1
0
Fork 0
mirror of https://github.com/warmcat/libwebsockets.git synced 2025-03-16 00:00:07 +01:00
libwebsockets/lib/roles/http/compression/private-lib-roles-http-compression.h

88 lines
2.9 KiB
C
Raw Normal View History

/*
http: compression methods Add generic http compression layer eanbled at cmake with LWS_WITH_HTTP_STREAM_COMPRESSION. This is wholly a feature of the HTTP role (used by h1 and h2 roles) and doesn't exist outside that context. Currently provides 'deflate' and 'br' compression methods for server side only. 'br' requires also -DLWS_WITH_HTTP_BROTLI=1 at cmake and the brotli libraries (available in your distro already) and dev package. Other compression methods can be added nicely using an ops struct. The built-in file serving stuff will use this is the client says he can handle it, and the mimetype of the file either starts with "text/" (html and css etc) or is the mimetype of Javascript. zlib allocates quite a bit while in use, it seems to be around 256KiB per stream. So this is only useful on relatively strong servers with lots of memory. However for some usecases where you are serving a lot of css and js assets, it's a nice help. The patch performs special treatment for http/1.1 pipelining, since the compression is performed on the fly the compressed content-length is not known until the end. So for h1 only, chunked transfer-encoding is automatically added so pipelining can continue of the connection. For h2 the chunking is neither supported nor required, so it "just works". User code can also request to add a compression transform before the reply headers were sent using the new api LWS_VISIBLE int lws_http_compression_apply(struct lws *wsi, const char *name, unsigned char **p, unsigned char *end, char decomp); ... this allows transparent compression of dynamically generated HTTP. The requested compression (eg, "deflate") is only applied if the client headers indicated it was supported, otherwise it's a NOP. Name may be NULL in which case the first compression method in the internal table at stream.c that is mentioned as acceptable by the client will be used. NOTE: the compression translation, same as h2 support, relies on the user code using LWS_WRITE_HTTP and then LWS_WRITE_HTTP_FINAL on the last part written. The internal lws fileserving code already does this.
2018-09-02 14:43:05 +08:00
* libwebsockets - small server side websockets and web server implementation
*
* Copyright (C) 2010 - 2019 Andy Green <andy@warmcat.com>
http: compression methods Add generic http compression layer eanbled at cmake with LWS_WITH_HTTP_STREAM_COMPRESSION. This is wholly a feature of the HTTP role (used by h1 and h2 roles) and doesn't exist outside that context. Currently provides 'deflate' and 'br' compression methods for server side only. 'br' requires also -DLWS_WITH_HTTP_BROTLI=1 at cmake and the brotli libraries (available in your distro already) and dev package. Other compression methods can be added nicely using an ops struct. The built-in file serving stuff will use this is the client says he can handle it, and the mimetype of the file either starts with "text/" (html and css etc) or is the mimetype of Javascript. zlib allocates quite a bit while in use, it seems to be around 256KiB per stream. So this is only useful on relatively strong servers with lots of memory. However for some usecases where you are serving a lot of css and js assets, it's a nice help. The patch performs special treatment for http/1.1 pipelining, since the compression is performed on the fly the compressed content-length is not known until the end. So for h1 only, chunked transfer-encoding is automatically added so pipelining can continue of the connection. For h2 the chunking is neither supported nor required, so it "just works". User code can also request to add a compression transform before the reply headers were sent using the new api LWS_VISIBLE int lws_http_compression_apply(struct lws *wsi, const char *name, unsigned char **p, unsigned char *end, char decomp); ... this allows transparent compression of dynamically generated HTTP. The requested compression (eg, "deflate") is only applied if the client headers indicated it was supported, otherwise it's a NOP. Name may be NULL in which case the first compression method in the internal table at stream.c that is mentioned as acceptable by the client will be used. NOTE: the compression translation, same as h2 support, relies on the user code using LWS_WRITE_HTTP and then LWS_WRITE_HTTP_FINAL on the last part written. The internal lws fileserving code already does this.
