2)
/// Enable debug extensions
#define CR4_DE (1 << 3)
/// Enable hugepage support
#define CR4_PSE (1 << 4)
/// Enable physical address extension
#define CR4_PAE (1 << 5)
/// Enable machine check exceptions
#define CR4_MCE (1 << 6)
/// Enable global pages
#define CR4_PGE (1 << 7)
/// Enable Performance-Monitoring Counter
#define CR4_PCE (1 << 8)
/// Enable Operating system support for FXSAVE and FXRSTOR instructions
#define CR4_OSFXSR (1 << 9)
/// Enable Operating System Support for Unmasked SIMD Floating-Point Exceptions
#define CR4_OSXMMEXCPT (1 << 10)
/// Enable Virtual Machine Extensions, see Intel VT-x
#define CR4_VMXE (1 << 13)
/// Enable Safer Mode Extensions, see Trusted Execution Technology (TXT)
#define CR4_SMXE (1 << 14)
/// Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE
#define CR4_FSGSBASE (1 << 16)
/// Enables process-context identifiers
#define CR4_PCIDE (1 << 17)
/// Enable XSAVE and Processor Extended States
#define CR4_OSXSAVE (1 << 18)
/// Enable Supervisor Mode Execution Protection
#define CR4_SMEP (1 << 20)
/// Enable Supervisor Mode Access Protection
#define CR4_SMAP (1 << 21)
// x86-64 specific MSRs
/// APIC register
#define MSR_APIC_BASE 0x0000001B
/// extended feature register
#define MSR_EFER 0xc0000080
/// legacy mode SYSCALL target
#define MSR_STAR 0xc0000081
/// long mode SYSCALL target
#define MSR_LSTAR 0xc0000082
/// compat mode SYSCALL target
#define MSR_CSTAR 0xc0000083
/// EFLAGS mask for syscall
#define MSR_SYSCALL_MASK 0xc0000084
/// 64bit FS base
#define MSR_FS_BASE 0xc0000100
/// 64bit GS base
#define MSR_GS_BASE 0xc0000101
/// SwapGS GS shadow
#define MSR_KERNEL_GS_BASE 0xc0000102
#define MSR_XAPIC_ENABLE (1UL << 11)
#define MSR_X2APIC_ENABLE (1UL << 10)
#define MSR_IA32_PLATFORM_ID 0x00000017
#define MSR_IA32_PERFCTR0 0x000000c1
#define MSR_IA32_PERFCTR1 0x000000c2
#define MSR_FSB_FREQ 0x000000cd
#define MSR_PLATFORM_INFO 0x000000ce
#define MSR_IA32_MPERF 0x000000e7
#define MSR_IA32_APERF 0x000000e8
#define MSR_IA32_MISC_ENABLE 0x000001a0
#define MSR_IA32_FEATURE_CONTROL 0x0000003a
#define MSR_IA32_ENERGY_PERF_BIAS 0x000001b0
#define MSR_IA32_PERF_STATUS 0x00000198
#define MSR_IA32_PERF_CTL 0x00000199
#define MSR_IA32_CR_PAT 0x00000277
#define MSR_MTRRdefType 0x000002ff
#define MSR_PPERF 0x0000064e
#define MSR_PERF_LIMIT_REASONS 0x0000064f
#define MSR_PM_ENABLE 0x00000770
#define MSR_HWP_CAPABILITIES 0x00000771
#define MSR_HWP_REQUEST_PKG 0x00000772
#define MSR_HWP_INTERRUPT 0x00000773
#define MSR_HWP_REQUEST 0x00000774
#define MSR_HWP_STATUS 0x00000777
#define MSR_IA32_MISC_ENABLE_FAST_STRING (1ULL << 0)
#define MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP (1ULL << 16)
#define MSR_IA32_MISC_ENABLE_SPEEDSTEP_LOCK (1ULL << 20)
#define MSR_IA32_MISC_ENABLE_TURBO_DISABLE (1ULL << 38)
#define MSR_MTRRfix64K_00000 0x00000250
#define MSR_MTRRfix16K_80000 0x00000258
#define MSR_MTRRfix16K_A0000 0x00000259
#define MSR_MTRRfix4K_C0000 0x00000268
