Secure Streams is an optional layer on top of lws that separates policy
like endpoint selection and tls cert validation into a device JSON
policy document.
Code that wants to open a client connection just specifies a streamtype name,
and no longer deals with details like the endpoint, the protocol (!) or anything
else other than payloads and optionally generic metadata; the JSON policy
contains all the details for each streamtype. h1, h2, ws and mqtt client
connections are supported.
Logical secure streams outlive any particular connection and supports "nailed-up"
connectivity regardless of underlying connection stability.
Adds client support for MQTT QoS0 and QoS1, compatible with AWS IoT
Supports stream binding where independent client connections to the
same endpoint can mux on a single tcp + tls connection with topic
routing managed internally.
Continue with lws_struct, add sqlite support for one
level of lws_dll2_t lists of structs serialization and
deserialization, plus the matching api-test.
Headers related to ws or h2 are now elided if the ws or h2 role
is not enabled for build. In addition, a new build-time option
LWS_WITH_HTTP_UNCOMMON_HEADERS on by default allows removal of
less-common http headers to shrink the parser footprint.
Minilex is adapted to produce 8 different versions of the lex
table, chosen at build-time according to which headers are
included in the build.
If you don't need the unusual headers, or aren't using h2 or ws,
this chops down the size of the ah and the rodata needed to hold
the parsing table from 87 strings / pointers to 49, and the
parsing table from 1177 to 696 bytes.
Surprisingly -fdata-sections -ffunction-sections does not remove any string literals and __func__
implicit .rodata generated by the removed function's compilation.
That means potentially considerable deadweight is in the image even if the function is removed
at linktime.
The vfork optimized spawn, stdxxx and terminal handling in the cgi
implementation is quite mature and sophisticated, and useful for
other things unrelated to cgi. Break it out into its own public
api under LWS_WITH_SPAWN, off by default.
Expand it so the parent wsi is optional, and the role and protocol
bindings for stdxxx pipes can be set. Allow optional sul timeout
and external lws_dll2 owner for extant children.
Remove inline style from minimal http-server-cgi
From eventfd man page:
Applications can use an eventfd file descriptor instead of a pipe (see
pipe(2)) in all cases where a pipe is used simply to signal events.
The kernel overhead of an eventfd file descriptor is much lower than
that of a pipe, and only one file descriptor is required
(versus the two required for a pipe).
This adds support for POST in both h1 and h2 queues / stream binding.
The previous queueing tried to keep the "leader" wsi who made the
actual connection around and have it act on the transaction queue
tail if it had done its own thing.
This refactors it so instead, who is the "leader" moves down the
queue and the queued guys inherit the fd, SSL * and queue from the
old leader as they take over.
This lets them operate in their own wsi identity directly and gets
rid of all the "effective wsi" checks, which was applied incompletely
and getting out of hand considering the separate lws_mux checks for
h2 and other muxed protocols alongside it.
This change also allows one wsi at a time to own the transaction for
POST. --post is added as an option to lws-minimal-http-client-multi
and 6 extra selftests with POST on h1/h2, pipelined or not and
staggered or not are added to the CI.
Add selectable event lib support to minimal-http-client-multi and
clean up context destroy flow so we can use lws_destroy_context() from
inside the callback to indicate we want to end the event loop, without
using the traditional "interrupted" flag and in a way that works no
matter which event loop backend is being used.
Actually we are scheduling the first retry in case nothing comes
back from the server, it won't fail since it will allow at least
one retry, this being udp.
(Includes fixes from Yichen Gu)
Currently the incoming ebuf is always replaced to point to either a whole
buflist segment, or up to the (pt_serv_buf - LWS_PRE) length in the pt_serv_buf.
This is called on path for handling http read... some user code reasonably wants to
restrict the read size to what it can handle.
Change the other lws_buflist_aware_read() callers to zero ebuf before calling, and for
those have it keep the current behaviour; but if non-NULL ebuf.token on incoming, as
in http read path case, restrict both reported len of buflist content and the read length
to the incoming ebuf.len so the user code can control what it will get at one time.
Additionally muxed protocol wsi have no choice but to read what was sent to them
since it's HOL-blocking for other streams and its own WINDOW_UPDATEs. So add an
internal param to lws_buflist_aware_read() forcing read even if buflist content
is available.
This provides support to build lws using the linkit 7697 public SDK
from here https://docs.labs.mediatek.com/resource/mt7687-mt7697/en/downloads
This toolchain has some challenges, its int32_t / uint32_t are long,
so assumptions about format strings for those being %u / %d / %x all
break. This fixes all the cases for the features enabled by the
default cmake settings.
Freertos + lwip doesn't support pipe2() or pipe()... implement a "pipe"
based on two UDP sockets, one listening on 127.0.0.1:54321 and the other
doing a sendto() there of a single byte to interrupt the event loop wait.
Re-use the arrangements for actual pipe fds and pipe role to deliver
lws_cancel_service() functionality using this.