1
0
Fork 0
mirror of https://github.com/hermitcore/libhermit.git synced 2025-03-30 00:00:15 +01:00
libhermit/hermit/arch/x86/kernel/tasks.c
Stefan Lankes f781f4923b prepare kernel to support SMP
- only startup code is missing
2015-05-27 00:04:01 +02:00

426 lines
12 KiB
C

/*
* Copyright (c) 2010, Stefan Lankes, RWTH Aachen University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <hermit/stdio.h>
#include <hermit/stdlib.h>
#include <hermit/string.h>
#include <hermit/tasks.h>
#include <hermit/errno.h>
#include <hermit/processor.h>
#include <hermit/memory.h>
//#include <hermit/fs.h>
#include <hermit/vma.h>
//#include <asm/elf.h>
#include <asm/page.h>
size_t* get_current_stack(void)
{
task_t* curr_task = per_core(current_task);
// use new page table
write_cr3(curr_task->page_map);
return curr_task->last_stack_pointer;
}
int create_default_frame(task_t* task, entry_point_t ep, void* arg)
{
size_t *stack;
struct state *stptr;
size_t state_size;
if (BUILTIN_EXPECT(!task, 0))
return -EINVAL;
if (BUILTIN_EXPECT(!task->stack, 0))
return -EINVAL;
memset(task->stack, 0xCD, KERNEL_STACK_SIZE);
/* The difference between setting up a task for SW-task-switching
* and not for HW-task-switching is setting up a stack and not a TSS.
* This is the stack which will be activated and popped off for iret later.
*/
stack = (size_t*) (task->stack + KERNEL_STACK_SIZE - 16); // => stack is 16byte aligned
/* Only marker for debugging purposes, ... */
*stack-- = 0xDEADBEEF;
/* and the "caller" we shall return to.
* This procedure cleans the task after exit. */
*stack = (size_t) leave_kernel_task;
/* Next bunch on the stack is the initial register state.
* The stack must look like the stack of a task which was
* scheduled away previously. */
state_size = sizeof(struct state);
stack = (size_t*) ((size_t) stack - state_size);
stptr = (struct state *) stack;
memset(stptr, 0x00, state_size);
stptr->rsp = (size_t)stack + state_size;
/* the first-function-to-be-called's arguments, ... */
stptr->rdi = (size_t) arg;
stptr->int_no = 0xB16B00B5;
stptr->error = 0xC03DB4B3;
/* The instruction pointer shall be set on the first function to be called
after IRETing */
stptr->rip = (size_t)ep;
stptr->cs = 0x08;
stptr->ss = 0x10;
stptr->rflags = 0x1202;
stptr->userrsp = stptr->rsp;
/* Set the task's stack pointer entry to the stack we have crafted right now. */
task->last_stack_pointer = (size_t*)stack;
return 0;
}
#if 0
#define MAX_ARGS (PAGE_SIZE - 2*sizeof(int) - sizeof(vfs_node_t*))
/** @brief Structure which keeps all
* relevant data for a new user task to start */
typedef struct {
/// Points to the node with the executable in the file system
vfs_node_t* node;
/// Argument count
int argc;
/// Environment var count
int envc;
/// Buffer for env and argv values
char buffer[MAX_ARGS];
} load_args_t;
/** @brief Internally used function to load tasks with a load_args_t structure
* keeping all the information needed to launch.
*
* This is where the serious loading action is done.
*/
static int load_task(load_args_t* largs)
{
uint32_t i, offset, idx;
uint32_t addr, npages;
size_t stack = 0, heap = 0;
size_t flags;
elf_header_t header;
elf_program_header_t prog_header;
//elf_section_header_t sec_header;
///!!! kfree is missing!
fildes_t *file = kmalloc(sizeof(fildes_t));
file->offset = 0;
file->flags = 0;
//TODO: init the hole fildes_t struct!
