mirror of
https://github.com/hermitcore/libhermit.git
synced 2025-03-09 00:00:03 +01:00
724 lines
19 KiB
C
724 lines
19 KiB
C
/*
|
|
* Copyright (c) 2010, Stefan Lankes, RWTH Aachen University
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <hermit/stddef.h>
|
|
#include <hermit/stdio.h>
|
|
#include <hermit/string.h>
|
|
#include <hermit/time.h>
|
|
#include <hermit/processor.h>
|
|
#include <hermit/tasks.h>
|
|
#include <hermit/logging.h>
|
|
#include <asm/multiboot.h>
|
|
|
|
/*
|
|
* Note that linker symbols are not variables, they have no memory allocated for
|
|
* maintaining a value, rather their address is their value.
|
|
*/
|
|
extern const void percore_start;
|
|
extern const void percore_end0;
|
|
extern const void percore_end;
|
|
extern void* Lpatch0;
|
|
extern void* Lpatch1;
|
|
extern void* Lpatch2;
|
|
extern atomic_int32_t current_boot_id;
|
|
|
|
extern void isrsyscall(void);
|
|
|
|
cpu_info_t cpu_info = { 0, 0, 0, 0, 0};
|
|
static char cpu_vendor[13] = {[0 ... 12] = 0};
|
|
static char cpu_brand[4*3*sizeof(uint32_t)+1] = {[0 ... 4*3*sizeof(uint32_t)] = 0};
|
|
extern uint32_t cpu_freq;
|
|
|
|
static void default_save_fpu_state(union fpu_state* state)
|
|
{
|
|
asm volatile ("fnsave %0; fwait" : "=m"((*state).fsave) :: "memory");
|
|
}
|
|
|
|
static void default_restore_fpu_state(union fpu_state* state)
|
|
{
|
|
asm volatile ("frstor %0" :: "m"(state->fsave));
|
|
}
|
|
|
|
static void default_fpu_init(union fpu_state* fpu)
|
|
{
|
|
i387_fsave_t *fp = &fpu->fsave;
|
|
|
|
memset(fp, 0x00, sizeof(i387_fsave_t));
|
|
fp->cwd = 0xffff037fu;
|
|
fp->swd = 0xffff0000u;
|
|
fp->twd = 0xffffffffu;
|
|
fp->fos = 0xffff0000u;
|
|
}
|
|
|
|
static void default_writefs(size_t fs)
|
|
{
|
|
wrmsr(MSR_FS_BASE, fs);
|
|
}
|
|
|
|
static size_t default_readfs(void)
|
|
{
|
|
return rdmsr(MSR_FS_BASE);
|
|
}
|
|
|
|
static void default_writegs(size_t gs)
|
|
{
|
|
wrmsr(MSR_GS_BASE, gs);
|
|
}
|
|
|
|
static size_t default_readgs(void)
|
|
{
|
|
return rdmsr(MSR_GS_BASE);
|
|
}
|
|
|
|
static void wrfsbase(size_t fs)
|
|
{
|
|
asm volatile ("wrfsbase %0" :: "r"(fs));
|
|
}
|
|
|
|
static size_t rdfsbase(void)
|
|
{
|
|
size_t ret = 0;
|
|
|
|
asm volatile ("rdfsbase %0" : "=r"(ret) :: "memory");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void wrgsbase(size_t gs)
|
|
{
|
|
asm volatile ("wrgsbase %0" :: "r"(gs));
|
|
}
|
|
|
|
static size_t rdgsbase(void)
|
|
{
|
|
size_t ret = 0;
|
|
|
|
asm volatile ("rdgsbase %0" : "=r"(ret) :: "memory");
