1
0
Fork 0
mirror of https://github.com/hermitcore/libhermit.git synced 2025-03-30 00:00:15 +01:00
libhermit/hermit/arch/x86/kernel/processor.c
Stefan Lankes 8190bb6889 add cpuid level check
only level >= 7 is able to determine AVX2
2015-07-09 10:51:55 +02:00

312 lines
8.7 KiB
C

/*
* Copyright (c) 2010, Stefan Lankes, RWTH Aachen University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <hermit/stddef.h>
#include <hermit/stdio.h>
#include <hermit/string.h>
#include <hermit/time.h>
#include <hermit/processor.h>
#include <hermit/tasks.h>
extern void isrsyscall(void);
cpu_info_t cpu_info = { 0, 0, 0, 0, 0};
extern uint32_t cpu_freq;
static void default_mb(void)
{
asm volatile ("lock; addl $0,0(%%esp)" ::: "memory", "cc");
}
static void default_save_fpu_state(union fpu_state* state)
{
asm volatile ("fnsave %0; fwait" : "=m"((*state).fsave) :: "memory");
}
static void default_restore_fpu_state(union fpu_state* state)
{
asm volatile ("frstor %0" :: "m"(state->fsave));
}
static void default_fpu_init(union fpu_state* fpu)
{
i387_fsave_t *fp = &fpu->fsave;
memset(fp, 0x00, sizeof(i387_fsave_t));
fp->cwd = 0xffff037fu;
fp->swd = 0xffff0000u;
fp->twd = 0xffffffffu;
fp->fos = 0xffff0000u;
}
func_memory_barrier mb = default_mb;
func_memory_barrier rmb = default_mb;
func_memory_barrier wmb = default_mb;
static void mfence(void) { asm volatile("mfence" ::: "memory"); }
static void lfence(void) { asm volatile("lfence" ::: "memory"); }
static void sfence(void) { asm volatile("sfence" ::: "memory"); }
handle_fpu_state save_fpu_state = default_save_fpu_state;
handle_fpu_state restore_fpu_state = default_restore_fpu_state;
handle_fpu_state fpu_init = default_fpu_init;
static void save_fpu_state_fxsr(union fpu_state* state)
{
asm volatile ("fxsave %0; fnclex" : "=m"(state->fxsave) :: "memory");
}
static void restore_fpu_state_fxsr(union fpu_state* state)
{
asm volatile ("fxrstor %0" :: "m"(state->fxsave));
}
static void fpu_init_fxsr(union fpu_state* fpu)
{
i387_fxsave_t* fx = &fpu->fxsave;
memset(fx, 0x00, sizeof(i387_fxsave_t));
fx->cwd = 0x37f;
if (BUILTIN_EXPECT(has_sse(), 1))
fx->mxcsr = 0x1f80;
}
static void save_fpu_state_xsave(union fpu_state* state)
{
uint32_t eax = 1, edx = 1;
asm volatile ("xsave %0" : "=m"(state->xsave) : "a"(eax), "d"(edx) : "memory");
}
static void restore_fpu_state_xsave(union fpu_state* state)
{
uint32_t eax = 1, edx = 1;
asm volatile ("xrstor %0" :: "m"(state->xsave), "a"(eax), "d"(edx));
}
static void fpu_init_xsave(union fpu_state* fpu)
{
xsave_t* xs = &fpu->xsave;
memset(xs, 0x00, sizeof(xsave_t));
xs->fxsave.cwd = 0x37f;
if (BUILTIN_EXPECT(has_sse(), 1))
xs->fxsave.mxcsr = 0x1f80;
}
uint32_t detect_cpu_frequency(void)
{
uint64_t start, end, diff;
uint64_t ticks, old;
if (BUILTIN_EXPECT(cpu_freq > 0, 0))
return cpu_freq;
old = get_clock_tick();
/* wait for the next time slice */
while((ticks = get_clock_tick()) - old == 0)
HALT;
rmb();
start = rdtsc();
/* wait a second to determine the frequency */
while(get_clock_tick() - ticks < TIMER_FREQ)
HALT;
rmb();
end = rdtsc();
diff = end > start ? end - start : start - end;
cpu_freq = (uint32_t) (diff / (uint64_t) 1000000);
return cpu_freq;
}
int cpu_detection(void) {
uint64_t xcr0;
uint32_t a=0, b=0, c=0, d=0, level = 0;
uint32_t family, model, stepping;
size_t cr4;
uint8_t first_time = 0;
if (!cpu_info.feature1) {
first_time = 1;
cpuid(0, &level, &b, &c, &d);
kprintf("cpuid level %d\n", level);
a = b = c = d = 0;
cpuid(1, &a, &b, &cpu_info.feature2, &cpu_info.feature1);
family = (a & 0x00000F00) >> 8;
model = (a & 0x000000F0) >> 4;
stepping = a & 0x0000000F;
if ((family == 6) && (model < 3) && (stepping < 3))
cpu_info.feature1 &= ~CPU_FEATURE_SEP;
