1
0
Fork 0
mirror of https://github.com/hermitcore/libhermit.git synced 2025-03-30 00:00:15 +01:00
libhermit/hermit/kernel/tasks.c

879 lines
25 KiB
C

/*
* Copyright (c) 2010, Stefan Lankes, RWTH Aachen University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <hermit/stddef.h>
#include <hermit/stdlib.h>
#include <hermit/stdio.h>
#include <hermit/string.h>
#include <hermit/tasks.h>
#include <hermit/tasks_types.h>
#include <hermit/spinlock.h>
#include <hermit/time.h>
#include <hermit/errno.h>
#include <hermit/syscall.h>
#include <hermit/memory.h>
#include <asm/tss.h>
#include <asm/processor.h>
/*
* Note that linker symbols are not variables, they have no memory allocated for
* maintaining a value, rather their address is their value.
*/
extern const void tls_start;
extern const void tls_end;
#define TLS_OFFSET 8
/** @brief Array of task structures (aka PCB)
*
* A task's id will be its position in this array.
*/
static task_t task_table[MAX_TASKS] = { \
[0] = {0, TASK_IDLE, 0, NULL, NULL, NULL, TASK_DEFAULT_FLAGS, 0, 0, 0, NULL, 0, NULL, NULL, 0, 0, 0}, \
[1 ... MAX_TASKS-1] = {0, TASK_INVALID, 0, NULL, NULL, NULL, TASK_DEFAULT_FLAGS, 0, 0, 0, NULL, 0, NULL, NULL, 0, 0, 0}};
static spinlock_irqsave_t table_lock = SPINLOCK_IRQSAVE_INIT;
#if MAX_CORES > 1
static readyqueues_t readyqueues[MAX_CORES] = { \
[0 ... MAX_CORES-1] = {NULL, NULL, 0, 0, 0, {[0 ... MAX_PRIO-2] = {NULL, NULL}}, {NULL, NULL}, SPINLOCK_IRQSAVE_INIT}};
#else
static readyqueues_t readyqueues[1] = {[0] = {task_table+0, NULL, 0, 0, 0, {[0 ... MAX_PRIO-2] = {NULL, NULL}}, {NULL, NULL}, SPINLOCK_IRQSAVE_INIT}};
#endif
DEFINE_PER_CORE(task_t*, current_task, task_table+0);
DEFINE_PER_CORE(char*, kernel_stack, NULL);
#if MAX_CORES > 1
DEFINE_PER_CORE(uint32_t, __core_id, 0);
#endif
extern const void boot_stack;
extern const void boot_ist;
/** @brief helper function for the assembly code to determine the current task
* @return Pointer to the task_t structure of current task
*/
task_t* get_current_task(void)
{
return per_core(current_task);
}
void check_scheduling(void)
{
if (!is_irq_enabled())
return;
if (msb(readyqueues[CORE_ID].prio_bitmap) > per_core(current_task)->prio)
reschedule();
}
uint32_t get_highest_priority(void)
{
uint32_t prio = msb(readyqueues[CORE_ID].prio_bitmap);
if (prio > MAX_PRIO)
return 0;
return prio;
}
int multitasking_init(void)
{
uint32_t core_id = CORE_ID;
if (BUILTIN_EXPECT(task_table[0].status != TASK_IDLE, 0)) {
kputs("Task 0 is not an idle task\n");
return -ENOMEM;
}
task_table[0].prio = IDLE_PRIO;
task_table[0].stack = (char*) ((size_t)&boot_stack + core_id * KERNEL_STACK_SIZE);
task_table[0].ist_addr = (char*)&boot_ist;
set_per_core(kernel_stack, task_table[0].stack + KERNEL_STACK_SIZE - 0x10);
set_per_core(current_task, task_table+0);
set_tss((size_t) task_table[0].stack + KERNEL_STACK_SIZE - 0x10, (size_t) task_table[0].ist_addr + KERNEL_STACK_SIZE - 0x10);
readyqueues[core_id].idle = task_table+0;
return 0;
}
/* interrupt handler to save / restore the FPU context */
void fpu_handler(struct state *s)