|
|
|
|
return ret;
|
|
}
|
|
|
|
func_read_fsgs readfs = default_readfs;
|
|
func_read_fsgs readgs = default_readgs;
|
|
func_write_fsgs writefs = default_writefs;
|
|
func_write_fsgs writegs = default_writegs;
|
|
|
|
handle_fpu_state save_fpu_state = default_save_fpu_state;
|
|
handle_fpu_state restore_fpu_state = default_restore_fpu_state;
|
|
handle_fpu_state fpu_init = default_fpu_init;
|
|
|
|
static void save_fpu_state_fxsr(union fpu_state* state)
|
|
{
|
|
asm volatile ("fxsave %0; fnclex" : "=m"(state->fxsave) :: "memory");
|
|
}
|
|
|
|
static void restore_fpu_state_fxsr(union fpu_state* state)
|
|
{
|
|
asm volatile ("fxrstor %0" :: "m"(state->fxsave));
|
|
}
|
|
|
|
static void fpu_init_fxsr(union fpu_state* fpu)
|
|
{
|
|
i387_fxsave_t* fx = &fpu->fxsave;
|
|
|
|
memset(fx, 0x00, sizeof(i387_fxsave_t));
|
|
fx->cwd = 0x37f;
|
|
if (BUILTIN_EXPECT(has_sse(), 1))
|
|
fx->mxcsr = 0x1f80;
|
|
}
|
|
|
|
static void save_fpu_state_xsave(union fpu_state* state)
|
|
{
|
|
asm volatile ("xsaveq %0" : "=m"(state->xsave) : "a"(-1), "d"(-1) : "memory");
|
|
}
|
|
|
|
static void restore_fpu_state_xsave(union fpu_state* state)
|
|
{
|
|
asm volatile ("xrstorq %0" :: "m"(state->xsave), "a"(-1), "d"(-1));
|
|
}
|
|
|
|
static void fpu_init_xsave(union fpu_state* fpu)
|
|
{
|
|
xsave_t* xs = &fpu->xsave;
|
|
|
|
memset(xs, 0x00, sizeof(xsave_t));
|
|
xs->fxsave.cwd = 0x37f;
|
|
xs->fxsave.mxcsr = 0x1f80;
|
|
}
|
|
|
|
static uint32_t get_frequency_from_mbinfo(void)
|
|
{
|
|
if (mb_info && (mb_info->flags & MULTIBOOT_INFO_CMDLINE) && (cmdline))
|
|
{
|
|
// search in the command line for cpu frequency
|
|
char* found = strstr((char*) (size_t)cmdline, "-freq");
|
|
if (!found)
|
|
return 0;
|
|
|
|
return atoi(found+strlen("-freq"));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Try to determine the frequency from the CPU brand.
|
|
// Code is derived from the manual "Intel Processor
|
|
// Identification and the CPUID Instruction".
|
|
static uint32_t get_frequency_from_brand(void)
|
|
{
|
|
uint32_t index, multiplier = 0;
|
|
|
|
for(index=0; index<sizeof(cpu_brand)-2; index++)
|
|
{
|
|
if ((cpu_brand[index+1] == 'H') && (cpu_brand[index+2] == 'z'))
|
|
{
|
|
if (cpu_brand[index] == 'M')
|
|
multiplier = 1;
|
|
else if (cpu_brand[index] == 'G')
|
|
multiplier = 1000;
|
|
else if (cpu_brand[index] == 'T')
|
|
multiplier = 1000000;
|
|
}
|
|
|
|
if (multiplier > 0) {
|
|
uint32_t freq;
|
|
|
|
// Compute frequency (in MHz) from brand string
