lws_tls_restrict_borrow() returns error when tls restriction limit is
reached. However lws_ssl_close() still calls lws_tls_restrict_return()
to decrease simultaneous_ssl. Thus LWS accepts more than allowed ssl
links, making simultaneous_ssl_restriction useless.
Fix it by tracking lws_tls_restrict_borrow() return value and only
calling lws_tls_restrict_return() if lws_tls_restrict_borrow() is
successful.
This provides a way to get ahold of LWS_WITH_CONMON telemetry from Secure
Streams, it works the same with direct onward connections or via the proxy.
You can mark streamtypes with a "perf": true policy attribute... this
causes the onward connections on those streamtypes to collect information
about the connection performance, and the unsorted DNS results.
Streams with that policy attribute receive extra data in their rx callback,
with the LWSSS_FLAG_PERF_JSON flag set on it, containing JSON describing the
performance of the onward connection taken from CONMON data, in a JSON
representation. Streams without the "perf" attribute set never receive
this extra rx.
The received JSON is based on the CONMON struct info and looks like
{"peer":"46.105.127.147","dns_us":596,"sockconn_us":31382,"tls_us":28180,"txn_resp_us:23015,"dns":["2001:41d0:2:ee93::1","46.105.127.147"]}
A new minimal example minimal-secure-streams-perf is added that collects
this data on an HTTP GET from warmcat.com, and is built with a -client
version as well if LWS_WITH_SECURE_STREAMS_PROXY_API is set, that operates
via the ss proxy and produces the same result at the client.
This provides a build option LWS_WITH_CONMON that lets user code recover
detailed connection stats on client connections with the LCCSCF_CONMON
flag.
In addition to latencies for dns, socket connection, tls and first protocol
response where possible, it also provides the user code an unfiltered list
of DNS responses that the client received, and the peer it actually
succeded to connect to.
There are a few build options that are trying to keep and report
various statistics
- DETAILED_LATENCY
- SERVER_STATUS
- WITH_STATS
remove all those and establish a generic rplacement, lws_metrics.
lws_metrics makes its stats available via an lws_system ops function
pointer that the user code can set.
Openmetrics export is supported, for, eg, prometheus scraping.
For SMP case, it was desirable to have a netlink listener per pt so they
could deal with pt-level changes in the pt's local service thread. But
Linux restricts the process to just one netlink listener.
We worked around it by only listening on pt[0], this aligns us a bit more
with the reality and moves to a single routing table in the context.
There's still more to do for SMP case locking.
This is a huge patch that should be a global NOP.
For unix type platforms it enables -Wconversion to issue warnings (-> error)
for all automatic casts that seem less than ideal but are normally concealed
by the toolchain.
This is things like passing an int to a size_t argument. Once enabled, I
went through all args on my default build (which build most things) and
tried to make the removed default cast explicit.
With that approach it neither change nor bloat the code, since it compiles
to whatever it was doing before, just with the casts made explicit... in a
few cases I changed some length args from int to size_t but largely left
the causes alone.
From now on, new code that is relying on less than ideal casting
will complain and nudge me to improve it by warnings.
This adds some new objects and helpers for keeping and logging
info on grouped allocations, a group is, eg, SS handles or client
wsis.
Allocated objects get a context-unique "tag" string intended to replace
%p / wsi pointers etc. Pointers quickly become confusing when
allocations are freed and reused, the tag string won't repeat
until you produce 2^64 objects in a context.
In addition the tag string documents the object group, with prefixes
like "wsi-" or "vh-" and contain object-specific additional
information like the vhost name, address / port or the role of the wsi.
At creation time the lws code can use a format string and args
to add whatever group-specific info makes sense, eg, a wsi bound
to a secure stream can also append the guid of the secure stream,
it's copied into the new object tag and so is still available
cleanly after the stream is destroyed if the wsi outlives it.
A few different places want to create wsis and basically repeat their
own versions of the flow. Let's unify it into one helper in wsi.c
Also require the context lock held (this only impacts LWS_MAX_SMP > 1)
If getaddrinfo() is not able to reach the server, there may be
a connectivity problem downstream of the device that has not
been recognized by the Captive Portal Detect pieces yet.
If it looks like that might have happened, used the getaddrinfo()
return to provoke a new CPD scan.
RFC6724 defines an ipv6-centric DNS result sorting algorithm, that
takes route and source address route information for the results
given by the DNS resolution, and sorts them in order of preferability,
which defines the order they should be tried in.
