In the case code is composed into a single process, but it isn't monolithic in the
sense it's made up of modular "applications" that are written separate projects,
provide a way for the "applications" to request a callback from the lws event loop
thread context safely.
From the callback the applications can set up their operations on the lws event
loop and drop their own thread.
Since it requires system-specific locking to be threadsafe, provide a non-threadsafe
helper and then indirect the actual usage through a user-defined lws_system ops
function pointer that wraps the unsafe api with the system locking to make it safe.
This changes the approach of tx credit management to set the
initial stream tx credit window to zero. This is the only way
with RFC7540 to gain the ability to selectively precisely rx
flow control incoming streams.
At the time the headers are sent, a WINDOW_UPDATE is sent with
the initial tx credit towards us for that specific stream. By
default, this acts as before with a 256KB window added for both
the stream and the nwsi, and additional window management sent
as stuff is received.
It's now also possible to set a member in the client info
struct and a new option LCCSCF_H2_MANUAL_RXFLOW to precisely
manage both the initial tx credit for a specific stream and
the ongoing rate limit by meting out further tx credit
manually.
Add another minimal example http-client-h2-rxflow demonstrating how
to force a connection's peer's initial budget to transmit to us
and control it during the connection lifetime to restrict the amount
of incoming data we have to buffer.
With light-on-dark terminal color schemes, 'black bold' (i.e. [30;1m) for
LLL_USER is illegible. I think this would be better as 'default bold' (i.e. [0;1m)
Remove the auth lws_system stuff and redo it using generic blobs
with separate namespaces. Support pointing to already-in-memory
blobs without using heap as well as multi-fragment appened blobs
eg, parsed out of JSON chunk by chunk and chained in heap.
Support auth the new way, along with client cert + key in DER
namespaces.
cgi is a role, but it's not an externally-selectable role... it's only
used when the mount indicates it should be.
That means it's not in the list of EVERY_AVAILABLE_ROLE... make sure
its zombie child reaping timer is started at context creation and
stopped at destruction.
We overallocate at the start by LWS_PRE so we can use
buflist content directly with lws_write, this has us also
overallocate by 1 at the end. There's a corner case with
cgi where it's receiving bulk POST data to pass on to cgi
stdin and wants to make sure there's a NUL just past the
end... this makes sure we have space for it.
Generic lws_system IPv4 DHCP client
- netif and route control via lib/plat apis
- linux plat pieces implemented
- Uses raw ip socket for UDP broadcast and rx
- security-aware
- usual stuff plus up to 4 x dns server
If it's enabled for build, it holds the system
state at DHCP until at least one registered interface
has acquired a set of IP / mask / router / DNS server
It uses PF_PACKET which is Linux-only atm. But those
areas are isolated into plat code.
TODOs
- lease timing and reacquire
- plat pieces for other than Linux
lws_now_usecs() uses monotonic time now. It's not sync'd with
wallclock time and the two can't be mixed. Switch to
gettimeofday which is nonmonotonic and use also for fractional
time to avoid fractional secs in logs being unrelated to integer
seconds boundary.
Rather than do all switches by hand on the minimal examples,
add a helper that knows some "builtin" ones like -d and
others to set context options you might want to use in
any example.
Introduce a generic lws_state object with notification handlers
that may be registered in a chain.
Implement one of those in the context to manage the "system state".
Allow other pieces of lws and user code to register notification
handlers on a context list. Handlers can object to or take over
responsibility to move forward and retry system state changes if
they know that some dependent action must succeed first.
For example if the system time is invalid, we cannot move on to
a state where anything can do tls until that has been corrected.
Refactor everything around ping / pong handling in ws and h2, so there
is instead a protocol-independent validity lws_sul tracking how long it
has been since the last exchange that confirms the operation of the
network connection in both directions.
Clean out periodic role callback and replace the last two role users
with discrete lws_sul for each pt.
With http, the protocol doesn't indicate where the headers end and the
next transaction or body begin. Until now, we handled that for client
header response parsing by reading from the tls buffer bytewise.
This modernizes the code to read in up to 256-byte chunks and parse
the chunks in one hit (the parse API is already set up for doing this
elsewhere).
Now we have a generic input buflist, adapt the parser loop to go through
that and arrange that any leftovers are placed on there.
Remove LWS_LATENCY.
Add the option LWS_WITH_DETAILED_LATENCY, allowing lws to collect very detailed
information on every read and write, and allow the user code to provide
a callback to process events.
This adds the option to have lws do its own dns resolution on
the event loop, without blocking. Existing implementations get
the name resolution done by the libc, which is blocking. In
the case you are opening client connections but need to carefully
manage latency, another connection opening and doing the name
resolution becomes a big problem.
Currently it supports
- ipv4 / A records
- ipv6 / AAAA records
- ipv4-over-ipv6 ::ffff:1.2.3.4 A record promotion for ipv6
- only one server supported over UDP :53
- nameserver discovery on linux, windows, freertos
It also has some nice advantages
- lws-style paranoid response parsing
- random unique tid generation to increase difficulty of poisoning
- it's really integrated with the lws event loop, it does not spawn
threads or use the libc resolver, and of course no blocking at all
- platform-specific server address capturing (from /etc/resolv.conf
on linux, windows apis on windows)
- it has LRU caching
- piggybacking (multiple requests before the first completes go on
a list on the first request, not spawn multiple requests)
- observes TTL in cache
- TTL and timeout use lws_sul timers on the event loop
- ipv6 pieces only built if cmake LWS_IPV6 enabled
Improve the code around stash, getting rid of the strdups for a net
code reduction. Remove the special destroy helper for stash since
it becomes a one-liner.
Trade several stack allocs in the client reset function for a single
sized brief heap alloc to reduce peak stack alloc by around 700 bytes.
wsi timeout, wsi hrtimer, sequencer timeout and vh-protocol timer
all now participate on a single sorted us list.
The whole idea of polling wakes is thrown out, poll waits ignore the
timeout field and always use infinite timeouts.
Introduce a public api that can schedule its own callback from the event
loop with us resolution (usually ms is all the platform can do).
Upgrade timeouts and sequencer timeouts to also be able to use us resolution.
Introduce a prepared fakewsi in the pt, so we don't have to allocate
one on the heap when we need it.
Directly handle vh-protocol timer if LWS_MAX_SMP == 1