|
|
if (cpu_brand[index-3] == '.') { // If format is “x.xx”
|
|
freq = (uint32_t)(cpu_brand[index-4] - '0') * multiplier;
|
|
freq += (uint32_t)(cpu_brand[index-2] - '0') * (multiplier / 10);
|
|
freq += (uint32_t)(cpu_brand[index-1] - '0') * (multiplier / 100);
|
|
} else { // If format is xxxx
|
|
freq = (uint32_t)(cpu_brand[index-4] - '0') * 1000;
|
|
freq += (uint32_t)(cpu_brand[index-3] - '0') * 100;
|
|
freq += (uint32_t)(cpu_brand[index-2] - '0') * 10;
|
|
freq += (uint32_t)(cpu_brand[index-1] - '0');
|
|
freq *= multiplier;
|
|
}
|
|
|
|
return freq;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t detect_cpu_frequency(void)
|
|
{
|
|
uint64_t start, end, diff;
|
|
uint64_t ticks, old;
|
|
|
|
if (BUILTIN_EXPECT(cpu_freq > 0, 0))
|
|
return cpu_freq;
|
|
|
|
cpu_freq = get_frequency_from_mbinfo();
|
|
if (cpu_freq > 0)
|
|
return cpu_freq;
|
|
cpu_freq = get_frequency_from_brand();
|
|
if (cpu_freq > 0)
|
|
return cpu_freq;
|
|
|
|
old = get_clock_tick();
|
|
|
|
/* wait for the next time slice */
|
|
while((ticks = get_clock_tick()) - old == 0)
|
|
PAUSE;
|
|
|
|
rmb();
|
|
start = rdtsc();
|
|
/* wait 3 ticks to determine the frequency */
|
|
while(get_clock_tick() - ticks < 3)
|
|
PAUSE;
|
|
rmb();
|
|
end = rdtsc();
|
|
|
|
diff = end > start ? end - start : start - end;
|
|
cpu_freq = (uint32_t) ((TIMER_FREQ*diff) / (1000000ULL*3ULL));
|
|
|
|
return cpu_freq;
|
|
}
|
|
|
|
static int get_min_pstate(void)
|
|
{
|
|
uint64_t value;
|
|
|
|
value = rdmsr(MSR_PLATFORM_INFO);
|
|
|
|
return (value >> 40) & 0xFF;
|
|
}
|
|
|
|
static int get_max_pstate(void)
|
|
{
|
|
uint64_t value;
|
|
|
|
value = rdmsr(MSR_PLATFORM_INFO);
|
|
|
|
return (value >> 8) & 0xFF;
|
|
}
|
|
|
|
static uint8_t is_turbo = 0;
|
|
static int max_pstate, min_pstate;
|
|
static int turbo_pstate;
|
|
|
|
static int get_turbo_pstate(void)
|
|
{
|
|
uint64_t value;
|
|
int i, ret;
|
|
|
|
value = rdmsr(MSR_NHM_TURBO_RATIO_LIMIT);
|
|
i = get_max_pstate();
|
|
ret = (value) & 255;
|
|
if (ret < i)
|
|
ret = i;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void set_pstate(int pstate)
|
|
{
|
|
uint64_t v = pstate << 8;
|
|
if (is_turbo)
|
|
v |= (1ULL << 32);
|
|
wrmsr(MSR_IA32_PERF_CTL, v);
|
|
}
|
|
|
|
void dump_pstate(void)
|
|
{
|
|
if (!has_est())
|
|
return;
|
|
|
|
LOG_INFO("P-State 0x%x - 0x%x, turbo 0x%x\n", min_pstate, max_pstate, turbo_pstate);
|
|
LOG_INFO("PERF CTL 0x%llx\n", rdmsr(MSR_IA32_PERF_CTL));
|
|
