mirror of
https://github.com/hermitcore/libhermit.git
synced 2025-03-30 00:00:15 +01:00
709 lines
17 KiB
C
709 lines
17 KiB
C
/* Copyright (c) 2015, IBM
|
|
* Author(s): Dan Williams <djwillia@us.ibm.com>
|
|
* Ricardo Koller <kollerr@us.ibm.com>
|
|
* Copyright (c) 2017, RWTH Aachen University
|
|
* Author(s): Stefan Lankes <slankes@eonerc.rwth-aachen.de>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software
|
|
* for any purpose with or without fee is hereby granted, provided
|
|
* that the above copyright notice and this permission notice appear
|
|
* in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
|
|
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
|
|
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
|
|
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
|
|
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
|
|
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/* We used several existing projects as guides
|
|
* kvmtest.c: http://lwn.net/Articles/658512/
|
|
* lkvm: http://github.com/clearlinux/kvmtool
|
|
*/
|
|
|
|
/*
|
|
* 15.1.2017: extend original version (https://github.com/Solo5/solo5)
|
|
* for HermitCore
|
|
* 25.2.2017: add SMP support to enable more than one core
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <sched.h>
|
|
#include <signal.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
#include <pthread.h>
|
|
#include <elf.h>
|
|
#include <err.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <linux/const.h>
|
|
#include <linux/kvm.h>
|
|
#include <asm/msr-index.h>
|
|
|
|
#include "uhyve-cpu.h"
|
|
#include "uhyve-syscalls.h"
|
|
#include "proxy.h"
|
|
|
|
#define GUEST_OFFSET 0x0
|
|
#define CPUID_FUNC_PERFMON 0x0A
|
|
#define GUEST_PAGE_SIZE 0x200000 /* 2 MB pages in guest */
|
|
|
|
#define BOOT_GDT 0x1000
|
|
#define BOOT_INFO 0x2000
|
|
#define BOOT_PML4 0x10000
|
|
#define BOOT_PDPTE 0x11000
|
|
#define BOOT_PDE 0x12000
|
|
|
|
#define BOOT_GDT_NULL 0
|
|
#define BOOT_GDT_CODE 1
|
|
#define BOOT_GDT_DATA 2
|
|
#define BOOT_GDT_MAX 3
|
|
|
|
#define KVM_32BIT_MAX_MEM_SIZE (1ULL << 32)
|
|
#define KVM_32BIT_GAP_SIZE (768 << 20)
|
|
#define KVM_32BIT_GAP_START (KVM_32BIT_MAX_MEM_SIZE - KVM_32BIT_GAP_SIZE)
|
|
|
|
#define kvm_ioctl(fd, cmd, arg) ({ \
|
|
const int ret = ioctl(fd, cmd, arg); \
|
|
if(ret == -1) \
|
|
err(1, "KVM: ioctl " #cmd " failed"); \
|
|
ret; \
|
|
})
|
|
|
|
static uint32_t ncores = 1;
|
|
static uint8_t* guest_mem = NULL;
|
|
static uint8_t* klog = NULL;
|
|
static uint8_t* mboot = NULL;
|
|
static size_t guest_size = 0x20000000ULL;
|
|
static uint64_t elf_entry;
|
|
static pthread_t* vcpu_threads = NULL;
|
|
static int kvm = -1, vmfd = -1;
|
|
static __thread struct kvm_run *run = NULL;
|
|
static __thread int vcpufd = 1;
|
|
|
|
static uint64_t memparse(const char *ptr)
|
|
{
|
|
// local pointer to end of parsed string
|
|
char *endptr;