#define MSR_MTRRfix4K_C8000 0x00000269
#define MSR_MTRRfix4K_D0000 0x0000026a
#define MSR_MTRRfix4K_D8000 0x0000026b
#define MSR_MTRRfix4K_E0000 0x0000026c
#define MSR_MTRRfix4K_E8000 0x0000026d
#define MSR_MTRRfix4K_F0000 0x0000026e
#define MSR_MTRRfix4K_F8000 0x0000026f
#define MSR_OFFCORE_RSP_0 0x000001a6
#define MSR_OFFCORE_RSP_1 0x000001a7
#define MSR_NHM_TURBO_RATIO_LIMIT 0x000001ad
#define MSR_IVT_TURBO_RATIO_LIMIT 0x000001ae
#define MSR_TURBO_RATIO_LIMIT 0x000001ad
#define MSR_TURBO_RATIO_LIMIT1 0x000001ae
#define MSR_TURBO_RATIO_LIMIT2 0x000001af
// MSR EFER bits
#define EFER_SCE (1 << 0)
#define EFER_LME (1 << 8)
#define EFER_LMA (1 << 10)
#define EFER_NXE (1 << 11)
#define EFER_SVME (1 << 12)
#define EFER_LMSLE (1 << 13)
#define EFER_FFXSR (1 << 14)
#define EFER_TCE (1 << 15)
typedef struct {
uint32_t feature1, feature2;
uint32_t feature3, feature4;
uint32_t addr_width;
} cpu_info_t;
extern cpu_info_t cpu_info;
// reset FS & GS registers to the default values
int reset_fsgs(int32_t core_id);
// determine the cpu features
int cpu_detection(void);
inline static uint32_t has_fpu(void) {
return (cpu_info.feature1 & CPU_FEATURE_FPU);
}
inline static uint32_t has_msr(void) {
return (cpu_info.feature1 & CPU_FEATURE_MSR);
}
inline static uint32_t has_mce(void) {
return (cpu_info.feature1 & CPU_FEATURE_MCE);
}
inline static uint32_t has_apic(void) {
return (cpu_info.feature1 & CPU_FEATURE_APIC);
}
inline static uint32_t has_fxsr(void) {
return (cpu_info.feature1 & CPU_FEATURE_FXSR);
}
inline static uint32_t has_clflush(void) {
return (cpu_info.feature1 & CPU_FEATURE_CLFLUSH);
}
inline static uint32_t has_sse(void) {
return (cpu_info.feature1 & CPU_FEATURE_SSE);
}
inline static uint32_t has_pat(void) {
return (cpu_info.feature1 & CPU_FEATURE_PAT);
}
inline static uint32_t has_sse2(void) {
return (cpu_info.feature1 & CPU_FEATURE_SSE2);
}
inline static uint32_t has_pge(void)
{
return (cpu_info.feature1 & CPU_FEATURE_PGE);
}
inline static uint32_t has_sep(void) {
return (cpu_info.feature1 & CPU_FEATURE_SEP);
}
inline static uint32_t has_movbe(void) {
return (cpu_info.feature2 & CPU_FEATURE_MOVBE);
}
inline static uint32_t has_fma(void) {
return (cpu_info.feature2 & CPU_FEATURE_FMA);
}
inline static uint32_t has_mwait(void) {
return (cpu_info.feature2 & CPU_FEATURE_MWAIT);
}
inline static uint32_t has_vmx(void) {
return (cpu_info.feature2 & CPU_FEATURE_VMX);
}
inline static uint32_t has_est(void)
{
return (cpu_info.feature2 & CPU_FEATURE_EST);
}
inline static uint32_t has_sse3(void) {
return (cpu_info.feature2 & CPU_FEATURE_SSE3);
}
inline static uint32_t has_dca(void) {
return (cpu_info.feature2 & CPU_FEATURE_DCA);
}
inline static uint32_t has_sse4_1(void) {
return (cpu_info.feature2 & CPU_FEATURE_SSE4_1);
}
inline static uint32_t has_sse4_2(void) {
return (cpu_info.feature2 & CPU_FEATURE_SSE4_2);
}
inline static uint32_t has_x2apic(void) {
return (cpu_info.feature2 & CPU_FEATURE_X2APIC);
}