LOG_INFO("PERF STATUS 0x%llx\n", rdmsr(MSR_IA32_PERF_STATUS));
|
|
}
|
|
|
|
static void check_est(uint8_t out)
|
|
{
|
|
uint32_t a=0, b=0, c=0, d=0;
|
|
uint64_t v;
|
|
|
|
if (!has_est())
|
|
return;
|
|
|
|
if (out)
|
|
LOG_INFO("System supports Enhanced SpeedStep Technology\n");
|
|
|
|
// enable Enhanced SpeedStep Technology
|
|
v = rdmsr(MSR_IA32_MISC_ENABLE);
|
|
if (!(v & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
|
|
if (out)
|
|
LOG_INFO("Linux doesn't enable Enhanced SpeedStep Technology\n");
|
|
return;
|
|
}
|
|
|
|
if (v & MSR_IA32_MISC_ENABLE_SPEEDSTEP_LOCK) {
|
|
if (out)
|
|
LOG_INFO("Enhanced SpeedStep Technology is locked\n");
|
|
return;
|
|
}
|
|
|
|
if (v & MSR_IA32_MISC_ENABLE_TURBO_DISABLE) {
|
|
if (out)
|
|
LOG_INFO("Turbo Mode is disabled\n");
|
|
} else {
|
|
if (out)
|
|
LOG_INFO("Turbo Mode is enabled\n");
|
|
is_turbo=1;
|
|
}
|
|
|
|
cpuid(6, &a, &b, &c, &d);
|
|
if (c & CPU_FEATURE_IDA) {
|
|
if (out)
|
|
LOG_INFO("Found P-State hardware coordination feedback capability bit\n");
|
|
}
|
|
|
|
if (c & CPU_FEATURE_HWP) {
|
|
if (out)
|
|
LOG_INFO("P-State HWP enabled\n");
|
|
}
|
|
|
|
if (c & CPU_FEATURE_HWP_EPP) {
|
|
// for maximum performance we have to clear BIAS
|
|
wrmsr(MSR_IA32_ENERGY_PERF_BIAS, 0);
|
|
if (out)
|
|
LOG_INFO("Found Performance and Energy Bias Hint support: 0x%llx\n", rdmsr(MSR_IA32_ENERGY_PERF_BIAS));
|
|
}
|
|
|
|
if (c & CPU_FEATURE_ARAT)
|
|
LOG_INFO("Timer runs with a constant rate!");
|
|
else
|
|
LOG_INFO("Timer doesn't run with a constant rate!");
|
|
|
|
#if 0
|
|
if (out) {
|
|
LOG_INFO("CPU features 6: 0x%x, 0x%x, 0x%x, 0x%x\n", a, b, c, d);
|
|
LOG_INFO("MSR_PLATFORM_INFO 0x%llx\n", rdmsr(MSR_PLATFORM_INFO));
|
|
}
|
|
#endif
|
|
|
|
max_pstate = get_max_pstate();
|
|
min_pstate = get_min_pstate();
|
|
turbo_pstate = get_turbo_pstate();
|
|
|
|
// set maximum p-state to get peak performance
|
|
if (is_turbo)
|
|
set_pstate(turbo_pstate);
|
|
else
|
|
set_pstate(max_pstate);
|
|
|
|
if (out)
|
|
dump_pstate();
|
|
|
|
return;
|
|
}
|
|
|
|
int reset_fsgs(int32_t core_id)
|
|
{
|
|
writefs(0);
|
|
#if MAX_CORES > 1
|
|
writegs(core_id * ((size_t) &percore_end0 - (size_t) &percore_start));
|
|
#else
|
|
writegs(0);
|
|
#endif
|
|
wrmsr(MSR_KERNEL_GS_BASE, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cpu_detection(void) {
|
|
uint64_t xcr0;
|
|
uint32_t a=0, b=0, c=0, d=0, level = 0, extended = 0;
|
|
uint32_t family, model, stepping;
|
|
size_t cr0, cr4;
|
|
uint8_t first_time = 0;
|
|