If LWS_WITH_NETLINK, then lws takes care about collecting and monitoring
the interface, route and source address information, and uses it to
perform the RFC6724 sorting to re-sort the DNS before trying to make
the connections.
This creates a role for RFC3549 Netlink monitoring.
If the OS supports it (currently, linux) then each pt creates a wsi
with the netlink role and dumps the current routing table at pt init.
It then maintains a cache of the routing table in each pt.
Upon routing table changes an SMD message is issued as an event, and
Captive Portal Detection is triggered.
All of the pt's current connections are reassessed for routability under
the changed routing table, those that no longer have a valid route or
gateway are closed.
This adds a helper to test if an sa46 is on an sa46-based subnet.
The compare helper is adapted to say that non INET/INET6 addresses with
the same AF match.
If we connect out to an IP address, or we adopt a connected socket,
from now on we want to hold the peer sockaddr in the wsi.
Adapt ACCESS_LOG to use this new copy rather than keep the
stringified version.
They have been in lib/roles/http for historical reasons, and all
ended up in client-handshake.c that doesn't describe what they
actually do any more. Separate out the staged client connect
related stage functions into
lib/core-net/client/client2.c: lws_client_connect_2_dnsreq()
lib/core-net/client/client3.c: lws_client_connect_3_connect()
lib/core-net/client/client4.c: lws_client_connect_4_established()
Move a couple of other functions from there that don't belong out to
tls-client.c and client-http.c, which is related to http and remains
in the http role dir.
For server, if the adoption of the incoming connection proceeds but then
fails early on, eg, tls alert due to hostname mismatch with cert, the
wsi close happens but it doesn't clean up the invalidated reference to
itself in the server ss object... if it became established, that's handled
by the ss protocol callback.
This patch helps the close path to understand there is a related ss object
and to clean up after itself.
This is complicated by the fact extern on a function declaration implies
visibility... we have to make LWS_EXTERN empty when building static.
And, setting target_compile_definitions() doesn't work inside macros,
so it has to be set explicitly for the plugins.
Checking the symbol status needs nm -C -D as per
https://stackoverflow.com/questions/37934388/symbol-visibility-not-working-as-expected
after this patch, libwebsockets.a shows no symbols when checked like that and
the static-linked minimal examples only show -U for their other dynamic
imports.
In a handful of cases we use LWS_EXTERN on extern data declarations,
those then need to change to explicit extern.
Event lib support as it has been isn't scaling well, at the low level
libevent and libev headers have a namespace conflict so they can't
both be built into the same image, and at the distro level, binding
all the event libs to libwebsockets.so makes a bloaty situation for
packaging, lws will drag in all the event libs every time.
This patch implements the plan discussed here
https://github.com/warmcat/libwebsockets/issues/1980
and refactors the event lib support so they are built into isolated
plugins and bound at runtime according to what the application says
it wants to use. The event lib plugins can be packaged individually
so that only the needed sets of support are installed (perhaps none
of them if the user code is OK with the default poll() loop). And
dependent user code can mark the specific event loop plugin package
as required so pieces are added as needed.
The eventlib-foreign example is also refactored to build the selected
lib support isolated.
A readme is added detailing the changes and how to use them.
https://libwebsockets.org/git/libwebsockets/tree/READMEs/README.event-libs.md
Move the common plugin scanning dir stuff to be based on lws_dir, which
already builds for windows. Previously this was done via dirent for unix
and libuv for windows.
Reduce the dl plat stuff to just wrap instantiation and destruction of
dynlibs, establish common code in lib/misc/dir.c for plugin scanning
itself.
Migrate the libuv windows dl stuff to windows-plugins.c, so that he's
available even if later libuv loop support becomes and event lib plugin.
Remove the existing api exports scheme for plugins, just export a const struct
now which has a fixed header type but then whatever you want afterwards depending
on the class / purpose of the plugin. Place a "class" string in the header so
there can be different kinds of plugins implying different types exported.
Make the plugin apis public and add support for filter by class string, and
per instantation / destruction callbacks so the subclassed header type can
do its thing for the plugin class. The user provides a linked-list base
for his class of plugins, so he can manage them completely separately and
in user code / user export types.
Rip out some last hangers-on from generic sessions / tables.
This is all aimed at making the plugins support general enough so it can
provide event lib plugins later.
Add initial support for defining servers using Secure Streams
policy and api semantics.
Serving h1, h2 and ws should be functional, the new minimal
example shows a combined http + SS server with an incrementing
ws message shown in the browser over tls, in around 200 lines
of user code.
NOP out anything to do with plugins, they're not currently used.
Update the docs correspondingly.
