There are a few build options that are trying to keep and report
various statistics
- DETAILED_LATENCY
- SERVER_STATUS
- WITH_STATS
remove all those and establish a generic rplacement, lws_metrics.
lws_metrics makes its stats available via an lws_system ops function
pointer that the user code can set.
Openmetrics export is supported, for, eg, prometheus scraping.
Also prioritize LD_LIBRARY_PATH check for plugins first
Iterate through paths in LD_LIBRARY_PATH in order
Warn on failed plugins init but continue protocol init
This is a huge patch that should be a global NOP.
For unix type platforms it enables -Wconversion to issue warnings (-> error)
for all automatic casts that seem less than ideal but are normally concealed
by the toolchain.
This is things like passing an int to a size_t argument. Once enabled, I
went through all args on my default build (which build most things) and
tried to make the removed default cast explicit.
With that approach it neither change nor bloat the code, since it compiles
to whatever it was doing before, just with the casts made explicit... in a
few cases I changed some length args from int to size_t but largely left
the causes alone.
From now on, new code that is relying on less than ideal casting
will complain and nudge me to improve it by warnings.
This adds some new objects and helpers for keeping and logging
info on grouped allocations, a group is, eg, SS handles or client
wsis.
Allocated objects get a context-unique "tag" string intended to replace
%p / wsi pointers etc. Pointers quickly become confusing when
allocations are freed and reused, the tag string won't repeat
until you produce 2^64 objects in a context.
In addition the tag string documents the object group, with prefixes
like "wsi-" or "vh-" and contain object-specific additional
information like the vhost name, address / port or the role of the wsi.
At creation time the lws code can use a format string and args
to add whatever group-specific info makes sense, eg, a wsi bound
to a secure stream can also append the guid of the secure stream,
it's copied into the new object tag and so is still available
cleanly after the stream is destroyed if the wsi outlives it.
A few different places want to create wsis and basically repeat their
own versions of the flow. Let's unify it into one helper in wsi.c
Also require the context lock held (this only impacts LWS_MAX_SMP > 1)
With synthetic tests, we can have an h1 connection open to a server
and ask for an h2-specific connection to the same thing... lws will
bind it to the idle h1 connection since the endpoint and tls matches.
This also makes it check that the alpn filtering matches h1 before
allowing that.
role ops are usually only sparsely filled, there are currently 20
function pointers but several roles only fill in two. No single
role has more than 14 of the ops. On a 32/64 bit build this part
of the ops struct takes a fixed 80 / 160 bytes then.
First reduce the type of the callback reason part from uint16_t to
uint8_t, this saves 12 bytes unconditionally.
Change to a separate function pointer array with a nybble index
array, it costs 10 bytes for the index and a pointer to the
separate array, for 32-bit the cost is
2 + (4 x ops_used)
and for 64-bit
6 + (8 x ops_used)
for 2 x ops_used it means 32-bit: 10 vs 80 / 64-bit: 22 vs 160
For a typical system with h1 (9), h2 (14), listen (2), netlink (2),
pipe (1), raw_skt (3), ws (12), == 43 ops_used out of 140, it means
the .rodata for this reduced from 32-bit: 560 -> 174 (386 byte
saving) and 64-bit: 1120 -> 350 (770 byte saving)
This doesn't account for the changed function ops calling code, two
ways were tried, a preprocessor macro and explicit functions
For an x86_64 gcc 10 build with most options, release mode,
.text + .rodata
before patch: 553282
accessor macro: 552714 (568 byte saving)
accessor functions: 553674 (392 bytes worse than without patch)
therefore we went with the macros
RFC6724 defines an ipv6-centric DNS result sorting algorithm, that
takes route and source address route information for the results
given by the DNS resolution, and sorts them in order of preferability,
which defines the order they should be tried in.
If LWS_WITH_NETLINK, then lws takes care about collecting and monitoring
the interface, route and source address information, and uses it to
perform the RFC6724 sorting to re-sort the DNS before trying to make
the connections.
This creates a role for RFC3549 Netlink monitoring.
If the OS supports it (currently, linux) then each pt creates a wsi
with the netlink role and dumps the current routing table at pt init.
It then maintains a cache of the routing table in each pt.
Upon routing table changes an SMD message is issued as an event, and
Captive Portal Detection is triggered.
All of the pt's current connections are reassessed for routability under
the changed routing table, those that no longer have a valid route or
gateway are closed.
Event lib support as it has been isn't scaling well, at the low level
libevent and libev headers have a namespace conflict so they can't
both be built into the same image, and at the distro level, binding
all the event libs to libwebsockets.so makes a bloaty situation for
packaging, lws will drag in all the event libs every time.
This patch implements the plan discussed here
https://github.com/warmcat/libwebsockets/issues/1980
and refactors the event lib support so they are built into isolated
plugins and bound at runtime according to what the application says
it wants to use. The event lib plugins can be packaged individually
so that only the needed sets of support are installed (perhaps none
of them if the user code is OK with the default poll() loop). And
dependent user code can mark the specific event loop plugin package
as required so pieces are added as needed.
The eventlib-foreign example is also refactored to build the selected
lib support isolated.