|
|
if (!cpu_info.feature1) {
|
|
first_time = 1;
|
|
|
|
cpuid(0, &level, (uint32_t*) cpu_vendor, (uint32_t*)(cpu_vendor+8), (uint32_t*)(cpu_vendor+4));
|
|
kprintf("cpuid level %d\n", level);
|
|
kprintf("CPU vendor: %s\n", cpu_vendor);
|
|
|
|
cpuid(1, &a, &b, &cpu_info.feature2, &cpu_info.feature1);
|
|
|
|
family = (a & 0x00000F00) >> 8;
|
|
model = (a & 0x000000F0) >> 4;
|
|
stepping = a & 0x0000000F;
|
|
if ((family == 6) && (model < 3) && (stepping < 3))
|
|
cpu_info.feature1 &= ~CPU_FEATURE_SEP;
|
|
|
|
cpuid(0x80000000, &extended, &b, &c, &d);
|
|
if (extended >= 0x80000001)
|
|
cpuid(0x80000001, &a, &b, &c, &cpu_info.feature3);
|
|
if (extended >= 0x80000004) {
|
|
uint32_t* bint = (uint32_t*) cpu_brand;
|
|
|
|
cpuid(0x80000002, bint+0, bint+1, bint+2, bint+3);
|
|
cpuid(0x80000003, bint+4, bint+5, bint+6, bint+7);
|
|
cpuid(0x80000004, bint+8, bint+9, bint+10, bint+11);
|
|
kprintf("Processor: %s\n", cpu_brand);
|
|
}
|
|
if (extended >= 0x80000008)
|
|
cpuid(0x80000008, &cpu_info.addr_width, &b, &c, &d);
|
|
|
|
/* Additional Intel-defined flags: level 0x00000007 */
|
|
if (level >= 0x00000007) {
|
|
a = b = c = d = 0;
|
|
cpuid(7, &a, &cpu_info.feature4, &c, &d);
|
|
}
|
|
}
|
|
|
|
if (first_time) {
|
|
kprintf("Paging features: %s%s%s%s%s%s%s%s\n",
|
|
(cpu_info.feature1 & CPU_FEATURE_PSE) ? "PSE (2/4Mb) " : "",
|
|
(cpu_info.feature1 & CPU_FEATURE_PAE) ? "PAE " : "",
|
|
(cpu_info.feature1 & CPU_FEATURE_PGE) ? "PGE " : "",
|
|
(cpu_info.feature1 & CPU_FEATURE_PAT) ? "PAT " : "",
|
|
(cpu_info.feature1 & CPU_FEATURE_PSE36) ? "PSE36 " : "",
|
|
(cpu_info.feature3 & CPU_FEATURE_NX) ? "NX " : "",
|
|
(cpu_info.feature3 & CPU_FEATURE_1GBHP) ? "PSE (1Gb) " : "",
|
|
(cpu_info.feature3 & CPU_FEATURE_LM) ? "LM" : "");
|
|
|
|
kprintf("Physical adress-width: %u bits\n", cpu_info.addr_width & 0xff);
|
|
kprintf("Linear adress-width: %u bits\n", (cpu_info.addr_width >> 8) & 0xff);
|
|
kprintf("Sysenter instruction: %s\n", (cpu_info.feature1 & CPU_FEATURE_SEP) ? "available" : "unavailable");
|
|
kprintf("Syscall instruction: %s\n", (cpu_info.feature3 & CPU_FEATURE_SYSCALL) ? "available" : "unavailable");
|
|
}
|
|
|
|
//TODO: add check for SMEP, PCE and SMAP
|
|
|
|
// be sure that AM, NE and MP is enabled
|
|
cr0 = read_cr0();
|
|
cr0 |= CR0_AM;
|
|
cr0 |= CR0_NE;
|
|
cr0 |= CR0_MP;
|
|
cr0 &= ~(CR0_CD|CR0_NW);
|
|
write_cr0(cr0);
|
|
|
|
cr4 = read_cr4();
|
|
if (has_fxsr())
|
|
cr4 |= CR4_OSFXSR; // set the OSFXSR bit
|
|
if (has_sse())