|
|
|
|
// parse number
|
|
uint64_t size = strtoull(ptr, &endptr, 0);
|
|
|
|
// parse size extension, intentional fall-through
|
|
switch (*endptr) {
|
|
case 'E':
|
|
case 'e':
|
|
size <<= 10;
|
|
case 'P':
|
|
case 'p':
|
|
size <<= 10;
|
|
case 'T':
|
|
case 't':
|
|
size <<= 10;
|
|
case 'G':
|
|
case 'g':
|
|
size <<= 10;
|
|
case 'M':
|
|
case 'm':
|
|
size <<= 10;
|
|
case 'K':
|
|
case 'k':
|
|
size <<= 10;
|
|
endptr++;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/// Just close file descriptor if not already done
|
|
static inline void close_fd(int* fd)
|
|
{
|
|
if(*fd != -1) {
|
|
close(*fd);
|
|
*fd = -1;
|
|
}
|
|
}
|
|
|
|
static void sig_func(int sig)
|
|
{
|
|
(void) sig;
|
|
|
|
close_fd(&vcpufd);
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
static void uhyve_exit(void)
|
|
{
|
|
// only the main thread will execute this
|
|
if (vcpu_threads) {
|
|
for(uint32_t i = 1; i < ncores; i++) {
|
|
pthread_kill(vcpu_threads[i], SIGTERM);
|
|
pthread_join(vcpu_threads[i], NULL);
|
|
}
|
|
|
|
free(vcpu_threads);
|
|
}
|
|
|
|
char* verbose = getenv("HERMIT_VERBOSE");
|
|
if (klog && verbose && (strcmp(verbose, "0") != 0))
|
|
{
|
|
puts("\nDump kernel log:");
|
|
puts("================\n");
|
|
printf("%s\n", klog);
|
|
}
|
|
|
|
// clean up and close KVM
|
|
close_fd(&vcpufd);
|
|
close_fd(&vmfd);
|
|
close_fd(&kvm);
|
|
}
|
|
|
|
static uint32_t get_cpufreq(void)
|
|
{
|
|
char line[128];
|
|
uint32_t freq = 0;
|
|
char* match;
|
|
|
|
FILE* fp = fopen("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", "r");
|
|
if (fp != NULL) {
|
|
if (fgets(line, sizeof(line), fp) != NULL) {
|
|
// cpuinfo_max_freq is in kHz
|
|
freq = (uint32_t) atoi(line) / 1000;
|
|
}
|
|
|
|
fclose(fp);
|
|
} else if( (fp = fopen("/proc/cpuinfo", "r")) ) {
|
|
// Resorting to /proc/cpuinfo, however on most systems this will only
|
|
// return the current frequency that might change over time.
|
|
// Currently only needed when running inside a VM
|
|
|
|
// read until we find the line indicating cpu frequency
|
|
while(fgets(line, sizeof(line), fp) != NULL) {
|
|
match = strstr(line, "cpu MHz");
|
|
|
|
if(match != NULL) {
|
|
// advance pointer to beginning of number
|
|
while( ((*match < '0') || (*match > '9')) && (*match != '\0') )
|
|
match++;
|
|
|
|
freq = (uint32_t) atoi(match);
|
|
break;
|
|
}
|
|
}
|
|
|
|
fclose(fp);
|
|
}
|
|
|
|
return freq;
|
|
}
|
|
|
|
static ssize_t pread_in_full(int fd, void *buf, size_t count, off_t offset)
|
|
{
|
|
ssize_t total = 0;
|
|
char *p = buf;
|
|
|
|
if (count > SSIZE_MAX) {
|
|
errno = E2BIG;
|
|
return -1;
|
|
}
|
|
|
|
while (count > 0) {
|
|
ssize_t nr;
|
|
|
|
nr = pread(fd, p, count, offset);
|
|
if (nr == 0)
|
|
return total;
|
|
else if (nr == -1 && errno == EINTR)
|
|
continue;
|
|
else if (nr == -1)
|
|
return -1;
|
|
|
|
count -= nr;
|
|
total += nr;
|
|
p += nr;