inline static uint32_t has_xsave(void) {
return (cpu_info.feature2 & CPU_FEATURE_XSAVE);
}
inline static uint32_t has_osxsave(void) {
return (cpu_info.feature2 & CPU_FEATURE_OSXSAVE);
}
inline static uint32_t has_avx(void) {
return (cpu_info.feature2 & CPU_FEATURE_AVX);
}
inline static uint32_t has_rdrand(void) {
return (cpu_info.feature2 & CPU_FEATURE_RDRAND);
}
inline static uint32_t on_hypervisor(void) {
return (cpu_info.feature2 & CPU_FEATURE_HYPERVISOR);
}
inline static uint32_t has_nx(void)
{
return (cpu_info.feature3 & CPU_FEATURE_NX);
}
inline static uint32_t has_fsgsbase(void) {
return (cpu_info.feature4 & CPU_FEATURE_FSGSBASE);
}
inline static uint32_t has_sgx(void) {
return (cpu_info.feature4 & CPU_FEATURE_SGX);
}
inline static uint32_t has_avx2(void) {
return (cpu_info.feature4 & CPU_FEATURE_AVX2);
}
inline static uint32_t has_bmi1(void) {
return (cpu_info.feature4 & CPU_FEATURE_BMI1);
}
inline static uint32_t has_bmi2(void) {
return (cpu_info.feature4 & CPU_FEATURE_BMI2);
}
inline static uint32_t has_hle(void) {
return (cpu_info.feature4 & CPU_FEATURE_HLE);
}
inline static uint32_t has_cqm(void) {
return (cpu_info.feature4 & CPU_FEATURE_CQM);
}
inline static uint32_t has_rtm(void) {
return (cpu_info.feature4 & CPU_FEATURE_RTM);
}
inline static uint32_t has_clflushopt(void) {
return (cpu_info.feature4 & CPU_FEATURE_CLFLUSHOPT);
}
inline static uint32_t has_clwb(void) {
return (cpu_info.feature4 & CPU_FEATURE_CLWB);
}
inline static uint32_t has_avx512f(void) {
return (cpu_info.feature4 & CPU_FEATURE_AVX512F);
}
inline static uint32_t has_avx512pf(void) {
return (cpu_info.feature4 & CPU_FEATURE_AVX512PF);
}
inline static uint32_t has_avx512er(void) {
return (cpu_info.feature4 & CPU_FEATURE_AVX512ER);
}
inline static uint32_t has_avx512cd(void) {
return (cpu_info.feature4 & CPU_FEATURE_AVX512CD);
}
inline static uint32_t has_avx512bw(void) {
return (cpu_info.feature4 & CPU_FEATURE_AVX512BW);
}
inline static uint32_t has_avx512vl(void) {
return (cpu_info.feature4 & CPU_FEATURE_AVX512VL);
}
inline static uint32_t has_rdtscp(void) {
return (cpu_info.feature3 & CPU_FEATURE_RDTSCP);
}
/// clear TS bit in cr0
static inline void clts(void)
{
asm volatile("clts");
}
/** @brief Read a random number
*
* Returns a hardware generated random value.
*/
inline static uint32_t rdrand(void)
{
uint32_t val;
uint8_t rc;
do {
asm volatile("rdrand %0 ; setc %1" : "=r" (val), "=qm" (rc));
} while(rc == 0); // rc == 0: underflow
return val;
}
/** @brief Read out time stamp counter
*
* The rdtsc instruction puts a 64 bit time stamp value
* into EDX:EAX.
*
* @return The 64 bit time stamp value
*/
inline static uint64_t rdtsc(void)
{
uint32_t lo, hi;
asm volatile ("rdtsc" : "=a"(lo), "=d"(hi) :: "memory");
return ((uint64_t)hi << 32ULL | (uint64_t)lo);
}
/** @brief Read time stamp counter and processor id
*
* The rdtscp instruction puts a 64 bit trime stamp value
* into EDX:EAX and the processor id into ECX.
