FreeRTOS only supports nonmonotonic time, when we correct it by, eg,
ntpclient, we offset all the existing sul timeouts. This adds an
internal helper function to correct existing sul timeouts by the
step amount, and call it in lws ntpclient implementation when
adjusting the gettimeofday() time.
If the client connection attempt fails early, we report it will a NULL
return from the client connection api. If it fails later, perhaps after
more times around the event loop, we report it as a CONNECTION_ERROR.
This patch makes sure we don't do CONNECTION_ERROR flow if in fact we
are still in the client_connect_via_info() and in a position to report
the failure by returning NULL from there, without it under some
conditions we will do both a CONNECTION_ERROR and return NULL.
Adapt the pt sul owner list to be an array, and define two different lists,
one that acts like before and is the default for existing users, and another
that has the ability to cooperate with systemwide suspend to restrict the
interval spent suspended so that it will wake in time for the earliest
thing on this wake-suspend sul list.
Clean the api a bit and add lws_sul_cancel() that only needs the sul as the
argument.
Add a flag for client creation info to indicate that this client connection
is important enough that, eg, validity checking it to detect silently dead
connections should go on the wake-suspend sul list. That flag is exposed in
secure streams policy so it can be added to a streamtype with
"swake_validity": true
Deprecate out the old vhost timer stuff that predates sul. Add a flag
LWS_WITH_DEPRECATED_THINGS in cmake so users can get it back temporarily
before it will be removed in a v4.2.
Adapt all remaining in-tree users of it to use explicit suls.
Add a member to the vh init struct allowing control of the overall
connection wait introduced in an earlier patch. Set it to 20s
by default.
The timeout_secs member controls the individual DNS result
connect timeout and is reduced to 5s by default.
This patch allows client connections to recover from a nonresponsive
(ie, does not complete connect()) peer and continue to try subsequent
DNS results.
Until now if the generic transaction completes and the connection is idle,
there's a fixed 5s grace period to keep the connection up in case something
else wants it.
This allows setting it in the client creation info struct .keep_warm_secs.
If left at 0, then it maintains the backward-compatible 5s wait.
The mbedtls openssl wrapper wants to use exports from mbedtls' net_sockets.c,
but this is only supposed to work on *nix and windows. Typically people
are using mbedtls on RTOS type platforms and to use it, net_sockets.c
needs some hacking.
Try to avoid that situation by porting the two exports we need into the
lws plat code and call from the wrapper.
Secure Streams is an optional layer on top of lws that separates policy
like endpoint selection and tls cert validation into a device JSON
policy document.
Code that wants to open a client connection just specifies a streamtype name,
and no longer deals with details like the endpoint, the protocol (!) or anything
else other than payloads and optionally generic metadata; the JSON policy
contains all the details for each streamtype. h1, h2, ws and mqtt client
connections are supported.
Logical secure streams outlive any particular connection and supports "nailed-up"
connectivity regardless of underlying connection stability.
Adds client support for MQTT QoS0 and QoS1, compatible with AWS IoT
Supports stream binding where independent client connections to the
same endpoint can mux on a single tcp + tls connection with topic
routing managed internally.
The vfork optimized spawn, stdxxx and terminal handling in the cgi
implementation is quite mature and sophisticated, and useful for
other things unrelated to cgi. Break it out into its own public
api under LWS_WITH_SPAWN, off by default.
Expand it so the parent wsi is optional, and the role and protocol
bindings for stdxxx pipes can be set. Allow optional sul timeout
and external lws_dll2 owner for extant children.
Remove inline style from minimal http-server-cgi
This adds support for POST in both h1 and h2 queues / stream binding.
The previous queueing tried to keep the "leader" wsi who made the
actual connection around and have it act on the transaction queue
tail if it had done its own thing.
This refactors it so instead, who is the "leader" moves down the
queue and the queued guys inherit the fd, SSL * and queue from the
old leader as they take over.
This lets them operate in their own wsi identity directly and gets
rid of all the "effective wsi" checks, which was applied incompletely
and getting out of hand considering the separate lws_mux checks for
h2 and other muxed protocols alongside it.
This change also allows one wsi at a time to own the transaction for
POST. --post is added as an option to lws-minimal-http-client-multi
and 6 extra selftests with POST on h1/h2, pipelined or not and
staggered or not are added to the CI.
Add selectable event lib support to minimal-http-client-multi and
clean up context destroy flow so we can use lws_destroy_context() from
inside the callback to indicate we want to end the event loop, without
using the traditional "interrupted" flag and in a way that works no
matter which event loop backend is being used.
(Includes fixes from Yichen Gu)
Currently the incoming ebuf is always replaced to point to either a whole
buflist segment, or up to the (pt_serv_buf - LWS_PRE) length in the pt_serv_buf.
This is called on path for handling http read... some user code reasonably wants to
restrict the read size to what it can handle.
Change the other lws_buflist_aware_read() callers to zero ebuf before calling, and for
those have it keep the current behaviour; but if non-NULL ebuf.token on incoming, as
in http read path case, restrict both reported len of buflist content and the read length
to the incoming ebuf.len so the user code can control what it will get at one time.
Additionally muxed protocol wsi have no choice but to read what was sent to them
since it's HOL-blocking for other streams and its own WINDOW_UPDATEs. So add an
internal param to lws_buflist_aware_read() forcing read even if buflist content
is available.