|
|
offset += nr;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
static int load_kernel(uint8_t* mem, char* path)
|
|
{
|
|
Elf64_Ehdr hdr;
|
|
Elf64_Phdr *phdr = NULL;
|
|
size_t buflen;
|
|
int fd, ret;
|
|
int first_load = 1;
|
|
|
|
fd = open(path, O_RDONLY);
|
|
if (fd == -1)
|
|
{
|
|
perror("Unable to open file");
|
|
return -1;
|
|
}
|
|
|
|
ret = pread_in_full(fd, &hdr, sizeof(hdr), 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
// check if the program is a HermitCore file
|
|
if (hdr.e_ident[EI_MAG0] != ELFMAG0
|
|
|| hdr.e_ident[EI_MAG1] != ELFMAG1
|
|
|| hdr.e_ident[EI_MAG2] != ELFMAG2
|
|
|| hdr.e_ident[EI_MAG3] != ELFMAG3
|
|
|| hdr.e_ident[EI_CLASS] != ELFCLASS64
|
|
|| hdr.e_ident[EI_OSABI] != HERMIT_ELFOSABI
|
|
|| hdr.e_type != ET_EXEC || hdr.e_machine != EM_X86_64) {
|
|
fprintf(stderr, "Inavlide HermitCore file!\n");
|
|
goto out;
|
|
}
|
|
|
|
elf_entry = hdr.e_entry;
|
|
|
|
buflen = hdr.e_phentsize * hdr.e_phnum;
|
|
phdr = malloc(buflen);
|
|
if (!phdr) {
|
|
fprintf(stderr, "Not enough memory\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = pread_in_full(fd, phdr, buflen, hdr.e_phoff);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Load all segments with type "LOAD" from the file at offset
|
|
* p_offset, and copy that into in memory.
|
|
*/
|
|
for (Elf64_Half ph_i = 0; ph_i < hdr.e_phnum; ph_i++)
|
|
{
|
|
uint64_t paddr = phdr[ph_i].p_paddr;
|
|
size_t offset = phdr[ph_i].p_offset;
|
|
size_t filesz = phdr[ph_i].p_filesz;
|
|
size_t memsz = phdr[ph_i].p_memsz;
|
|
|
|
if (phdr[ph_i].p_type != PT_LOAD)
|
|
continue;
|
|
|
|
//printf("Kernel location 0x%zx, file size 0x%zx\n", paddr, filesz);
|
|
|
|
ret = pread_in_full(fd, mem+paddr-GUEST_OFFSET, filesz, offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
memset(mem+paddr+filesz-GUEST_OFFSET, 0x00, memsz - filesz);
|
|
if (!klog)
|
|
klog = mem+paddr+0x5000-GUEST_OFFSET;
|
|
if (!mboot)
|
|
mboot = mem+paddr-GUEST_OFFSET;
|
|
|
|
if (first_load) {
|
|
first_load = 0;
|
|
|
|
// initialize kernel
|
|
*((uint64_t*) (mem+paddr-GUEST_OFFSET + 0x08)) = paddr; // physical start address
|
|
*((uint64_t*) (mem+paddr-GUEST_OFFSET + 0x10)) = guest_size; // physical limit
|
|
*((uint32_t*) (mem+paddr-GUEST_OFFSET + 0x18)) = get_cpufreq();
|
|
*((uint32_t*) (mem+paddr-GUEST_OFFSET + 0x24)) = 1; // number of used cpus
|
|
*((uint32_t*) (mem+paddr-GUEST_OFFSET + 0x30)) = 0; // apicid
|
|
*((uint64_t*) (mem+paddr-GUEST_OFFSET + 0x38)) = filesz;
|
|
*((uint32_t*) (mem+paddr-GUEST_OFFSET + 0x60)) = 1; // numa nodes
|
|
*((uint32_t*) (mem+paddr-GUEST_OFFSET + 0x94)) = 1; // announce uhyve
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (phdr)
|
|
free(phdr);
|
|
|
|
close(fd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Filter CPUID functions that are not supported by the hypervisor and enable
|
|
/// features according to our needs.