*
* @return The 64 bit time stamp value
*/
inline static uint64_t rdtscp(uint32_t* cpu_id)
{
uint32_t lo, hi;
uint32_t id;
asm volatile ("rdtscp" : "=a"(lo), "=c"(id), "=d"(hi));
if (cpu_id)
*cpu_id = id;
return ((uint64_t)hi << 32ULL | (uint64_t)lo);
}
inline static uint64_t get_rdtsc()
{
return has_rdtscp() ? rdtscp(NULL) : rdtsc();
}
/** @brief Read MSR
*
* The asm instruction rdmsr which stands for "Read from model specific register"
* is used here.
*
* @param msr The parameter which rdmsr assumes in ECX
* @return The value rdmsr put into EDX:EAX
*/
inline static uint64_t rdmsr(uint32_t msr) {
uint32_t low, high;
asm volatile ("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
return ((uint64_t)high << 32) | low;
}
/** @brief Write a value to a Machine-Specific Registers (MSR)
*
* The asm instruction wrmsr which stands for "Write to model specific register"
* is used here.
*
* @param msr The MSR identifier
* @param value Value, which will be store in the MSR
*/
inline static void wrmsr(uint32_t msr, uint64_t value)
{
uint32_t low = (uint32_t) value;
uint32_t high = (uint32_t) (value >> 32);
asm volatile("wrmsr" :: "c"(msr), "a"(low), "d"(high) : "memory");
}
/** @brief Read cr0 register
* @return cr0's value
*/
static inline size_t read_cr0(void) {
size_t val;
asm volatile("mov %%cr0, %0" : "=r"(val) :: "memory");
return val;
}
/** @brief Write a value into cr0 register
* @param val The value you want to write into cr0
*/
static inline void write_cr0(size_t val) {
asm volatile("mov %0, %%cr0" :: "r"(val) : "memory");
}
/** @brief Read cr2 register
* @return cr2's value
*/
static inline size_t read_cr2(void) {
size_t val;
asm volatile("mov %%cr2, %0" : "=r"(val) :: "memory");
return val;
}
/** @brief Write a value into cr2 register
* @param val The value you want to write into cr2
*/
static inline void write_cr2(size_t val) {
asm volatile("mov %0, %%cr2" :: "r"(val) : "memory");
}
/** @brief Read cr3 register
* @return cr3's value
*/
static inline size_t read_cr3(void) {
size_t val;
asm volatile("mov %%cr3, %0" : "=r"(val) :: "memory");
return val;
}
/** @brief Write a value into cr3 register
* @param val The value you want to write into cr3
*/
static inline void write_cr3(size_t val) {
asm volatile("mov %0, %%cr3" :: "r"(val) : "memory");
}
/** @brief Read cr4 register
* @return cr4's value
*/
static inline size_t read_cr4(void) {
size_t val;
asm volatile("mov %%cr4, %0" : "=r"(val) :: "memory");
return val;
}
/** @brief Write a value into cr4 register
* @param val The value you want to write into cr4
*/
static inline void write_cr4(size_t val) {
asm volatile("mov %0, %%cr4" :: "r"(val) : "memory");
}
static inline size_t read_cr8(void)
{
size_t val;
asm volatile("mov %%cr8, %0" : "=r" (val) :: "memory");
return val;
}
static inline void write_cr8(size_t val)
{
asm volatile("movq %0, %%cr8" :: "r" (val) : "memory");
}
typedef size_t (*func_read_fsgs)(void);
typedef void (*func_write_fsgs)(size_t);
extern func_read_fsgs readfs;
extern func_read_fsgs readgs;
extern func_write_fsgs writefs;
extern func_write_fsgs writegs;
/** @brife Get thread local storage
*
* Helper function to get the TLS of the current task
*/
static inline size_t get_tls(void)
{
return readfs();
}
/** @brief Set thread local storage
*
* Helper function to set the TLS of the current task
*/
static inline void set_tls(size_t addr)
{
writefs(addr);
}
/** @brief Flush cache
*
* The wbinvd asm instruction which stands for "Write back and invalidate"
* is used here
*/
inline static void flush_cache(void) {
asm volatile ("wbinvd" ::: "memory");
}
/** @brief Invalidate cache
*
* The invd asm instruction which invalidates cache without writing back
* is used here
*/
inline static void invalidate_cache(void) {
asm volatile ("invd" ::: "memory");
}
/// Send IPIs to the other core, which flush the TLB on the other cores.
int ipi_tlb_flush(void);
/** @brief Flush Translation Lookaside Buffer
*
* Just reads cr3 and writes the same value back into it.