There are some minor public api type improvements rather than cast everywhere
inside lws and user code to work around them... these changed from int to
size_t
- lws_buflist_use_segment() return
- lws_tokenize_t .len and .token_len
- lws_tokenize_cstr() length
- lws_get_peer_simple() namelen
- lws_get_peer_simple_fd() namelen, int fd -> lws_sockfd_type fd
- lws_write_numeric_address() len
- lws_sa46_write_numeric_address() len
These changes are typically a NOP for user code
In the case code is composed into a single process, but it isn't monolithic in the
sense it's made up of modular "applications" that are written separate projects,
provide a way for the "applications" to request a callback from the lws event loop
thread context safely.
From the callback the applications can set up their operations on the lws event
loop and drop their own thread.
Since it requires system-specific locking to be threadsafe, provide a non-threadsafe
helper and then indirect the actual usage through a user-defined lws_system ops
function pointer that wraps the unsafe api with the system locking to make it safe.
This changes the approach of tx credit management to set the
initial stream tx credit window to zero. This is the only way
with RFC7540 to gain the ability to selectively precisely rx
flow control incoming streams.
At the time the headers are sent, a WINDOW_UPDATE is sent with
the initial tx credit towards us for that specific stream. By
default, this acts as before with a 256KB window added for both
the stream and the nwsi, and additional window management sent
as stuff is received.
It's now also possible to set a member in the client info
struct and a new option LCCSCF_H2_MANUAL_RXFLOW to precisely
manage both the initial tx credit for a specific stream and
the ongoing rate limit by meting out further tx credit
manually.
Add another minimal example http-client-h2-rxflow demonstrating how
to force a connection's peer's initial budget to transmit to us
and control it during the connection lifetime to restrict the amount
of incoming data we have to buffer.
This should be a NOP for h2 support and only affects internal
apis. But it lets us reuse the working and reliable h2 mux
arrangements directly in other protocols later, and share code
so building for h2 + new protocols can take advantage of common
mux child handling struct and code.
Break out common mux handling struct into its own type.
Convert all uses of members that used to be in wsi->h2 to wsi->mux
Audit all references to the members and break out generic helpers
for anything that is useful for other mux-capable protocols to
reuse wsi->mux related features.
Now the generic lws_system blobs can cover client certs + key, let's
add support for applying one of the blob sets to a specific client
connection (rather than doing it via the vhost).
This teaches http client stuff how to handle 303 redirects... these
can happen after POST where the server side wants you to come back with
a GET to the Location: mentioned.
lws client will follow the redirect and force GET, this works for both
h1 and h2. Client protocol handler has to act differently if it finds
it is connecting for the initial POST or the subsequent GET, it can
find out which by checking a new api lws_http_is_redirected_to_get(wsi)
which returns nonzero if in GET mode.
Minimal example for server form-post has a new --303 switch to enable
this behaviour there and the client post example has additions to
check lws_http_is_redirected_to_get().
Pre-sul, checking for interval to next pending scheduled event was expensive and
iterative, so the service avoided it if the wait was already 0.
With sul though, the internal "check" function also services ripe events and
removes them, and finding the interval to the next one is really cheap.
Rename the "check" function to __lws_sul_service_ripe() to make it clear it's
not just about returning the interval to the next pending one. And call it
regardless of if we already decided we are not going to wait in the poll.
After https://github.com/warmcat/libwebsockets/pull/1745
This shouldn't be necessary; just END_HEADERS flag should be enough.
But nghttp2 will not talk to us unless we end the stream from our side.
Unfortunately ending the stream at the time we sent the headers means
we cannot support the long poll half-close scheme. So add a quirk
flag to optionally support this behaviour of nghttp2 when the client
is creating the connection.
h1 and h2 has a bunch of code supporting autobinding outgoing client connections
to be streams in, or queued as pipelined on, the same / existing single network
connection, if it's to the same endpoint.
Adapt this http-specific code and active connection tracking to be usable for
generic muxable protocols the same way.
Introduce a generic lws_state object with notification handlers
that may be registered in a chain.
Implement one of those in the context to manage the "system state".
Allow other pieces of lws and user code to register notification
handlers on a context list. Handlers can object to or take over
responsibility to move forward and retry system state changes if
they know that some dependent action must succeed first.
For example if the system time is invalid, we cannot move on to
a state where anything can do tls until that has been corrected.
Refactor everything around ping / pong handling in ws and h2, so there
is instead a protocol-independent validity lws_sul tracking how long it
has been since the last exchange that confirms the operation of the
network connection in both directions.
Clean out periodic role callback and replace the last two role users
with discrete lws_sul for each pt.
It was already correct but add helpers to isolate and deduplicate
processing adding and closing a generically immortal stream.
Change the default 31s h2 network connection timeout to be settable
by .keepalive_timeout if nonzero.
Add a public api allowing a client h2 stream to transition to
half-closed LOCAL (by sending a 0-byte DATA with END_STREAM) and
mark itself as immortal to create a read-only long-poll stream
if the server allows it.
Add a vhost server option flag LWS_SERVER_OPTION_VH_H2_HALF_CLOSED_LONG_POLL
which allows the vhost to treat half-closed remotes as immortal long
poll streams.