|
|
static void filter_cpuid(struct kvm_cpuid2 *kvm_cpuid)
|
|
{
|
|
for (uint32_t i = 0; i < kvm_cpuid->nent; i++) {
|
|
struct kvm_cpuid_entry2 *entry = &kvm_cpuid->entries[i];
|
|
|
|
switch (entry->function) {
|
|
case 1:
|
|
// CPUID to define basic cpu features
|
|
entry->ecx |= (1U << 31); // propagate that we are running on a hypervisor
|
|
entry->edx |= (1U << 5); // enable msr support
|
|
break;
|
|
|
|
case CPUID_FUNC_PERFMON:
|
|
// disable it
|
|
entry->eax = 0x00;
|
|
break;
|
|
|
|
default:
|
|
// Keep the CPUID function as-is
|
|
break;
|
|
};
|
|
}
|
|
}
|
|
|
|
static void setup_system_64bit(struct kvm_sregs *sregs)
|
|
{
|
|
sregs->cr0 |= X86_CR0_PE;
|
|
sregs->efer |= EFER_LME;
|
|
}
|
|
|
|
|
|
static void setup_system_page_tables(struct kvm_sregs *sregs, uint8_t *mem)
|
|
{
|
|
uint64_t *pml4 = (uint64_t *) (mem + BOOT_PML4);
|
|
uint64_t *pdpte = (uint64_t *) (mem + BOOT_PDPTE);
|
|
uint64_t *pde = (uint64_t *) (mem + BOOT_PDE);
|
|
uint64_t paddr;
|
|
|
|
/*
|
|
* For simplicity we currently use 2MB pages and only a single
|
|
* PML4/PDPTE/PDE. Sanity check that the guest size is a multiple of the
|
|
* page size and will fit in a single PDE (512 entries).
|
|
*/
|
|
assert((guest_size & (GUEST_PAGE_SIZE - 1)) == 0);
|
|
assert(guest_size <= (GUEST_PAGE_SIZE * 512));
|
|
|
|
memset(pml4, 0x00, 4096);
|
|
memset(pdpte, 0x00, 4096);
|
|
memset(pde, 0x00, 4096);
|
|
|
|
*pml4 = BOOT_PDPTE | (X86_PDPT_P | X86_PDPT_RW);
|
|
*pdpte = BOOT_PDE | (X86_PDPT_P | X86_PDPT_RW);
|
|
for (paddr = 0; paddr < guest_size; paddr += GUEST_PAGE_SIZE, pde++)
|
|
*pde = paddr | (X86_PDPT_P | X86_PDPT_RW | X86_PDPT_PS);
|
|
|
|
sregs->cr3 = BOOT_PML4;
|
|
sregs->cr4 |= X86_CR4_PAE;
|
|
sregs->cr0 |= X86_CR0_PG;
|
|
}
|
|
|
|
static void setup_system_gdt(struct kvm_sregs *sregs,
|
|
uint8_t *mem,
|
|
uint64_t off)
|
|
{
|
|
uint64_t *gdt = (uint64_t *) (mem + off);
|
|
struct kvm_segment data_seg, code_seg;
|
|
|
|
/* flags, base, limit */
|
|
gdt[BOOT_GDT_NULL] = GDT_ENTRY(0, 0, 0);
|
|
gdt[BOOT_GDT_CODE] = GDT_ENTRY(0xA09B, 0, 0xFFFFF);
|
|
gdt[BOOT_GDT_DATA] = GDT_ENTRY(0xC093, 0, 0xFFFFF);
|
|
|
|
sregs->gdt.base = off;
|
|
sregs->gdt.limit = (sizeof(uint64_t) * BOOT_GDT_MAX) - 1;
|
|
|
|
GDT_TO_KVM_SEGMENT(code_seg, gdt, BOOT_GDT_CODE);
|
|
GDT_TO_KVM_SEGMENT(data_seg, gdt, BOOT_GDT_DATA);
|
|
|
|
sregs->cs = code_seg;
|
|
sregs->ds = data_seg;
|
|
sregs->es = data_seg;
|
|
sregs->fs = data_seg;
|
|
sregs->gs = data_seg;
|
|
sregs->ss = data_seg;
|
|
}
|
|
|
|
static void setup_system(int vcpufd, uint8_t *mem, uint32_t id)
|
|
{
|
|
static struct kvm_sregs sregs;
|
|
|
|
// all cores use the same startup code