{
task_t* task = per_core(current_task);
uint32_t core_id = CORE_ID;
clts(); // clear the TS flag of cr0
task->flags |= TASK_FPU_USED;
if (!(task->flags & TASK_FPU_INIT)) {
// use the FPU at the first time => Initialize FPU
fpu_init(&task->fpu);
task->flags |= TASK_FPU_INIT;
}
if (readyqueues[core_id].fpu_owner == task->id)
return;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
// did another already use the the FPU? => save FPU state
if (readyqueues[core_id].fpu_owner) {
save_fpu_state(&(task_table[readyqueues[core_id].fpu_owner].fpu));
task_table[readyqueues[core_id].fpu_owner].flags &= ~TASK_FPU_USED;
}
readyqueues[core_id].fpu_owner = task->id;
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
restore_fpu_state(&task->fpu);
}
int set_idle_task(void)
{
uint32_t i, core_id = CORE_ID;
int ret = -ENOMEM;
spinlock_irqsave_lock(&table_lock);
for(i=0; i<MAX_TASKS; i++) {
if (task_table[i].status == TASK_INVALID) {
task_table[i].id = i;
task_table[i].status = TASK_IDLE;
task_table[i].last_core = core_id;
task_table[i].last_stack_pointer = NULL;
task_table[i].stack = (char*) ((size_t)&boot_stack + core_id * KERNEL_STACK_SIZE);
task_table[i].ist_addr = create_stack(KERNEL_STACK_SIZE);
set_per_core(kernel_stack, task_table[i].stack + KERNEL_STACK_SIZE - 0x10);
task_table[i].prio = IDLE_PRIO;
task_table[i].heap = NULL;
readyqueues[core_id].idle = task_table+i;
set_per_core(current_task, readyqueues[core_id].idle);
ret = 0;
break;
}
}
spinlock_irqsave_unlock(&table_lock);
return ret;
}
int init_tls(void)
{
task_t* curr_task = per_core(current_task);
// do we have a thread local storage?
if (((size_t) &tls_end - (size_t) &tls_start) > 0) {
char* tls_addr = NULL;
curr_task->tls_addr = (size_t) &tls_start;
curr_task->tls_size = (size_t) &tls_end - (size_t) &tls_start;
tls_addr = kmalloc(curr_task->tls_size + TLS_OFFSET);
if (BUILTIN_EXPECT(!tls_addr, 0)) {
kprintf("load_task: heap is missing!\n");
return -ENOMEM;
}
memcpy((void*) (tls_addr+TLS_OFFSET), (void*) curr_task->tls_addr, curr_task->tls_size);
// set fs register to the TLS segment
set_tls((size_t) tls_addr + curr_task->tls_size + TLS_OFFSET);
kprintf("TLS of task %d on core %d starts at 0x%zx (TLS)\n", curr_task->id, CORE_ID, tls_addr + TLS_OFFSET);
} else set_tls(0); // no TLS => clear fs register
return 0;
}
void finish_task_switch(void)
{
task_t* old;
uint8_t prio;
const uint32_t core_id = CORE_ID;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
if ((old = readyqueues[core_id].old_task) != NULL) {
if (old->status == TASK_FINISHED) {
/* cleanup task */
if (old->stack) {
kprintf("Release stack at 0x%zx\n", old->stack);
destroy_stack(old->stack, DEFAULT_STACK_SIZE);
old->stack = NULL;
}
if (!old->parent && old->heap) {
kfree(old->heap);
old->heap = NULL;
}
if (old->ist_addr) {
destroy_stack(old->ist_addr, KERNEL_STACK_SIZE);
old->ist_addr = NULL;
}
old->last_stack_pointer = NULL;
readyqueues[core_id].old_task = NULL;
if (readyqueues[core_id].fpu_owner == old->id)
readyqueues[core_id].fpu_owner = 0;
