Currently we always reserve a fakewsi per pt so events that don't have a related actual
wsi, like vhost-protocol-init or vhost cert init via protocol callback can make callbacks
that look reasonable to user protocol handler code expecting a valid wsi every time.
This patch splits out stuff that user callbacks often unconditionally expect to be in
a wsi, like context pointer, vhost pointer etc into a substructure, which is composed
into struct lws at the top of it. Internal references (struct lws is opaque, so there
are only internal references) are all updated to go via the substructre, the compiler
should make that a NOP.
Helpers are added when fakewsi is used and referenced.
If not PLAT_FREERTOS, we continue to provide a full fakewsi in the pt as before,
although the helpers improve consistency by zeroing down the substructure. There is
a huge amount of user code out there over the last 10 years that did not always have
the minimal examples to follow, some of it does some unexpected things.
If it is PLAT_FREERTOS, that is a newer thing in lws and users have the benefit of
being able to follow the minimal examples' approach. For PLAT_FREERTOS we don't
reserve the fakewsi in the pt any more, saving around 800 bytes. The helpers then
create a struct lws_a (the substructure) on the stack, zero it down (but it is only
like 4 pointers) and prepare it with whatever we know like the context.
Then we cast it to a struct lws * and use it in the user protocol handler call.
In this case, the remainder of the struct lws is undefined. However the amount of
old protocol handlers that might touch things outside of the substructure in
PLAT_FREERTOS is very limited compared to legacy lws user code and the saving is
significant on constrained devices.
User handlers should not be touching everything in a wsi every time anyway, there
are several cases where there is no valid wsi to do the call with. Dereference of
things outside the substructure should only happen when the callback reason shows
there is a valid wsi bound to the activity (as in all the minimal examples).
Replace the bash selftest plumbing with CTest.
To use the selftests, build with -DLWS_WITH_MINIMAL_EXAMPLES=1
and `CTEST_OUTPUT_ON_FAILURE=1 make test` or just
`make test`.
To disable tests that require internet access, also give
-DLWS_CTEST_INTERNET_AVAILABLE=0
Remove travis and appveyor scripts on master.
Remove travis and appveyor decals on README.md.
Remove LWS_LATENCY.
Add the option LWS_WITH_DETAILED_LATENCY, allowing lws to collect very detailed
information on every read and write, and allow the user code to provide
a callback to process events.
Since the messages are queued and then read in order from the event loop
thread, it's not generally safe to pass pointers to argument structs,
since there's no guarantee the lifetime of the thing sending the message
lasted until the sequencer read the message.
This puts pressure on the single void * argument-passed-as-value... this patch
adds a second void * argument-passed-as-value so it's more possible to put
what's needed directly in the argument.
It's also possible to alloc the argument on the heap and have the sequencer
callback free it after it has read it.
Normalize the vhost options around optionally handling noncompliant
traffic at the listening socket for both non-tls and tls cases.
By default everything is as before.
However it's now possible to tell the vhost to allow noncompliant
connects to fall back to a specific role and protocol, both set
by name in the vhost creation info struct.
The original vhost flags allowing http redirect to https and
direct http serving from https server (which is a security
downgrade if enabled) are cleaned up and tested.
A minimal example minimal-raw-fallback-http-server is added with
switches to confirm operation of all the valid possibilities (see
the readme on that).
This changes the vhost destroy flow to only hand off the listen
socket if another vhost sharing it, and mark the vhost as
being_destroyed.
Each tsi calls lws_check_deferred_free() once a second, if it sees
any vhost being_destroyed there, it closes all wsi on its tsi on
the same vhost, one time.
As the wsi on the vhost complete close (ie, after libuv async close
if on libuv event loop), they decrement a reference count for all
wsi open on the vhost. The tsi who closes the last one then
completes the destroy flow for the vhost itself... it's random
which tsi completes the vhost destroy but since there are no
wsi left on the vhost, and it holds the context lock, nothing
can conflict.
The advantage of this is that owning tsi do the close for wsi
that are bound to the vhost under destruction, at a time when
they are guaranteed to be idle for service, and they do it with
both vhost and context locks owned, so no other service thread
can conflict for stuff protected by those either.
For the situation the user code may have allocations attached to
the vhost, this adds args to lws_vhost_destroy() to allow destroying
the user allocations just before the vhost is freed.
Several new ops are planned for tls... so better to bite the bullet and
clean it out to the same level as roles + event-libs first.
Also adds a new travis target "mbedtls" and all the tests except
autobahn against mbedtls build.