|
|
// => all cores use the same sregs
|
|
// => only the boot processor has to initialize sregs
|
|
if (id == 0) {
|
|
kvm_ioctl(vcpufd, KVM_GET_SREGS, &sregs);
|
|
|
|
/* Set all cpu/mem system structures */
|
|
setup_system_gdt(&sregs, mem, BOOT_GDT);
|
|
setup_system_page_tables(&sregs, mem);
|
|
setup_system_64bit(&sregs);
|
|
}
|
|
|
|
kvm_ioctl(vcpufd, KVM_SET_SREGS, &sregs);
|
|
}
|
|
|
|
|
|
static void setup_cpuid(int kvm, int vcpufd)
|
|
{
|
|
struct kvm_cpuid2 *kvm_cpuid;
|
|
unsigned int max_entries = 100;
|
|
|
|
// allocate space for cpuid we get from KVM
|
|
kvm_cpuid = calloc(1, sizeof(*kvm_cpuid) +
|
|
(max_entries * sizeof(kvm_cpuid->entries[0])) );
|
|
kvm_cpuid->nent = max_entries;
|
|
|
|
kvm_ioctl(kvm, KVM_GET_SUPPORTED_CPUID, kvm_cpuid);
|
|
|
|
// set features
|
|
filter_cpuid(kvm_cpuid);
|
|
kvm_ioctl(vcpufd, KVM_SET_CPUID2, kvm_cpuid);
|
|
|
|
free(kvm_cpuid);
|
|
}
|
|
|
|
static int vcpu_loop(void)
|
|
{
|
|
int ret;
|
|
struct kvm_mp_state state = { KVM_MP_STATE_RUNNABLE };
|
|
|
|
// be sure that the multiprocessor is runable
|
|
kvm_ioctl(vcpufd, KVM_SET_MP_STATE, &state);
|
|
|
|
while (1) {
|
|
ret = kvm_ioctl(vcpufd, KVM_RUN, NULL);
|
|
|
|
if(ret == -1) {
|
|
switch(errno) {
|
|
case EINTR:
|
|
continue;
|
|
|
|
case EFAULT: {
|
|
struct kvm_regs regs;
|
|
kvm_ioctl(vcpufd, KVM_GET_REGS, ®s);
|
|
err(1, "KVM: host/guest translation fault: rip=0x%llx", regs.rip);
|
|
}
|
|
|
|
default:
|
|
err(1, "KVM: ioctl KVM_RUN in vcpu_loop failed");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* handle requests */
|
|
switch (run->exit_reason) {
|
|
case KVM_EXIT_HLT:
|
|
fprintf(stderr, "Guest has halted the CPU, this is considered as a normal exit.\n");
|
|
return 0;
|
|
|
|
case KVM_EXIT_MMIO:
|
|
err(1, "KVM: unhandled KVM_EXIT_MMIO at 0x%llx", run->mmio.phys_addr);
|
|
break;
|
|
|
|
case KVM_EXIT_IO:
|
|
//printf("port 0x%x\n", run->io.port);
|
|
switch (run->io.port) {
|
|
case UHYVE_PORT_WRITE: {
|
|
unsigned data = *((unsigned*)((size_t)run+run->io.data_offset));
|
|
uhyve_write_t* uhyve_write = (uhyve_write_t*) (guest_mem+data);
|
|
|
|
uhyve_write->len = write(uhyve_write->fd, guest_mem+(size_t)uhyve_write->buf, uhyve_write->len);
|
|
break;
|
|
}
|
|
|
|
case UHYVE_PORT_READ: {
|
|
unsigned data = *((unsigned*)((size_t)run+run->io.data_offset));
|
|
uhyve_read_t* uhyve_read = (uhyve_read_t*) (guest_mem+data);
|
|
|
|
uhyve_read->ret = read(uhyve_read->fd, guest_mem+(size_t)uhyve_read->buf, uhyve_read->len);
|
|
break;
|
|
}
|
|
|
|
case UHYVE_PORT_EXIT: {
|
|
unsigned data = *((unsigned*)((size_t)run+run->io.data_offset));
|
|
|
|