/* signalizes that this task could be reused */
old->status = TASK_INVALID;
} else {
prio = old->prio;
if (!readyqueues[core_id].queue[prio-1].first) {
old->next = old->prev = NULL;
readyqueues[core_id].queue[prio-1].first = readyqueues[core_id].queue[prio-1].last = old;
} else {
old->next = NULL;
old->prev = readyqueues[core_id].queue[prio-1].last;
readyqueues[core_id].queue[prio-1].last->next = old;
readyqueues[core_id].queue[prio-1].last = old;
}
readyqueues[core_id].old_task = NULL;
readyqueues[core_id].prio_bitmap |= (1 << prio);
}
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
}
/** @brief A procedure to be called by
* procedures which are called by exiting tasks. */
void NORETURN do_exit(int arg)
{
task_t* curr_task = per_core(current_task);
void* tls_addr = NULL;
const uint32_t core_id = CORE_ID;
kprintf("Terminate task: %u, return value %d\n", curr_task->id, arg);
uint8_t flags = irq_nested_disable();
// decrease the number of active tasks
spinlock_irqsave_lock(&readyqueues[core_id].lock);
readyqueues[core_id].nr_tasks--;
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
// do we need to release the TLS?
tls_addr = (void*)get_tls();
if (tls_addr) {
kprintf("Release TLS at %p\n", (char*)tls_addr - curr_task->tls_size);
kfree((char*)tls_addr - curr_task->tls_size - TLS_OFFSET);
}
curr_task->status = TASK_FINISHED;
reschedule();
irq_nested_enable(flags);
kprintf("Kernel panic: scheduler found no valid task\n");
while(1) {
HALT;
}
}
/** @brief A procedure to be called by kernel tasks */
void NORETURN leave_kernel_task(void) {
int result;
result = 0; //get_return_value();
do_exit(result);
}
/** @brief Aborting a task is like exiting it with result -1 */
void NORETURN do_abort(void) {
do_exit(-1);
}
uint32_t get_next_core_id(void)
{
uint32_t i;
static uint32_t core_id = MAX_CORES;
if (core_id >= MAX_CORES)
core_id = CORE_ID;
// we assume OpenMP applications
// => number of threads is (normaly) equal to the number of cores
// => search next available core
for(i=0, core_id=(core_id+1)%MAX_CORES; i<MAX_CORES; i++, core_id=(core_id+1)%MAX_CORES)
if (readyqueues[core_id].idle)
break;
return core_id;
}
int clone_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio)
{
int ret = -EINVAL;
uint32_t i;
void* stack = NULL;
void* ist = NULL;
task_t* curr_task;
uint32_t core_id;
if (BUILTIN_EXPECT(!ep, 0))
return -EINVAL;
if (BUILTIN_EXPECT(prio == IDLE_PRIO, 0))
return -EINVAL;
if (BUILTIN_EXPECT(prio > MAX_PRIO, 0))
return -EINVAL;
curr_task = per_core(current_task);
stack = create_stack(DEFAULT_STACK_SIZE);
if (BUILTIN_EXPECT(!stack, 0))
return -ENOMEM;
ist = create_stack(KERNEL_STACK_SIZE);
if (BUILTIN_EXPECT(!ist, 0)) {
destroy_stack(stack, DEFAULT_STACK_SIZE);
return -ENOMEM;
}
spinlock_irqsave_lock(&table_lock);
core_id = get_next_core_id();
if ((core_id >= MAX_CORES) || !readyqueues[core_id].idle)
core_id = CORE_ID;
for(i=0; i<MAX_TASKS; i++) {
if (task_table[i].status == TASK_INVALID) {
task_table[i].id = i;
task_table[i].status = TASK_READY;
task_table[i].last_core = 0;