cpuid(0x80000001, &a, &b, &c, &cpu_info.feature3);
cpuid(0x80000008, &cpu_info.addr_width, &b, &c, &d);
/* Additional Intel-defined flags: level 0x00000007 */
if (level >= 0x00000007) {
a = b = c = d = 0;
cpuid(7, &a, &cpu_info.feature4, &c, &d);
}
}
if (first_time) {
kprintf("Paging features: %s%s%s%s%s%s%s%s\n",
(cpu_info.feature1 & CPU_FEATUE_PSE) ? "PSE (2/4Mb) " : "",
(cpu_info.feature1 & CPU_FEATURE_PAE) ? "PAE " : "",
(cpu_info.feature1 & CPU_FEATURE_PGE) ? "PGE " : "",
(cpu_info.feature1 & CPU_FEATURE_PAT) ? "PAT " : "",
(cpu_info.feature1 & CPU_FEATURE_PSE36) ? "PSE36 " : "",
(cpu_info.feature3 & CPU_FEATURE_NX) ? "NX " : "",
(cpu_info.feature3 & CPU_FEATURE_1GBHP) ? "PSE (1Gb) " : "",
(cpu_info.feature3 & CPU_FEATURE_LM) ? "LM" : "");
kprintf("Physical adress-width: %u bits\n", cpu_info.addr_width & 0xff);
kprintf("Linear adress-width: %u bits\n", (cpu_info.addr_width >> 8) & 0xff);
kprintf("Sysenter instruction: %s\n", (cpu_info.feature1 & CPU_FEATURE_SEP) ? "available" : "unavailable");
kprintf("Syscall instruction: %s\n", (cpu_info.feature3 & CPU_FEATURE_SYSCALL) ? "available" : "unavailable");
}
cr4 = read_cr4();
if (has_fxsr())
cr4 |= CR4_OSFXSR; // set the OSFXSR bit
if (has_sse())
cr4 |= CR4_OSXMMEXCPT; // set the OSXMMEXCPT bit
if (has_xsave())
cr4 |= CR4_OSXSAVE;
if (has_pge())
cr4 |= CR4_PGE;
write_cr4(cr4);
if (has_xsave())
{
xcr0 = xgetbv(0);
if (has_fpu())
xcr0 |= 0x1;
if (has_sse())
xcr0 |= 0x2;
if (has_avx())
xcr0 |= 0x3;
//kprintf("Set XCR to 0x%llx\n", xcr0);
xsetbv(0, xcr0);
}
if (cpu_info.feature3 & CPU_FEATURE_SYSCALL) {
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_LMA | EFER_SCE);
wrmsr(MSR_STAR, (0x1BULL << 48) | (0x08ULL << 32));
wrmsr(MSR_LSTAR, (size_t) &isrsyscall);
wrmsr(MSR_SYSCALL_MASK, 0); // we didn't clear RFLAGS during an interrupt
} else kputs("Processor doesn't support syscalls\n");
if (has_nx())
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
if (first_time && has_sse())
wmb = sfence;
if (first_time && has_sse2()) {
rmb = lfence;
mb = mfence;
}
if (has_fpu()) {
if (first_time)
kputs("Found and initialized FPU!\n");
asm volatile ("fninit");
}
if (first_time) {
kprintf("CPU features: %s%s%s%s%s%s%s%s%s%s%s%s%s\n",
has_sse() ? "SSE " : "",
has_sse2() ? "SSE2 " : "",
has_sse3() ? "SSE3 " : "",
has_sse4_1() ? "SSE4.1 " : "",
has_sse4_2() ? "SSE4.2 " : "",
has_avx() ? "AVX " : "",
has_avx2() ? "AVX2 " : "",
has_fma() ? "FMA " : "",
has_movbe() ? "MOVBE " : "",
has_x2apic() ? "X2APIC " : "",
has_fpu() ? "FPU " : "",
has_fxsr() ? "FXSR " : "",
has_xsave() ? "XSAVE " : "");
}
if (first_time && has_xsave()) {
save_fpu_state = save_fpu_state_xsave;
restore_fpu_state = restore_fpu_state_xsave;
fpu_init = fpu_init_xsave;
} else if (first_time && has_fxsr()) {
save_fpu_state = save_fpu_state_fxsr;
restore_fpu_state = restore_fpu_state_fxsr;
fpu_init = fpu_init_fxsr;
}
if (first_time && on_hypervisor()) {
uint32_t c, d;
char vendor_id[13];
kprintf("HermitCore is running on a hypervisor!\n");
cpuid(0x40000000, &a, &b, &c, &d);
memcpy(vendor_id, &b, 4);
memcpy(vendor_id + 4, &c, 4);
memcpy(vendor_id + 8, &d, 4);
vendor_id[12] = '\0';
kprintf("Hypervisor Vendor Id: %s\n", vendor_id);
kprintf("Maximum input value for hypervisor: 0x%x\n", a);
}
return 0;
}
uint32_t get_cpu_frequency(void)
{
if (cpu_freq > 0)
return cpu_freq;
return detect_cpu_frequency();
}
void udelay(uint32_t usecs)
{
uint64_t diff, end, start = rdtsc();
uint64_t deadline = get_cpu_frequency() * usecs;
do {
mb();
end = rdtsc();
diff = end > start ? end - start : start - end;
if ((diff < deadline) && (deadline - diff > 50000))
check_workqueues();
} while(diff < deadline);
}