|
|
cr4 |= CR4_OSXMMEXCPT; // set the OSXMMEXCPT bit
|
|
if (has_xsave())
|
|
cr4 |= CR4_OSXSAVE;
|
|
if (has_pge())
|
|
cr4 |= CR4_PGE;
|
|
if (has_fsgsbase())
|
|
cr4 |= CR4_FSGSBASE;
|
|
if (has_mce())
|
|
cr4 |= CR4_MCE; // enable machine check exceptions
|
|
//if (has_vmx())
|
|
// cr4 |= CR4_VMXE;
|
|
cr4 &= ~(CR4_PCE|CR4_TSD); // disable performance monitoring counter
|
|
// clear TSD => every privilege level is able
|
|
// to use rdtsc
|
|
write_cr4(cr4);
|
|
|
|
|
|
if (first_time && has_fsgsbase())
|
|
{
|
|
readfs = rdfsbase;
|
|
readgs = rdgsbase;
|
|
writefs = wrfsbase;
|
|
writegs = wrgsbase;
|
|
|
|
// enable the usage of fsgsbase during a context switch
|
|
// => replace short jump with nops
|
|
// => see entry.asm
|
|
memset(&Lpatch0, 0x90, 2);
|
|
memset(&Lpatch1, 0x90, 2);
|
|
memset(&Lpatch2, 0x90, 2);
|
|
}
|
|
|
|
if (has_xsave())
|
|
{
|
|
xcr0 = xgetbv(0);
|
|
if (has_fpu())
|
|
xcr0 |= 0x1;
|
|
if (has_sse())
|
|
xcr0 |= 0x2;
|
|
if (has_avx())
|
|
xcr0 |= 0x4;
|
|
if (has_avx512f())
|
|
xcr0 |= 0xE0;
|
|
xsetbv(0, xcr0);
|
|
|
|
if (first_time)
|
|
kprintf("Set XCR0 to 0x%llx\n", xgetbv(0));
|
|
}
|
|
|
|
// libos => currently no support of syscalls
|
|
#if 0
|
|
if (cpu_info.feature3 & CPU_FEATURE_SYSCALL) {
|
|
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_LMA | EFER_LME | EFER_SCE);
|
|
wrmsr(MSR_STAR, (0x1BULL << 48) | (0x08ULL << 32));
|
|
wrmsr(MSR_LSTAR, (size_t) &isrsyscall);
|
|
// clear IF flag during an interrupt
|
|
wrmsr(MSR_SYSCALL_MASK, EFLAGS_TF|EFLAGS_DF|EFLAGS_IF|EFLAGS_AC|EFLAGS_NT);
|
|
} else kprintf("Processor doesn't support syscalls\n");
|
|
#endif
|
|
|
|
if (has_nx())
|
|
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
|
|
|
|
//if (has_vmx())
|
|
// wrmsr(MSR_IA32_FEATURE_CONTROL, rdmsr(MSR_IA32_FEATURE_CONTROL) | 0x5);
|
|
|
|
reset_fsgs(atomic_int32_read(¤t_boot_id));
|
|
|
|
LOG_INFO("Core %d set per_core offset to 0x%x\n", atomic_int32_read(¤t_boot_id), rdmsr(MSR_GS_BASE));
|
|
|
|
/* set core id to the current boot id */
|
|
set_per_core(__core_id, atomic_int32_read(¤t_boot_id));
|
|
LOG_INFO("Core id is set to %d\n", CORE_ID);
|
|
|
|
if (has_fpu()) {
|
|
if (first_time)
|
|
LOG_INFO("Found and initialized FPU!\n");
|
|
asm volatile ("fninit");
|
|
}
|
|
|
|
if (first_time) {
|
|
// reload feature list because we enabled OSXSAVE
|
|
a = b = c = d = 0;
|
|
cpuid(1, &a, &b, &cpu_info.feature2, &cpu_info.feature1);
|
|
|
|
LOG_INFO("CPU features: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