task_table[i].last_stack_pointer = NULL;
task_table[i].stack = stack;
task_table[i].prio = prio;
task_table[i].heap = curr_task->heap;
task_table[i].start_tick = get_clock_tick();
task_table[i].parent = curr_task->id;
task_table[i].tls_addr = curr_task->tls_addr;
task_table[i].tls_size = curr_task->tls_size;
task_table[i].ist_addr = ist;
task_table[i].lwip_err = 0;
if (id)
*id = i;
ret = create_default_frame(task_table+i, ep, arg, core_id);
if (ret)
goto out;
// add task in the readyqueues
spinlock_irqsave_lock(&readyqueues[core_id].lock);
readyqueues[core_id].prio_bitmap |= (1 << prio);
readyqueues[core_id].nr_tasks++;
if (!readyqueues[core_id].queue[prio-1].first) {
task_table[i].next = task_table[i].prev = NULL;
readyqueues[core_id].queue[prio-1].first = task_table+i;
readyqueues[core_id].queue[prio-1].last = task_table+i;
} else {
task_table[i].prev = readyqueues[core_id].queue[prio-1].last;
task_table[i].next = NULL;
readyqueues[core_id].queue[prio-1].last->next = task_table+i;
readyqueues[core_id].queue[prio-1].last = task_table+i;
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
break;
}
}
spinlock_irqsave_unlock(&table_lock);
if (!ret)
kprintf("start new thread %d on core %d with stack address %p\n", i, core_id, stack);
out:
if (ret) {
destroy_stack(stack, DEFAULT_STACK_SIZE);
destroy_stack(ist, KERNEL_STACK_SIZE);
}
#if 0
if (core_id != CORE_ID)
apic_send_ipi(core_id, 121);
#endif
return ret;
}
int create_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio, uint32_t core_id)
{
int ret = -ENOMEM;
uint32_t i;
void* stack = NULL;
void* ist = NULL;
void* counter = NULL;
if (BUILTIN_EXPECT(!ep, 0))
return -EINVAL;
if (BUILTIN_EXPECT(prio == IDLE_PRIO, 0))
return -EINVAL;
if (BUILTIN_EXPECT(prio > MAX_PRIO, 0))
return -EINVAL;
if (BUILTIN_EXPECT(core_id >= MAX_CORES, 0))
return -EINVAL;
if (BUILTIN_EXPECT(!readyqueues[core_id].idle, 0))
return -EINVAL;
stack = create_stack(DEFAULT_STACK_SIZE);
if (BUILTIN_EXPECT(!stack, 0))
return -ENOMEM;
ist = create_stack(KERNEL_STACK_SIZE);
if (BUILTIN_EXPECT(!ist, 0)) {
destroy_stack(stack, DEFAULT_STACK_SIZE);
return -ENOMEM;
}
counter = kmalloc(sizeof(atomic_int64_t));
if (BUILTIN_EXPECT(!counter, 0)) {
destroy_stack(stack, KERNEL_STACK_SIZE);
destroy_stack(stack, DEFAULT_STACK_SIZE);
return -ENOMEM;
}
atomic_int64_set((atomic_int64_t*) counter, 0);
spinlock_irqsave_lock(&table_lock);
for(i=0; i<MAX_TASKS; i++) {
if (task_table[i].status == TASK_INVALID) {
task_table[i].id = i;
task_table[i].status = TASK_READY;
task_table[i].last_core = 0;
task_table[i].last_stack_pointer = NULL;
task_table[i].stack = stack;
task_table[i].prio = prio;
task_table[i].heap = NULL;
task_table[i].start_tick = get_clock_tick();
task_table[i].parent = 0;
task_table[i].ist_addr = ist;
task_table[i].tls_addr = 0;
task_table[i].tls_size = 0;
task_table[i].lwip_err = 0;
if (id)
*id = i;
//kprintf("Create task %d with pml4 at 0x%llx\n", i, task_table[i].page_map);
ret = create_default_frame(task_table+i, ep, arg, core_id);
if (ret)
goto out;
// add task in the readyqueues