*/
static inline void tlb_flush(uint8_t with_ipi)
{
size_t val = read_cr3();
if (val)
write_cr3(val);
#if MAX_CORES > 1
if (with_ipi)
ipi_tlb_flush();
#endif
}
/** @brief Flush a specific page entry in TLB
* @param addr The (virtual) address of the page to flush
*/
static inline void tlb_flush_one_page(size_t addr, uint8_t with_ipi)
{
asm volatile("invlpg (%0)" : : "r"(addr) : "memory");
#if MAX_CORES > 1
if (with_ipi)
ipi_tlb_flush();
#endif
}
/** @brief Invalidate cache
*
* The invd asm instruction which invalidates cache without writing back
* is used here
*/
inline static void invalid_cache(void) {
asm volatile ("invd");
}
static inline void monitor(const void *eax, unsigned long ecx, unsigned long edx)
{
asm volatile("monitor" :: "a" (eax), "c" (ecx), "d"(edx));
}
static inline void mwait(unsigned long eax, unsigned long ecx)
{
asm volatile("mwait" :: "a" (eax), "c" (ecx));
}
static inline void clflush(volatile void *addr)
{
asm volatile("clflush %0" : "+m" (*(volatile char *)addr));
}
static inline void clwb(volatile void *addr)
{
asm volatile("clwb %0" : "+m" (*(volatile char *)addr));
}
static inline void clflushopt(volatile void *addr)
{
asm volatile("clflushopt %0" : "+m" (*(volatile char *)addr));
}
#if 0
// the old way to serialize the store and load operations
static inline void mb(void) { asm volatile ("lock; addl $0,0(%%esp)" ::: "memory", "cc"); }
static inline void rmb(void) { asm volatile ("lock; addl $0,0(%%esp)" ::: "memory", "cc"); }
static inline void wmb(void) { asm volatile ("lock; addl $0,0(%%esp)" ::: "memory", "cc"); }
#else
/// Force strict CPU ordering, serializes load and store operations.
static inline void mb(void) { asm volatile("mfence":::"memory"); }
/// Force strict CPU ordering, serializes load operations.
static inline void rmb(void) { asm volatile("lfence":::"memory"); }
/// Force strict CPU ordering, serializes store operations.
static inline void wmb(void) { asm volatile("sfence" ::: "memory"); }
#endif
/** @brief Get Extended Control Register
*
* Reads the contents of the extended control register (XCR) specified
* in the ECX register.
*/
static inline uint64_t xgetbv(uint32_t index)
{
uint32_t edx, eax;
asm volatile ("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
return (uint64_t) eax | ((uint64_t) edx << 32ULL);
}
/** @brief Set Extended Control Register
*
* Writes a 64-bit value into the extended control register (XCR) specified
* in the ECX register.
*/
static inline void xsetbv(uint32_t index, uint64_t value)
{
uint32_t edx, eax;
edx = (uint32_t) (value >> 32ULL);
eax = (uint32_t) value;
asm volatile ("xsetbv" :: "a"(eax), "c"(index), "d"(edx));
}
/** @brief Read out CPU ID
*
* The cpuid asm-instruction does fill some information into registers and
* this function fills those register values into the given uint32_t vars.\n
*
* @param code Input parameter for the cpuid instruction. Take a look into the intel manual.
* @param a EAX value will be stores here
* @param b EBX value will be stores here
* @param c ECX value will be stores here
* @param d EDX value will be stores here
*/
inline static void cpuid(uint32_t code, uint32_t* a, uint32_t* b, uint32_t* c, uint32_t* d) {
asm volatile ("cpuid" : "=a"(*a), "=b"(*b), "=c"(*c), "=d"(*d) : "0"(code), "2"(*c));
}
/** @brief Read EFLAGS
*
* @return The EFLAGS value
*/
static inline uint64_t read_rflags(void)
{
uint64_t result;
asm volatile ("pushfq; pop %0" : "=r"(result));
return result;
}
/* For KVM hypercalls, a three-byte sequence of either the vmcall or the vmmcall
* instruction. The hypervisor may replace it with something else but only the
* instructions are guaranteed to be supported.