task_t* curr_task = current_task;
int err;
if (!largs)
return -EINVAL;
file->node = largs->node;
if (!file->node)
return -EINVAL;
err = read_fs(file, (uint8_t*)&header, sizeof(elf_header_t));
if (err < 0) {
kprintf("read_fs failed: %d\n", err);
return err;
}
if (BUILTIN_EXPECT(header.ident.magic != ELF_MAGIC, 0))
goto invalid;
if (BUILTIN_EXPECT(header.type != ELF_ET_EXEC, 0))
goto invalid;
#ifdef CONFIG_X86_32
if (BUILTIN_EXPECT(header.machine != ELF_EM_386, 0))
goto invalid;
#elif defined(CONFIG_X86_64)
if (BUILTIN_EXPECT(header.machine != ELF_EM_X86_64, 0))
goto invalid;
#else
goto invalid;
#endif
#ifdef CONFIG_X86_32
if (BUILTIN_EXPECT(header.ident._class != ELF_CLASS_32, 0))
goto invalid;
#elif defined(CONFIG_X86_64)
if (BUILTIN_EXPECT(header.ident._class != ELF_CLASS_64, 0))
goto invalid;
#else
goto invalid;
#endif
if (BUILTIN_EXPECT(header.ident.data != ELF_DATA_2LSB, 0))
goto invalid;
if (header.entry <= KERNEL_SPACE)
goto invalid;
// interpret program header table
for (i=0; i<header.ph_entry_count; i++) {
file->offset = header.ph_offset+i*header.ph_entry_size;
if (read_fs(file, (uint8_t*)&prog_header, sizeof(elf_program_header_t)) == 0) {
kprintf("Could not read programm header!\n");
continue;
}
switch(prog_header.type)
{
case ELF_PT_LOAD: // load program segment
if (!prog_header.virt_addr)
continue;
npages = (prog_header.mem_size >> PAGE_BITS);
if (prog_header.mem_size & (PAGE_SIZE-1))
npages++;
addr = get_pages(npages);
flags = PG_USER;
#ifdef CONFIG_X86_64
if (has_nx() && !(prog_header.flags & PF_X))
flags |= PG_XD;
#endif
// map page frames in the address space of the current task
if (page_map(prog_header.virt_addr, addr, npages, flags|PG_RW))
kprintf("Could not map 0x%x at 0x%x\n", addr, prog_header.virt_addr);
// clear pages
memset((void*) prog_header.virt_addr, 0x00, npages*PAGE_SIZE);
// update heap location
if (heap < prog_header.virt_addr + prog_header.mem_size)
heap = prog_header.virt_addr + prog_header.mem_size;
// load program
file->offset = prog_header.offset;
read_fs(file, (uint8_t*)prog_header.virt_addr, prog_header.file_size);
flags = VMA_CACHEABLE;
if (prog_header.flags & PF_R)
flags |= VMA_READ;
if (prog_header.flags & PF_W)
flags |= VMA_WRITE;
if (prog_header.flags & PF_X)
flags |= VMA_EXECUTE;
vma_add(prog_header.virt_addr, prog_header.virt_addr+npages*PAGE_SIZE-1, flags);
if (!(prog_header.flags & PF_W))
page_set_flags(prog_header.virt_addr, npages, flags);
break;
case ELF_PT_GNU_STACK: // Indicates stack executability
// create user-level stack
npages = DEFAULT_STACK_SIZE >> PAGE_BITS;
if (DEFAULT_STACK_SIZE & (PAGE_SIZE-1))
npages++;
addr = get_pages(npages);
stack = header.entry*2; // virtual address of the stack
flags = PG_USER|PG_RW;
#ifdef CONFIG_X86_64
if (has_nx() && !(prog_header.flags & PF_X))
flags |= PG_XD;
#endif
if (page_map(stack, addr, npages, flags)) {
kprintf("Could not map stack at 0x%x\n", stack);
return -ENOMEM;
}
memset((void*) stack, 0x00, npages*PAGE_SIZE);
// create vma regions for the user-level stack
flags = VMA_CACHEABLE;
if (prog_header.flags & PF_R)
flags |= VMA_READ;
if (prog_header.flags & PF_W)
flags |= VMA_WRITE;
if (prog_header.flags & PF_X)
flags |= VMA_EXECUTE;
vma_add(stack, stack+npages*PAGE_SIZE-1, flags);
break;
}
}
// setup heap
if (!curr_task->heap)
curr_task->heap = (vma_t*) kmalloc(sizeof(vma_t));
if (BUILTIN_EXPECT(!curr_task->heap || !heap, 0)) {