spinlock_irqsave_lock(&readyqueues[core_id].lock);
readyqueues[core_id].prio_bitmap |= (1 << prio);
readyqueues[core_id].nr_tasks++;
if (!readyqueues[core_id].queue[prio-1].first) {
task_table[i].next = task_table[i].prev = NULL;
readyqueues[core_id].queue[prio-1].first = task_table+i;
readyqueues[core_id].queue[prio-1].last = task_table+i;
} else {
task_table[i].prev = readyqueues[core_id].queue[prio-1].last;
task_table[i].next = NULL;
readyqueues[core_id].queue[prio-1].last->next = task_table+i;
readyqueues[core_id].queue[prio-1].last = task_table+i;
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
break;
}
}
if (!ret)
kprintf("start new task %d on core %d with stack address %p\n", i, core_id, stack);
out:
spinlock_irqsave_unlock(&table_lock);
if (ret) {
destroy_stack(stack, DEFAULT_STACK_SIZE);
destroy_stack(ist, KERNEL_STACK_SIZE);
kfree(counter);
}
#if 0
if (core_id != CORE_ID)
apic_send_ipi(core_id, 121);
#endif
return ret;
}
int create_kernel_task_on_core(tid_t* id, entry_point_t ep, void* args, uint8_t prio, uint32_t core_id)
{
if (prio > MAX_PRIO)
prio = NORMAL_PRIO;
return create_task(id, ep, args, prio, core_id);
}
int create_kernel_task(tid_t* id, entry_point_t ep, void* args, uint8_t prio)
{
if (prio > MAX_PRIO)
prio = NORMAL_PRIO;
return create_task(id, ep, args, prio, CORE_ID);
}
/** @brief Wakeup a blocked task
* @param id The task's tid_t structure
* @return
* - 0 on success
* - -EINVAL (-22) on failure
*/
int wakeup_task(tid_t id)
{
task_t* task;
uint32_t core_id, prio;
int ret = -EINVAL;
uint8_t flags;
flags = irq_nested_disable();
task = task_table + id;
prio = task->prio;
core_id = task->last_core;
if (task->status == TASK_BLOCKED) {
task->status = TASK_READY;
ret = 0;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
// increase the number of ready tasks
readyqueues[core_id].nr_tasks++;
// do we need to remove from timer queue?
if (task->flags & TASK_TIMER) {
task->flags &= ~TASK_TIMER;
if (task->prev)
task->prev->next = task->next;
if (task->next)
task->next->prev = task->prev;
if (readyqueues[core_id].timers.first == task)
readyqueues[core_id].timers.first = task->next;
if (readyqueues[core_id].timers.last == task)
readyqueues[core_id].timers.last = task->prev;
}
// add task to the runqueue
if (!readyqueues[core_id].queue[prio-1].last) {
readyqueues[core_id].queue[prio-1].last = readyqueues[core_id].queue[prio-1].first = task;
task->next = task->prev = NULL;
readyqueues[core_id].prio_bitmap |= (1 << prio);
} else {
task->prev = readyqueues[core_id].queue[prio-1].last;
task->next = NULL;
readyqueues[core_id].queue[prio-1].last->next = task;
readyqueues[core_id].queue[prio-1].last = task;
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
#if 0 //def DYNAMIC_TICKS
// send IPI to be sure that the scheuler recognize the new task
if (core_id != CORE_ID)
apic_send_ipi(core_id, 121);
#endif
}
irq_nested_enable(flags);
return ret;
}
/** @brief Block current task
*
* The current task's status will be changed to TASK_BLOCKED
*
* @return
* - 0 on success