2018-09-02 14:43:05 +08:00
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
http: compression methods Add generic http compression layer eanbled at cmake with LWS_WITH_HTTP_STREAM_COMPRESSION. This is wholly a feature of the HTTP role (used by h1 and h2 roles) and doesn't exist outside that context. Currently provides 'deflate' and 'br' compression methods for server side only. 'br' requires also -DLWS_WITH_HTTP_BROTLI=1 at cmake and the brotli libraries (available in your distro already) and dev package. Other compression methods can be added nicely using an ops struct. The built-in file serving stuff will use this is the client says he can handle it, and the mimetype of the file either starts with "text/" (html and css etc) or is the mimetype of Javascript. zlib allocates quite a bit while in use, it seems to be around 256KiB per stream. So this is only useful on relatively strong servers with lots of memory. However for some usecases where you are serving a lot of css and js assets, it's a nice help. The patch performs special treatment for http/1.1 pipelining, since the compression is performed on the fly the compressed content-length is not known until the end. So for h1 only, chunked transfer-encoding is automatically added so pipelining can continue of the connection. For h2 the chunking is neither supported nor required, so it "just works". User code can also request to add a compression transform before the reply headers were sent using the new api LWS_VISIBLE int lws_http_compression_apply(struct lws *wsi, const char *name, unsigned char **p, unsigned char *end, char decomp); ... this allows transparent compression of dynamically generated HTTP. The requested compression (eg, "deflate") is only applied if the client headers indicated it was supported, otherwise it's a NOP. Name may be NULL in which case the first compression method in the internal table at stream.c that is mentioned as acceptable by the client will be used. NOTE: the compression translation, same as h2 support, relies on the user code using LWS_WRITE_HTTP and then LWS_WRITE_HTTP_FINAL on the last part written. The internal lws fileserving code already does this.
2018-09-02 14:43:05 +08:00
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
http: compression methods Add generic http compression layer eanbled at cmake with LWS_WITH_HTTP_STREAM_COMPRESSION. This is wholly a feature of the HTTP role (used by h1 and h2 roles) and doesn't exist outside that context. Currently provides 'deflate' and 'br' compression methods for server side only. 'br' requires also -DLWS_WITH_HTTP_BROTLI=1 at cmake and the brotli libraries (available in your distro already) and dev package. Other compression methods can be added nicely using an ops struct. The built-in file serving stuff will use this is the client says he can handle it, and the mimetype of the file either starts with "text/" (html and css etc) or is the mimetype of Javascript. zlib allocates quite a bit while in use, it seems to be around 256KiB per stream. So this is only useful on relatively strong servers with lots of memory. However for some usecases where you are serving a lot of css and js assets, it's a nice help. The patch performs special treatment for http/1.1 pipelining, since the compression is performed on the fly the compressed content-length is not known until the end. So for h1 only, chunked transfer-encoding is automatically added so pipelining can continue of the connection. For h2 the chunking is neither supported nor required, so it "just works". User code can also request to add a compression transform before the reply headers were sent using the new api LWS_VISIBLE int lws_http_compression_apply(struct lws *wsi, const char *name, unsigned char **p, unsigned char *end, char decomp); ... this allows transparent compression of dynamically generated HTTP. The requested compression (eg, "deflate") is only applied if the client headers indicated it was supported, otherwise it's a NOP. Name may be NULL in which case the first compression method in the internal table at stream.c that is mentioned as acceptable by the client will be used. NOTE: the compression translation, same as h2 support, relies on the user code using LWS_WRITE_HTTP and then LWS_WRITE_HTTP_FINAL on the last part written. The internal lws fileserving code already does this.
2018-09-02 14:43:05 +08:00
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
http: compression methods Add generic http compression layer eanbled at cmake with LWS_WITH_HTTP_STREAM_COMPRESSION. This is wholly a feature of the HTTP role (used by h1 and h2 roles) and doesn't exist outside that context. Currently provides 'deflate' and 'br' compression methods for server side only. 'br' requires also -DLWS_WITH_HTTP_BROTLI=1 at cmake and the brotli libraries (available in your distro already) and dev package. Other compression methods can be added nicely using an ops struct. The built-in file serving stuff will use this is the client says he can handle it, and the mimetype of the file either starts with "text/" (html and css etc) or is the mimetype of Javascript. zlib allocates quite a bit while in use, it seems to be around 256KiB per stream. So this is only useful on relatively strong servers with lots of memory. However for some usecases where you are serving a lot of css and js assets, it's a nice help. The patch performs special treatment for http/1.1 pipelining, since the compression is performed on the fly the compressed content-length is not known until the end. So for h1 only, chunked transfer-encoding is automatically added so pipelining can continue of the connection. For h2 the chunking is neither supported nor required, so it "just works". User code can also request to add a compression transform before the reply headers were sent using the new api LWS_VISIBLE int lws_http_compression_apply(struct lws *wsi, const char *name, unsigned char **p, unsigned char *end, char decomp); ... this allows transparent compression of dynamically generated HTTP. The requested compression (eg, "deflate") is only applied if the client headers indicated it was supported, otherwise it's a NOP. Name may be NULL in which case the first compression method in the internal table at stream.c that is mentioned as acceptable by the client will be used. NOTE: the compression translation, same as h2 support, relies on the user code using LWS_WRITE_HTTP and then LWS_WRITE_HTTP_FINAL on the last part written. The internal lws fileserving code already does this.