Presently a vh is allocated per trust store at policy parsing-time, this
is no problem on a linux-class device or if you decide you need a dynamic
policy for functionality reasons.
However if you're in a constrained enough situation that the static policy
makes sense, in the case your trust stores do not have 100% duty cycle, ie,
are anyway always in use, the currently-unused vhosts and their x.509 stack
are sitting there taking up heap for no immediate benefit.
This patch modifies behaviour in ..._STATIC_POLICY_ONLY so that vhosts and
associated x.509 tls contexts are not instantiated until a secure stream using
them is created; they are refcounted, and when the last logical secure
stream using a vhost is destroyed, the vhost and its tls context is also
destroyed.
If another ss connection is created that wants to use the trust store, the
vhost and x.509 context is regenerated again as needed.
Currently the refcounting is by ss, it's also possible to move the refcounting
to be by connection. The choice is between the delay to generate the vh
being visisble at logical ss creation-time, or at connection-time. It's anyway
not preferable to have ss instantiated and taking up space with no associated
connection or connection attempt underway.
NB you will need to reprocess any static policies after this patch so they
conform to the trust_store changes.
Currently we always reserve a fakewsi per pt so events that don't have a related actual
wsi, like vhost-protocol-init or vhost cert init via protocol callback can make callbacks
that look reasonable to user protocol handler code expecting a valid wsi every time.
This patch splits out stuff that user callbacks often unconditionally expect to be in
a wsi, like context pointer, vhost pointer etc into a substructure, which is composed
into struct lws at the top of it. Internal references (struct lws is opaque, so there
are only internal references) are all updated to go via the substructre, the compiler
should make that a NOP.
Helpers are added when fakewsi is used and referenced.
If not PLAT_FREERTOS, we continue to provide a full fakewsi in the pt as before,
although the helpers improve consistency by zeroing down the substructure. There is
a huge amount of user code out there over the last 10 years that did not always have
the minimal examples to follow, some of it does some unexpected things.
If it is PLAT_FREERTOS, that is a newer thing in lws and users have the benefit of
being able to follow the minimal examples' approach. For PLAT_FREERTOS we don't
reserve the fakewsi in the pt any more, saving around 800 bytes. The helpers then
create a struct lws_a (the substructure) on the stack, zero it down (but it is only
like 4 pointers) and prepare it with whatever we know like the context.
Then we cast it to a struct lws * and use it in the user protocol handler call.
In this case, the remainder of the struct lws is undefined. However the amount of
old protocol handlers that might touch things outside of the substructure in
PLAT_FREERTOS is very limited compared to legacy lws user code and the saving is
significant on constrained devices.
User handlers should not be touching everything in a wsi every time anyway, there
are several cases where there is no valid wsi to do the call with. Dereference of
things outside the substructure should only happen when the callback reason shows
there is a valid wsi bound to the activity (as in all the minimal examples).
FreeRTOS only supports nonmonotonic time, when we correct it by, eg,
ntpclient, we offset all the existing sul timeouts. This adds an
internal helper function to correct existing sul timeouts by the
step amount, and call it in lws ntpclient implementation when
adjusting the gettimeofday() time.
If the client connection attempt fails early, we report it will a NULL
return from the client connection api. If it fails later, perhaps after
more times around the event loop, we report it as a CONNECTION_ERROR.
This patch makes sure we don't do CONNECTION_ERROR flow if in fact we
are still in the client_connect_via_info() and in a position to report
the failure by returning NULL from there, without it under some
conditions we will do both a CONNECTION_ERROR and return NULL.
Adapt the pt sul owner list to be an array, and define two different lists,
one that acts like before and is the default for existing users, and another
that has the ability to cooperate with systemwide suspend to restrict the
interval spent suspended so that it will wake in time for the earliest
thing on this wake-suspend sul list.
Clean the api a bit and add lws_sul_cancel() that only needs the sul as the
argument.
Add a flag for client creation info to indicate that this client connection
is important enough that, eg, validity checking it to detect silently dead
connections should go on the wake-suspend sul list. That flag is exposed in
secure streams policy so it can be added to a streamtype with
"swake_validity": true
Deprecate out the old vhost timer stuff that predates sul. Add a flag
LWS_WITH_DEPRECATED_THINGS in cmake so users can get it back temporarily
before it will be removed in a v4.2.
Adapt all remaining in-tree users of it to use explicit suls.
Add a member to the vh init struct allowing control of the overall
connection wait introduced in an earlier patch. Set it to 20s
by default.
The timeout_secs member controls the individual DNS result
connect timeout and is reduced to 5s by default.