* - -EINVAL (-22) on failure
*/
int block_current_task(void)
{
task_t* curr_task;
tid_t id;
uint32_t prio, core_id;
int ret = -EINVAL;
uint8_t flags;
flags = irq_nested_disable();
curr_task = per_core(current_task);
id = curr_task->id;
prio = curr_task->prio;
core_id = CORE_ID;
if (task_table[id].status == TASK_RUNNING) {
task_table[id].status = TASK_BLOCKED;
ret = 0;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
// reduce the number of ready tasks
readyqueues[core_id].nr_tasks--;
// remove task from queue
if (task_table[id].prev)
task_table[id].prev->next = task_table[id].next;
if (task_table[id].next)
task_table[id].next->prev = task_table[id].prev;
if (readyqueues[core_id].queue[prio-1].first == task_table+id)
readyqueues[core_id].queue[prio-1].first = task_table[id].next;
if (readyqueues[core_id].queue[prio-1].last == task_table+id) {
readyqueues[core_id].queue[prio-1].last = task_table[id].prev;
if (!readyqueues[core_id].queue[prio-1].last)
readyqueues[core_id].queue[prio-1].last = readyqueues[core_id].queue[prio-1].first;
}
// No valid task in queue => update prio_bitmap
if (!readyqueues[core_id].queue[prio-1].first)
readyqueues[core_id].prio_bitmap &= ~(1 << prio);
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
}
irq_nested_enable(flags);
return ret;
}
int set_timer(uint64_t deadline)
{
task_t* curr_task;
task_t* tmp;
uint32_t core_id, prio;
uint32_t flags;
int ret = -EINVAL;
flags = irq_nested_disable();
curr_task = per_core(current_task);
prio = curr_task->prio;
core_id = CORE_ID;
if (curr_task->status == TASK_RUNNING) {
curr_task->status = TASK_BLOCKED;
curr_task->timeout = deadline;
curr_task->flags |= TASK_TIMER;
ret = 0;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
// reduce the number of ready tasks
readyqueues[core_id].nr_tasks--;
// remove task from queue
if (curr_task->prev)
curr_task->prev->next = curr_task->next;
if (curr_task->next)
curr_task->next->prev = curr_task->prev;
if (readyqueues[core_id].queue[prio-1].first == curr_task)
readyqueues[core_id].queue[prio-1].first = curr_task->next;
if (readyqueues[core_id].queue[prio-1].last == curr_task) {
readyqueues[core_id].queue[prio-1].last = curr_task->prev;
if (!readyqueues[core_id].queue[prio-1].last)
readyqueues[core_id].queue[prio-1].last = readyqueues[core_id].queue[prio-1].first;
}
// No valid task in queue => update prio_bitmap
if (!readyqueues[core_id].queue[prio-1].first)
readyqueues[core_id].prio_bitmap &= ~(1 << prio);
// add task to the timer queue
tmp = readyqueues[core_id].timers.first;
if (!tmp) {
readyqueues[core_id].timers.first = readyqueues[core_id].timers.last = curr_task;
curr_task->prev = curr_task->next = NULL;
#ifdef DYNAMIC_TICKS
timer_deadline(deadline-get_clock_tick());
#endif
} else {
while(tmp && (deadline >= tmp->timeout))
tmp = tmp->next;
if (!tmp) {
curr_task->next = NULL;
curr_task->prev = readyqueues[core_id].timers.last;
if (readyqueues[core_id].timers.last)
readyqueues[core_id].timers.last->next = curr_task;
readyqueues[core_id].timers.last = curr_task;
// obsolete lines...