A readme is added detailing the changes and how to use them.
https://libwebsockets.org/git/libwebsockets/tree/READMEs/README.event-libs.md
Move the common plugin scanning dir stuff to be based on lws_dir, which
already builds for windows. Previously this was done via dirent for unix
and libuv for windows.
Reduce the dl plat stuff to just wrap instantiation and destruction of
dynlibs, establish common code in lib/misc/dir.c for plugin scanning
itself.
Migrate the libuv windows dl stuff to windows-plugins.c, so that he's
available even if later libuv loop support becomes and event lib plugin.
Remove the existing api exports scheme for plugins, just export a const struct
now which has a fixed header type but then whatever you want afterwards depending
on the class / purpose of the plugin. Place a "class" string in the header so
there can be different kinds of plugins implying different types exported.
Make the plugin apis public and add support for filter by class string, and
per instantation / destruction callbacks so the subclassed header type can
do its thing for the plugin class. The user provides a linked-list base
for his class of plugins, so he can manage them completely separately and
in user code / user export types.
Rip out some last hangers-on from generic sessions / tables.
This is all aimed at making the plugins support general enough so it can
provide event lib plugins later.
Currently we always reserve a fakewsi per pt so events that don't have a related actual
wsi, like vhost-protocol-init or vhost cert init via protocol callback can make callbacks
that look reasonable to user protocol handler code expecting a valid wsi every time.
This patch splits out stuff that user callbacks often unconditionally expect to be in
a wsi, like context pointer, vhost pointer etc into a substructure, which is composed
into struct lws at the top of it. Internal references (struct lws is opaque, so there
are only internal references) are all updated to go via the substructre, the compiler
should make that a NOP.
Helpers are added when fakewsi is used and referenced.
If not PLAT_FREERTOS, we continue to provide a full fakewsi in the pt as before,
although the helpers improve consistency by zeroing down the substructure. There is
a huge amount of user code out there over the last 10 years that did not always have
the minimal examples to follow, some of it does some unexpected things.
If it is PLAT_FREERTOS, that is a newer thing in lws and users have the benefit of
being able to follow the minimal examples' approach. For PLAT_FREERTOS we don't
reserve the fakewsi in the pt any more, saving around 800 bytes. The helpers then
create a struct lws_a (the substructure) on the stack, zero it down (but it is only
like 4 pointers) and prepare it with whatever we know like the context.
Then we cast it to a struct lws * and use it in the user protocol handler call.
In this case, the remainder of the struct lws is undefined. However the amount of
old protocol handlers that might touch things outside of the substructure in
PLAT_FREERTOS is very limited compared to legacy lws user code and the saving is
significant on constrained devices.
User handlers should not be touching everything in a wsi every time anyway, there
are several cases where there is no valid wsi to do the call with. Dereference of
things outside the substructure should only happen when the callback reason shows
there is a valid wsi bound to the activity (as in all the minimal examples).
Adapt the pt sul owner list to be an array, and define two different lists,
one that acts like before and is the default for existing users, and another
that has the ability to cooperate with systemwide suspend to restrict the
interval spent suspended so that it will wake in time for the earliest
thing on this wake-suspend sul list.
Clean the api a bit and add lws_sul_cancel() that only needs the sul as the
argument.
Add a flag for client creation info to indicate that this client connection
is important enough that, eg, validity checking it to detect silently dead
connections should go on the wake-suspend sul list. That flag is exposed in
secure streams policy so it can be added to a streamtype with
"swake_validity": true
Deprecate out the old vhost timer stuff that predates sul. Add a flag
LWS_WITH_DEPRECATED_THINGS in cmake so users can get it back temporarily
before it will be removed in a v4.2.
Adapt all remaining in-tree users of it to use explicit suls.
Add a member to the vh init struct allowing control of the overall
connection wait introduced in an earlier patch. Set it to 20s
by default.
The timeout_secs member controls the individual DNS result
connect timeout and is reduced to 5s by default.
Secure Streams is an optional layer on top of lws that separates policy
like endpoint selection and tls cert validation into a device JSON
policy document.
Code that wants to open a client connection just specifies a streamtype name,
and no longer deals with details like the endpoint, the protocol (!) or anything
else other than payloads and optionally generic metadata; the JSON policy
contains all the details for each streamtype. h1, h2, ws and mqtt client
connections are supported.
Logical secure streams outlive any particular connection and supports "nailed-up"
connectivity regardless of underlying connection stability.
Adds client support for MQTT QoS0 and QoS1, compatible with AWS IoT
Supports stream binding where independent client connections to the
same endpoint can mux on a single tcp + tls connection with topic
routing managed internally.
This adds support for POST in both h1 and h2 queues / stream binding.
The previous queueing tried to keep the "leader" wsi who made the
actual connection around and have it act on the transaction queue
tail if it had done its own thing.
This refactors it so instead, who is the "leader" moves down the
queue and the queued guys inherit the fd, SSL * and queue from the
old leader as they take over.
This lets them operate in their own wsi identity directly and gets
rid of all the "effective wsi" checks, which was applied incompletely
and getting out of hand considering the separate lws_mux checks for
h2 and other muxed protocols alongside it.
This change also allows one wsi at a time to own the transaction for
POST. --post is added as an option to lws-minimal-http-client-multi
and 6 extra selftests with POST on h1/h2, pipelined or not and
staggered or not are added to the CI.