kprintf("load_task: heap is missing!\n");
return -ENOMEM;
}
curr_task->heap->flags = VMA_HEAP|VMA_USER;
curr_task->heap->start = PAGE_FLOOR(heap);
curr_task->heap->end = PAGE_FLOOR(heap);
if (BUILTIN_EXPECT(!stack, 0)) {
kprintf("Stack is missing!\n");
return -ENOMEM;
}
// push strings on the stack
offset = DEFAULT_STACK_SIZE-8;
memset((void*) (stack+offset), 0, 4);
offset -= MAX_ARGS;
memcpy((void*) (stack+offset), largs->buffer, MAX_ARGS);
idx = offset;
// push argv on the stack
offset -= largs->argc * sizeof(char*);
for(i=0; i<largs->argc; i++) {
((char**) (stack+offset))[i] = (char*) (stack+idx);
while(((char*) stack)[idx] != '\0')
idx++;
idx++;
}
// push env on the stack
offset -= (largs->envc+1) * sizeof(char*);
for(i=0; i<largs->envc; i++) {
((char**) (stack+offset))[i] = (char*) (stack+idx);
while(((char*) stack)[idx] != '\0')
idx++;
idx++;
}
((char**) (stack+offset))[largs->envc] = NULL;
// push pointer to env
offset -= sizeof(char**);
if (!(largs->envc))
*((char***) (stack+offset)) = NULL;
else
*((char***) (stack+offset)) = (char**) (stack + offset + sizeof(char**));
// push pointer to argv
offset -= sizeof(char**);
*((char***) (stack+offset)) = (char**) (stack + offset + 2*sizeof(char**) + (largs->envc+1) * sizeof(char*));
// push argc on the stack
offset -= sizeof(ssize_t);
*((ssize_t*) (stack+offset)) = (ssize_t) largs->argc;
kfree(largs);
// clear fpu state => currently not supported
curr_task->flags &= ~(TASK_FPU_USED|TASK_FPU_INIT);
jump_to_user_code(header.entry, stack+offset);
return 0;
invalid:
kprintf("Invalid executable!\n");
kprintf("magic number 0x%x\n", (uint32_t) header.ident.magic);
kprintf("header type 0x%x\n", (uint32_t) header.type);
kprintf("machine type 0x%x\n", (uint32_t) header.machine);
kprintf("elf ident class 0x%x\n", (uint32_t) header.ident._class);
kprintf("elf identdata 0x%x\n", header.ident.data);
kprintf("program entry point 0x%lx\n", (size_t) header.entry);
return -EINVAL;
}
/** @brief This call is used to adapt create_task calls
* which want to have a start function and argument list */
static int user_entry(void* arg)
{
int ret;
finish_task_switch();
if (BUILTIN_EXPECT(!arg, 0))
return -EINVAL;
ret = load_task((load_args_t*) arg);
kfree(arg);
return ret;
}
/** @brief Luxus-edition of create_user_task functions. Just call with an exe name
*
* @param id Pointer to the tid_t structure which shall be filles
* @param fname Executable's path and filename
* @param argv Arguments list
* @return
* - 0 on success
* - -ENOMEM (-12) or -EINVAL (-22) on failure
*/
int create_user_task(tid_t* id, const char* fname, char** argv)
{
vfs_node_t* node;
int argc = 0;
size_t i, buffer_size = 0;
load_args_t* load_args = NULL;
char *dest, *src;
node = findnode_fs((char*) fname);
if (!node || !(node->type == FS_FILE))
return -EINVAL;
// determine buffer size of argv
if (argv) {
while (argv[argc]) {
buffer_size += (strlen(argv[argc]) + 1);
argc++;
}
}
if (argc <= 0)
return -EINVAL;
if (buffer_size >= MAX_ARGS)
return -EINVAL;
load_args = kmalloc(sizeof(load_args_t));
if (BUILTIN_EXPECT(!load_args, 0))
return -ENOMEM;
load_args->node = node;
load_args->argc = argc;
load_args->envc = 0;
dest = load_args->buffer;
for (i=0; i<argc; i++) {
src = argv[i];
while ((*dest++ = *src++) != 0);
}
/* create new task */
return create_task(id, user_entry, load_args, NORMAL_PRIO);
}
#endif