//if (!readyqueues[core_id].timers.first)
// readyqueues[core_id].timers.first = curr_task;
} else {
curr_task->prev = tmp->prev;
curr_task->next = tmp;
tmp->prev = curr_task;
if (curr_task->prev)
curr_task->prev->next = curr_task;
if (readyqueues[core_id].timers.first == tmp) {
readyqueues[core_id].timers.first = curr_task;
#ifdef DYNAMIC_TICKS
timer_deadline(deadline-get_clock_tick());
#endif
}
}
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
} else kprintf("Task is already blocked. No timer will be set!\n");
irq_nested_enable(flags);
return ret;
}
void check_timers(void)
{
uint32_t core_id = CORE_ID;
uint32_t prio;
uint64_t current_tick;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
// check timers
current_tick = get_clock_tick();
while (readyqueues[core_id].timers.first && readyqueues[core_id].timers.first->timeout <= current_tick)
{
task_t* task = readyqueues[core_id].timers.first;
// remove timer from queue
readyqueues[core_id].timers.first = readyqueues[core_id].timers.first->next;
if (readyqueues[core_id].timers.first) {
readyqueues[core_id].timers.first->prev = NULL;
#ifdef DYNAMIC_TICKS
if (readyqueues[core_id].timers.first->timeout > get_clock_tick())
timer_deadline(readyqueues[core_id].timers.first->timeout-current_tick);
#endif
} else readyqueues[core_id].timers.last = NULL;
task->flags &= ~TASK_TIMER;
// wakeup task
if (task->status == TASK_BLOCKED) {
task->status = TASK_READY;
prio = task->prio;
// increase the number of ready tasks
readyqueues[core_id].nr_tasks++;
// add task to the runqueue
if (!readyqueues[core_id].queue[prio-1].first) {
readyqueues[core_id].queue[prio-1].last = readyqueues[core_id].queue[prio-1].first = task;
task->next = task->prev = NULL;
readyqueues[core_id].prio_bitmap |= (1 << prio);
} else {
task->prev = readyqueues[core_id].queue[prio-1].last;
task->next = NULL;
readyqueues[core_id].queue[prio-1].last->next = task;
readyqueues[core_id].queue[prio-1].last = task;
}
}
}
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
}
size_t** scheduler(void)
{
task_t* orig_task;
task_t* curr_task;
const int32_t core_id = CORE_ID;
uint32_t prio;
orig_task = curr_task = per_core(current_task);
curr_task->last_core = core_id;
spinlock_irqsave_lock(&readyqueues[core_id].lock);
/* signalizes that this task could be realized */
if (curr_task->status == TASK_FINISHED)
readyqueues[core_id].old_task = curr_task;
else readyqueues[core_id].old_task = NULL; // reset old task
// do we receive a shutdown IPI => only the idle task should get the core
if (BUILTIN_EXPECT(go_down, 0)) {
if (curr_task->status == TASK_IDLE)
goto get_task_out;
curr_task = readyqueues[core_id].idle;
set_per_core(current_task, curr_task);
}
prio = msb(readyqueues[core_id].prio_bitmap); // determines highest priority
if (prio > MAX_PRIO) {
if ((curr_task->status == TASK_RUNNING) || (curr_task->status == TASK_IDLE))
goto get_task_out;
curr_task = readyqueues[core_id].idle;
set_per_core(current_task, curr_task);
} else {
// Does the current task have an higher priority? => no task switch
if ((curr_task->prio > prio) && (curr_task->status == TASK_RUNNING))
goto get_task_out;
if (curr_task->status == TASK_RUNNING) {
curr_task->status = TASK_READY;
readyqueues[core_id].old_task = curr_task;
}
curr_task = readyqueues[core_id].queue[prio-1].first;
set_per_core(current_task, curr_task);
if (BUILTIN_EXPECT(curr_task->status == TASK_INVALID, 0)) {
kprintf("Upps!!!!!!! Got invalid task %d, orig task %d\n", curr_task->id, orig_task->id);
}
curr_task->status = TASK_RUNNING;
// remove new task from queue
// by the way, priority 0 is only used by the idle task and doesn't need own queue
readyqueues[core_id].queue[prio-1].first = curr_task->next;
if (!curr_task->next) {
readyqueues[core_id].queue[prio-1].last = NULL;
readyqueues[core_id].prio_bitmap &= ~(1 << prio);
}
curr_task->next = curr_task->prev = NULL;
}
get_task_out:
spinlock_irqsave_unlock(&readyqueues[core_id].lock);
if (curr_task != orig_task) {
//kprintf("schedule on core %d from %u to %u with prio %u\n", core_id, orig_task->id, curr_task->id, (uint32_t)curr_task->prio);
return (size_t**) &(orig_task->last_stack_pointer);
}
return NULL;
}
void reschedule(void)
{
size_t** stack;
uint8_t flags;
flags = irq_nested_disable();
if ((stack = scheduler()))
switch_context(stack);
irq_nested_enable(flags);
}