exit(*(int*)(guest_mem+data));
|
|
break;
|
|
}
|
|
|
|
case UHYVE_PORT_OPEN: {
|
|
unsigned data = *((unsigned*)((size_t)run+run->io.data_offset));
|
|
uhyve_open_t* uhyve_open = (uhyve_open_t*) (guest_mem+data);
|
|
|
|
uhyve_open->ret = open((const char*)guest_mem+(size_t)uhyve_open->name, uhyve_open->flags, uhyve_open->mode);
|
|
break;
|
|
}
|
|
|
|
case UHYVE_PORT_CLOSE: {
|
|
unsigned data = *((unsigned*)((size_t)run+run->io.data_offset));
|
|
uhyve_close_t* uhyve_close = (uhyve_close_t*) (guest_mem+data);
|
|
|
|
if (uhyve_close->ret > 2)
|
|
uhyve_close->ret = close(uhyve_close->fd);
|
|
break;
|
|
}
|
|
|
|
case UHYVE_PORT_LSEEK: {
|
|
unsigned data = *((unsigned*)((size_t)run+run->io.data_offset));
|
|
uhyve_lseek_t* uhyve_lseek = (uhyve_lseek_t*) (guest_mem+data);
|
|
|
|
uhyve_lseek->offset = lseek(uhyve_lseek->fd, uhyve_lseek->offset, uhyve_lseek->whence);
|
|
break;
|
|
}
|
|
default:
|
|
err(1, "KVM: unhandled KVM_EXIT_IO at port 0x%x, direction %d", run->io.port, run->io.direction);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case KVM_EXIT_FAIL_ENTRY:
|
|
err(1, "KVM: entry failure: hw_entry_failure_reason=0x%llx",
|
|
run->fail_entry.hardware_entry_failure_reason);
|
|
break;
|
|
|
|
case KVM_EXIT_INTERNAL_ERROR:
|
|
err(1, "KVM: internal error exit: suberror = 0x%x", run->internal.suberror);
|
|
break;
|
|
|
|
case KVM_EXIT_SHUTDOWN:
|
|
err(1, "KVM: receive shutdown command");
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "KVM: unhandled exit: exit_reason = 0x%x\n", run->exit_reason);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
close(vcpufd);
|
|
vcpufd = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vcpu_init(uint32_t id)
|
|
{
|
|
size_t mmap_size;
|
|
|
|
vcpufd = kvm_ioctl(vmfd, KVM_CREATE_VCPU, id);
|
|
|
|
/* Setup registers and memory. */
|
|
setup_system(vcpufd, guest_mem, id);
|
|
|
|
struct kvm_regs regs = {
|
|
.rip = elf_entry, // entry point to HermitCore
|
|
.rflags = 0x2, // POR value required by x86 architecture
|
|
};
|
|
kvm_ioctl(vcpufd, KVM_SET_REGS, ®s);
|
|
|
|
/* Map the shared kvm_run structure and following data. */
|
|
mmap_size = (size_t) kvm_ioctl(kvm, KVM_GET_VCPU_MMAP_SIZE, NULL);
|
|
|
|
if (mmap_size < sizeof(*run))
|
|
err(1, "KVM: invalid VCPU_MMAP_SIZE: %zd", mmap_size);
|
|
|
|
run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpufd, 0);
|
|
if (run == MAP_FAILED)
|
|
err(1, "KVM: VCPU mmap failed");
|
|
|
|
setup_cpuid(kvm, vcpufd);
|
|
|
|
// only one core is able to enter startup code
|
|
// => the wait for the predecessor core
|
|
while (*((volatile uint32_t*) (mboot + 0x20)) < id)
|
|
pthread_yield();
|
|