2018-09-02 14:43:05 +08:00
*
* This is included from private-lib-core.h if LWS_WITH_HTTP_STREAM_COMPRESSION
http: compression methods Add generic http compression layer eanbled at cmake with LWS_WITH_HTTP_STREAM_COMPRESSION. This is wholly a feature of the HTTP role (used by h1 and h2 roles) and doesn't exist outside that context. Currently provides 'deflate' and 'br' compression methods for server side only. 'br' requires also -DLWS_WITH_HTTP_BROTLI=1 at cmake and the brotli libraries (available in your distro already) and dev package. Other compression methods can be added nicely using an ops struct. The built-in file serving stuff will use this is the client says he can handle it, and the mimetype of the file either starts with "text/" (html and css etc) or is the mimetype of Javascript. zlib allocates quite a bit while in use, it seems to be around 256KiB per stream. So this is only useful on relatively strong servers with lots of memory. However for some usecases where you are serving a lot of css and js assets, it's a nice help. The patch performs special treatment for http/1.1 pipelining, since the compression is performed on the fly the compressed content-length is not known until the end. So for h1 only, chunked transfer-encoding is automatically added so pipelining can continue of the connection. For h2 the chunking is neither supported nor required, so it "just works". User code can also request to add a compression transform before the reply headers were sent using the new api LWS_VISIBLE int lws_http_compression_apply(struct lws *wsi, const char *name, unsigned char **p, unsigned char *end, char decomp); ... this allows transparent compression of dynamically generated HTTP. The requested compression (eg, "deflate") is only applied if the client headers indicated it was supported, otherwise it's a NOP. Name may be NULL in which case the first compression method in the internal table at stream.c that is mentioned as acceptable by the client will be used. NOTE: the compression translation, same as h2 support, relies on the user code using LWS_WRITE_HTTP and then LWS_WRITE_HTTP_FINAL on the last part written. The internal lws fileserving code already does this.
2018-09-02 14:43:05 +08:00
*/
2019-07-03 19:46:23 +01:00
#if defined(LWS_WITH_MINIZ)
#include <miniz.h>
#else
http: compression methods Add generic http compression layer eanbled at cmake with LWS_WITH_HTTP_STREAM_COMPRESSION. This is wholly a feature of the HTTP role (used by h1 and h2 roles) and doesn't exist outside that context. Currently provides 'deflate' and 'br' compression methods for server side only. 'br' requires also -DLWS_WITH_HTTP_BROTLI=1 at cmake and the brotli libraries (available in your distro already) and dev package. Other compression methods can be added nicely using an ops struct. The built-in file serving stuff will use this is the client says he can handle it, and the mimetype of the file either starts with "text/" (html and css etc) or is the mimetype of Javascript. zlib allocates quite a bit while in use, it seems to be around 256KiB per stream. So this is only useful on relatively strong servers with lots of memory. However for some usecases where you are serving a lot of css and js assets, it's a nice help. The patch performs special treatment for http/1.1 pipelining, since the compression is performed on the fly the compressed content-length is not known until the end. So for h1 only, chunked transfer-encoding is automatically added so pipelining can continue of the connection. For h2 the chunking is neither supported nor required, so it "just works". User code can also request to add a compression transform before the reply headers were sent using the new api LWS_VISIBLE int lws_http_compression_apply(struct lws *wsi, const char *name, unsigned char **p, unsigned char *end, char decomp); ... this allows transparent compression of dynamically generated HTTP. The requested compression (eg, "deflate") is only applied if the client headers indicated it was supported, otherwise it's a NOP. Name may be NULL in which case the first compression method in the internal table at stream.c that is mentioned as acceptable by the client will be used. NOTE: the compression translation, same as h2 support, relies on the user code using LWS_WRITE_HTTP and then LWS_WRITE_HTTP_FINAL on the last part written. The internal lws fileserving code already does this.