*
* Up to four arguments may be passed in rbx, rcx, rdx, and rsi respectively.
* The hypercall number should be placed in rax and the return value will be
* placed in rax. No other registers will be clobbered unless explicitly
* noted by the particular hypercall.
*/
inline static size_t vmcall0(int nr)
{
size_t res;
asm volatile ("vmcall" : "=a" (res): "a" (nr)
: "memory");
return res;
}
inline static size_t vmcall1(int nr, size_t arg0)
{
size_t res;
asm volatile ("vmcall" : "=a" (res): "a" (nr), "b"(arg0)
: "memory");
return res;
}
inline static size_t vmcall2(int nr, size_t arg0, size_t arg1)
{
size_t res;
asm volatile ("vmcall" : "=a" (res): "a" (nr), "b"(arg0), "c"(arg1)
: "memory");
return res;
}
inline static size_t vmcall3(int nr, size_t arg0, size_t arg1, size_t arg2)
{
size_t res;
asm volatile ("vmcall" : "=a" (res): "a" (nr), "b"(arg0), "c"(arg1), "d"(arg2)
: "memory");
return res;
}
inline static size_t vmcall4(int nr, size_t arg0, size_t arg1, size_t arg2, size_t arg3)
{
size_t res;
asm volatile ("vmcall" : "=a" (res): "a" (nr), "b"(arg0), "c"(arg1), "d"(arg2), "S"(arg3)
: "memory");
return res;
}
/** @brief search the first most significant bit
*
* @param i source operand
* @return
* - first bit, which is set in the source operand
* - invalid value, if not bit ist set
*/
static inline size_t msb(size_t i)
{
size_t ret;
if (!i)
return (sizeof(size_t)*8);
asm volatile ("bsr %1, %0" : "=r"(ret) : "r"(i) : "cc");
return ret;
}
/** @brief search the least significant bit
*
* @param i source operand
* @return
* - first bit, which is set in the source operand
* - invalid value, if not bit ist set
*/
static inline size_t lsb(size_t i)
{
size_t ret;
if (!i)
return (sizeof(size_t)*8);
asm volatile ("bsf %1, %0" : "=r"(ret) : "r"(i) : "cc");
return ret;
}
/** @brief: print current pstate
*/
void dump_pstate(void);
/// A one-instruction-do-nothing
#define NOP asm volatile ("nop")
/// The PAUSE instruction provides a hint to the processor that the code sequence is a spin-wait loop.
#define PAUSE asm volatile ("pause")
/// The HALT instruction stops the processor until the next interrupt arrives
#define HALT asm volatile ("hlt")
/** @brief Init several subsystems
*
* This function calls the initialization procedures for:
* - GDT
* - APIC
* - PCI [if configured]
*
* @return 0 in any case
*/
inline static int system_init(void)
{
gdt_install();
cpu_detection();
return 0;
}
/** @brief Detect and read out CPU frequency
*
* @return The CPU frequency in MHz
*/
uint32_t detect_cpu_frequency(void);
/** @brief Read out CPU frequency if detected before
*
* If you did not issue the detect_cpu_frequency() function before,
* this function will call it implicitly.
*
* @return The CPU frequency in MHz
*/
uint32_t get_cpu_frequency(void);
/** @brief Busywait an microseconds interval of time
* @param usecs The time to wait in microseconds
*/
void udelay(uint32_t usecs);
/// Register a task's TSS at GDT
static inline void register_task(void)
{
uint16_t sel = (apic_cpu_id()*2+7) << 3;
asm volatile ("ltr %%ax" : : "a"(sel));
}
/** @brief System calibration
*
* This procedure will detect the CPU frequency and calibrate the APIC timer.
*
* @return 0 in any case.
*/
inline static int system_calibration(void)
{
size_t cr0;
apic_init();
if (is_single_kernel() && !is_uhyve())
pci_init();
register_task();
// set task switched flag for the first FPU access
// => initialize the FPU
cr0 = read_cr0();
cr0 |= CR0_TS;
write_cr0(cr0);
irq_enable();
detect_cpu_frequency();
apic_calibration();
return 0;
}
#ifdef __cplusplus
}
#endif
#endif