|
|
has_sse() ? "SSE " : "",
|
|
has_sse2() ? "SSE2 " : "",
|
|
has_sse3() ? "SSE3 " : "",
|
|
has_sse4_1() ? "SSE4.1 " : "",
|
|
has_sse4_2() ? "SSE4.2 " : "",
|
|
has_avx() ? "AVX " : "",
|
|
has_avx2() ? "AVX2 " : "",
|
|
has_rdrand() ? "RDRAND " : "",
|
|
has_fma() ? "FMA " : "",
|
|
has_movbe() ? "MOVBE " : "",
|
|
has_x2apic() ? "X2APIC " : "",
|
|
has_mce() ? "MCE " : "",
|
|
has_fpu() ? "FPU " : "",
|
|
has_fxsr() ? "FXSR " : "",
|
|
has_xsave() ? "XSAVE " : "",
|
|
has_osxsave() ? "OSXSAVE " : "",
|
|
has_vmx() ? "VMX " : "",
|
|
has_rdtscp() ? "RDTSCP " : "",
|
|
has_fsgsbase() ? "FSGSBASE " : "",
|
|
has_sgx() ? "SGX " : "",
|
|
has_mwait() ? "MWAIT " : "",
|
|
has_clflush() ? "CLFLUSH " : "",
|
|
has_bmi1() ? "BMI1 " : "",
|
|
has_bmi2() ? "BMI2 " : "",
|
|
has_dca() ? "DCA " : "",
|
|
has_rtm() ? "RTM " : "",
|
|
has_hle() ? "HLE " : "",
|
|
has_cqm() ? "CQM " : "",
|
|
has_clflushopt() ? "CLFLUSHOPT " : "",
|
|
has_clwb() ? "CLWB " : "",
|
|
has_avx512f() ? "AVX512F " : "",
|
|
has_avx512cd() ? "AVX512CD " : "",
|
|
has_avx512pf() ? "AVX512PF " : "",
|
|
has_avx512er() ? "AVX512ER " : "",
|
|
has_avx512vl() ? "AVX512VL " : "",
|
|
has_avx512bw() ? "AVX512BW " : "");
|
|
}
|
|
|
|
if (first_time && has_osxsave()) {
|
|
a = b = d = 0;
|
|
c = 2;
|
|
cpuid(0xd, &a, &b, &c, &d);
|
|
LOG_INFO("Ext_Save_Area_2: offset %d, size %d\n", b, a);
|
|
|
|
a = b = d = 0;
|
|
c = 3;
|
|
cpuid(0xd, &a, &b, &c, &d);
|
|
LOG_INFO("Ext_Save_Area_3: offset %d, size %d\n", b, a);
|
|
|
|
a = b = d = 0;
|
|
c = 4;
|
|
cpuid(0xd, &a, &b, &c, &d);
|
|
LOG_INFO("Ext_Save_Area_4: offset %d, size %d\n", b, a);
|
|
|
|
save_fpu_state = save_fpu_state_xsave;
|
|
restore_fpu_state = restore_fpu_state_xsave;
|
|
fpu_init = fpu_init_xsave;
|
|
} else if (first_time && has_fxsr()) {
|
|
save_fpu_state = save_fpu_state_fxsr;
|
|
restore_fpu_state = restore_fpu_state_fxsr;
|
|
fpu_init = fpu_init_fxsr;
|
|
}
|
|
|
|
// initialize Enhanced SpeedStep Technology
|
|
check_est(first_time);
|
|
|
|
if (first_time && on_hypervisor()) {
|
|
char vendor_id[13];
|
|
|
|
LOG_INFO("HermitCore is running on a hypervisor!\n");
|
|
|
|
cpuid(0x40000000, &a, (uint32_t*)vendor_id, (uint32_t*)(vendor_id+4), (uint32_t*)(vendor_id+8));
|
|
vendor_id[12] = '\0';
|
|
|
|
LOG_INFO("Hypervisor Vendor Id: %s\n", vendor_id);
|
|
LOG_INFO("Maximum input value for hypervisor: 0x%x\n", a);
|
|
}
|
|
|
|
|
|
if (first_time) {
|
|
LOG_INFO("CR0 0x%llx, CR4 0x%llx\n", read_cr0(), read_cr4());