*((volatile uint32_t*) (mboot + 0x30)) = id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void* uhyve_thread(void* arg)
|
|
{
|
|
const size_t id = (size_t) arg;
|
|
|
|
// create new cpu
|
|
vcpu_init(id);
|
|
|
|
// run cpu loop until thread gets killed
|
|
const size_t ret = vcpu_loop();
|
|
|
|
return (void*) ret;
|
|
}
|
|
|
|
int uhyve_init(char *path)
|
|
{
|
|
// register signal handler before going multithread
|
|
signal(SIGTERM, sig_func);
|
|
|
|
// register routine to close the VM
|
|
atexit(uhyve_exit);
|
|
|
|
const char* hermit_memory = getenv("HERMIT_MEM");
|
|
if (hermit_memory)
|
|
guest_size = memparse(hermit_memory);
|
|
|
|
kvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);
|
|
if (kvm < 0)
|
|
err(1, "Could not open: /dev/kvm");
|
|
|
|
/* Make sure we have the stable version of the API */
|
|
int kvm_api_version = kvm_ioctl(kvm, KVM_GET_API_VERSION, NULL);
|
|
if (kvm_api_version != 12)
|
|
err(1, "KVM: API version is %d, uhyve requires version 12", kvm_api_version);
|
|
|
|
/* Create the virtual machine */
|
|
vmfd = kvm_ioctl(kvm, KVM_CREATE_VM, 0);
|
|
|
|
// TODO: we have to create a gap for PCI
|
|
assert(guest_size < KVM_32BIT_GAP_SIZE);
|
|
|
|
/* Allocate page-aligned guest memory. */
|
|
guest_mem = mmap(NULL, guest_size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
|
|
if (guest_mem == MAP_FAILED)
|
|
err(1, "mmap failed");
|
|
|
|
if (load_kernel(guest_mem, path) != 0)
|
|
exit(EXIT_FAILURE);
|
|
|
|
/* Map it to the second page frame (to avoid the real-mode IDT at 0). */
|
|
struct kvm_userspace_memory_region kvm_region = {
|
|
.slot = 0,
|
|
.guest_phys_addr = GUEST_OFFSET,
|
|
.memory_size = guest_size,
|
|
.userspace_addr = (uint64_t) guest_mem,
|
|
};
|
|
|
|
kvm_ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &kvm_region);
|
|
kvm_ioctl(vmfd, KVM_CREATE_IRQCHIP, NULL);
|
|
|
|
// create first CPU, it will be the boot processor by default
|
|
return vcpu_init(0);
|
|
}
|
|
|
|
int uhyve_loop(void)
|
|
{
|
|
const char* hermit_cpus = getenv("HERMIT_CPUS");
|
|
if (hermit_cpus)
|
|
ncores = (uint32_t) atoi(hermit_cpus);
|
|
|
|
*((uint32_t*) (mboot+0x24)) = ncores;
|
|
|
|
vcpu_threads = (pthread_t*) calloc(ncores, sizeof(pthread_t));
|
|
if (!vcpu_threads)
|
|
err(1, "Not enough memory");
|
|
|
|
// First CPU is special because it will boot the system. Other CPUs will
|
|
// be booted linearily after the first one.
|
|
vcpu_threads[0] = pthread_self();
|
|
|
|
// start threads to create VCPUs
|
|
for(size_t i = 1; i < ncores; i++)
|
|
pthread_create(&vcpu_threads[i], NULL, uhyve_thread, (void*) i);
|
|
|
|
// Run first CPU
|
|
return vcpu_loop();
|
|
}
|