2018-09-02 14:43:05 +08:00
#include <zlib.h>
2019-07-03 19:46:23 +01:00
#endif
http: compression methods Add generic http compression layer eanbled at cmake with LWS_WITH_HTTP_STREAM_COMPRESSION. This is wholly a feature of the HTTP role (used by h1 and h2 roles) and doesn't exist outside that context. Currently provides 'deflate' and 'br' compression methods for server side only. 'br' requires also -DLWS_WITH_HTTP_BROTLI=1 at cmake and the brotli libraries (available in your distro already) and dev package. Other compression methods can be added nicely using an ops struct. The built-in file serving stuff will use this is the client says he can handle it, and the mimetype of the file either starts with "text/" (html and css etc) or is the mimetype of Javascript. zlib allocates quite a bit while in use, it seems to be around 256KiB per stream. So this is only useful on relatively strong servers with lots of memory. However for some usecases where you are serving a lot of css and js assets, it's a nice help. The patch performs special treatment for http/1.1 pipelining, since the compression is performed on the fly the compressed content-length is not known until the end. So for h1 only, chunked transfer-encoding is automatically added so pipelining can continue of the connection. For h2 the chunking is neither supported nor required, so it "just works". User code can also request to add a compression transform before the reply headers were sent using the new api LWS_VISIBLE int lws_http_compression_apply(struct lws *wsi, const char *name, unsigned char **p, unsigned char *end, char decomp); ... this allows transparent compression of dynamically generated HTTP. The requested compression (eg, "deflate") is only applied if the client headers indicated it was supported, otherwise it's a NOP. Name may be NULL in which case the first compression method in the internal table at stream.c that is mentioned as acceptable by the client will be used. NOTE: the compression translation, same as h2 support, relies on the user code using LWS_WRITE_HTTP and then LWS_WRITE_HTTP_FINAL on the last part written. The internal lws fileserving code already does this.
2018-09-02 14:43:05 +08:00
#if defined(LWS_WITH_HTTP_BROTLI)
#include <brotli/encode.h>
#include <brotli/decode.h>
#endif
/*
* struct holding union of all the available compression methods' context data,
* and state if it's compressing or decompressing
*/
typedef struct lws_compression_ctx {
union {
#if defined(LWS_WITH_HTTP_BROTLI)
BrotliEncoderState *br_en;
BrotliDecoderState *br_de;
#endif
z_stream *deflate;
void *generic_ctx_ptr;
} u;
struct lws_buflist *buflist_comp;
unsigned int is_decompression:1;
unsigned int final_on_input_side:1;
unsigned int may_have_more:1;
unsigned int chunking:1;
} lws_comp_ctx_t;
/* generic structure defining the interface to a compression method */
struct lws_compression_support {
/** compression name as used by, eg, content-ecoding */
const char *encoding_name;
/** create a compression context for the compression method, or NULL */
int (*init_compression)(lws_comp_ctx_t *ctx, int decomp);
/** pass data into the context to be processed */
int (*process)(lws_comp_ctx_t *ctx, const void *in, size_t *ilen_iused,
2018-11-23 08:47:56 +08:00
void *out, size_t *olen_oused);
http: compression methods Add generic http compression layer eanbled at cmake with LWS_WITH_HTTP_STREAM_COMPRESSION. This is wholly a feature of the HTTP role (used by h1 and h2 roles) and doesn't exist outside that context. Currently provides 'deflate' and 'br' compression methods for server side only. 'br' requires also -DLWS_WITH_HTTP_BROTLI=1 at cmake and the brotli libraries (available in your distro already) and dev package. Other compression methods can be added nicely using an ops struct. The built-in file serving stuff will use this is the client says he can handle it, and the mimetype of the file either starts with "text/" (html and css etc) or is the mimetype of Javascript. zlib allocates quite a bit while in use, it seems to be around 256KiB per stream. So this is only useful on relatively strong servers with lots of memory. However for some usecases where you are serving a lot of css and js assets, it's a nice help. The patch performs special treatment for http/1.1 pipelining, since the compression is performed on the fly the compressed content-length is not known until the end. So for h1 only, chunked transfer-encoding is automatically added so pipelining can continue of the connection. For h2 the chunking is neither supported nor required, so it "just works". User code can also request to add a compression transform before the reply headers were sent using the new api LWS_VISIBLE int lws_http_compression_apply(struct lws *wsi, const char *name, unsigned char **p, unsigned char *end, char decomp); ... this allows transparent compression of dynamically generated HTTP. The requested compression (eg, "deflate") is only applied if the client headers indicated it was supported, otherwise it's a NOP. Name may be NULL in which case the first compression method in the internal table at stream.c that is mentioned as acceptable by the client will be used. NOTE: the compression translation, same as h2 support, relies on the user code using LWS_WRITE_HTTP and then LWS_WRITE_HTTP_FINAL on the last part written. The internal lws fileserving code already does this.
2018-09-02 14:43:05 +08:00
/** destroy the de/compression context */
void (*destroy)(lws_comp_ctx_t *ctx);
};
extern struct lws_compression_support lcs_deflate;
extern struct lws_compression_support lcs_brotli;
int
lws_http_compression_validate(struct lws *wsi);
int
lws_http_compression_transform(struct lws *wsi, unsigned char *buf,
size_t len, enum lws_write_protocol *wp,
unsigned char **outbuf, size_t *olen_oused);
void
lws_http_compression_destroy(struct lws *wsi);