|
|
LOG_INFO("size of xsave_t: %d\n", sizeof(xsave_t));
|
|
if (has_msr()) {
|
|
uint64_t msr;
|
|
|
|
LOG_INFO("IA32_MISC_ENABLE 0x%llx\n", rdmsr(MSR_IA32_MISC_ENABLE));
|
|
LOG_INFO("IA32_PLATFORM_ID 0x%llx\n", rdmsr(MSR_IA32_PLATFORM_ID));
|
|
if (has_pat()) {
|
|
msr = rdmsr(MSR_IA32_CR_PAT);
|
|
|
|
LOG_INFO("IA32_CR_PAT 0x%llx\n", msr);
|
|
LOG_INFO("PAT use per default %s\n", (msr & 0xF) == 0x6 ? "writeback." : "NO writeback!");
|
|
}
|
|
|
|
msr = rdmsr(MSR_MTRRdefType);
|
|
LOG_INFO("MTRR is %s.\n", (msr & (1 << 11)) ? "enabled" : "disabled");
|
|
LOG_INFO("Fixed-range MTRR is %s.\n", (msr & (1 << 10)) ? "enabled" : "disabled");
|
|
LOG_INFO("MTRR used per default %s\n", (msr & 0xFF) == 0x6 ? "writeback." : "NO writeback!");
|
|
#if 0
|
|
if (msr & (1 << 10)) {
|
|
LOG_INFO("MSR_MTRRfix64K_00000 0x%llx\n", rdmsr(MSR_MTRRfix64K_00000));
|
|
LOG_INFO("MSR_MTRRfix16K_80000 0x%llx\n", rdmsr(MSR_MTRRfix16K_80000));
|
|
LOG_INFO("MSR_MTRRfix16K_A0000 0x%llx\n", rdmsr(MSR_MTRRfix16K_A0000));
|
|
LOG_INFO("MSR_MTRRfix4K_C0000 0x%llx\n", rdmsr(MSR_MTRRfix4K_C0000));
|
|
LOG_INFO("MSR_MTRRfix4K_C8000 0x%llx\n", rdmsr(MSR_MTRRfix4K_C8000));
|
|
LOG_INFO("MSR_MTRRfix4K_D0000 0x%llx\n", rdmsr(MSR_MTRRfix4K_D0000));
|
|
LOG_INFO("MSR_MTRRfix4K_D8000 0x%llx\n", rdmsr(MSR_MTRRfix4K_D8000));
|
|
LOG_INFO("MSR_MTRRfix4K_E0000 0x%llx\n", rdmsr(MSR_MTRRfix4K_E0000));
|
|
LOG_INFO("MSR_MTRRfix4K_E8000 0x%llx\n", rdmsr(MSR_MTRRfix4K_E8000));
|
|
LOG_INFO("MSR_MTRRfix4K_F0000 0x%llx\n", rdmsr(MSR_MTRRfix4K_F0000));
|
|
LOG_INFO("MSR_MTRRfix4K_F8000 0x%llx\n", rdmsr(MSR_MTRRfix4K_F8000));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t get_cpu_frequency(void)
|
|
{
|
|
if (cpu_freq > 0)
|
|
return cpu_freq;
|
|
|
|
return detect_cpu_frequency();
|
|
}
|
|
|
|
void udelay(uint32_t usecs)
|
|
{
|
|
if (has_rdtscp()) {
|
|
uint64_t diff, end, start = rdtscp(NULL);
|
|
uint64_t deadline = get_cpu_frequency() * usecs;
|
|
|
|
do {
|
|
end = rdtscp(NULL);
|
|
rmb();
|
|
diff = end > start ? end - start : start - end;
|
|
if ((diff < deadline) && (deadline - diff > 50000))
|
|
check_workqueues();
|
|
} while(diff < deadline);
|
|
} else {
|
|
uint64_t diff, end, start = rdtsc();
|
|
uint64_t deadline = get_cpu_frequency() * usecs;
|
|
|
|
do {
|
|
mb();
|
|
end = rdtsc();
|
|
diff = end > start ? end - start : start - end;
|
|
if ((diff < deadline) && (deadline - diff > 50000))
|
|
check_workqueues();
|
|
} while(diff < deadline);
|
|
}
|
|
}
|