Trying to use the opaque pointer in the handle to point to the conn isn't
going to work when we need it to point to the ss handle.
Move it to have its on place in the handle.
This fixes the proxy rx flow by adding an lws_dsh helper to hide the
off-by-one in the "kind" array (kind 0 is reserved for tracking the
unallocated dsh blocks).
For testing, it adds a --blob option on minimal-secure-streams[-client]
which uses a streamtype "bulkproxflow" from here
https://warmcat.com/policy/minimal-proxy-v4.2-v2.json
"bulkproxflow": {
"endpoint": "warmcat.com",
"port": 443,
"protocol": "h1",
"http_method": "GET",
"http_url": "blob.bin",
"proxy_buflen": 32768,
"proxy_buflen_rxflow_on_above": 24576,
"proxy_buflen_rxflow_off_below": 8192,
"tls": true,
"retry": "default",
"tls_trust_store": "le_via_dst"
}
This downloads a 51MB blob of random data with the SHA256sum
ed5720c16830810e5829dfb9b66c96b2e24efc4f93aa5e38c7ff4150d31cfbbf
The minimal-secure-streams --blob example client delays the download by
50ms every 10KiB it sees to force rx flow usage at the proxy.
It downloads the whole thing and checks the SHA256 is as expected.
Logs about rxflow status are available at LLL_INFO log level.
This provides a way to get ahold of LWS_WITH_CONMON telemetry from Secure
Streams, it works the same with direct onward connections or via the proxy.
You can mark streamtypes with a "perf": true policy attribute... this
causes the onward connections on those streamtypes to collect information
about the connection performance, and the unsorted DNS results.
Streams with that policy attribute receive extra data in their rx callback,
with the LWSSS_FLAG_PERF_JSON flag set on it, containing JSON describing the
performance of the onward connection taken from CONMON data, in a JSON
representation. Streams without the "perf" attribute set never receive
this extra rx.
The received JSON is based on the CONMON struct info and looks like
{"peer":"46.105.127.147","dns_us":596,"sockconn_us":31382,"tls_us":28180,"txn_resp_us:23015,"dns":["2001:41d0:2:ee93::1","46.105.127.147"]}
A new minimal example minimal-secure-streams-perf is added that collects
this data on an HTTP GET from warmcat.com, and is built with a -client
version as well if LWS_WITH_SECURE_STREAMS_PROXY_API is set, that operates
via the ss proxy and produces the same result at the client.
There are a few build options that are trying to keep and report
various statistics
- DETAILED_LATENCY
- SERVER_STATUS
- WITH_STATS
remove all those and establish a generic rplacement, lws_metrics.
lws_metrics makes its stats available via an lws_system ops function
pointer that the user code can set.
Openmetrics export is supported, for, eg, prometheus scraping.
The state tracking and violation detection is very powerful at enforcing
only legal transitions, but if it's busy, we don't get to see which stream
had to problem. Add a pointer to the handle lc tag, do that rather than
just pass the handle so we can deal with ss and sspc handles cleanly.
Add .proxy_buflen_rxflow_on_above / .proxy_buflen_rxflow_off_below policy streamtype options
and manage the rx flow control for the onward ss wsi according to how the dsh for the
remote client is doing.
client_buflen_rxflow_... are there but not wired up.
Let's allow the proxy to pass back what the policy says about
the size of dsh buffer the client side of this streamtype
should have.
Defer clientsize dsh generation until we got the info back
from the proxy in the response to the initial packet. If
it's zero / unset in the policy, just go with 32KB.
This is a huge patch that should be a global NOP.
For unix type platforms it enables -Wconversion to issue warnings (-> error)
for all automatic casts that seem less than ideal but are normally concealed
by the toolchain.
This is things like passing an int to a size_t argument. Once enabled, I
went through all args on my default build (which build most things) and
tried to make the removed default cast explicit.
With that approach it neither change nor bloat the code, since it compiles
to whatever it was doing before, just with the casts made explicit... in a
few cases I changed some length args from int to size_t but largely left
the causes alone.
From now on, new code that is relying on less than ideal casting
will complain and nudge me to improve it by warnings.
This adds some new objects and helpers for keeping and logging
info on grouped allocations, a group is, eg, SS handles or client
wsis.
Allocated objects get a context-unique "tag" string intended to replace
%p / wsi pointers etc. Pointers quickly become confusing when
allocations are freed and reused, the tag string won't repeat
until you produce 2^64 objects in a context.
In addition the tag string documents the object group, with prefixes
like "wsi-" or "vh-" and contain object-specific additional
information like the vhost name, address / port or the role of the wsi.
At creation time the lws code can use a format string and args
to add whatever group-specific info makes sense, eg, a wsi bound
to a secure stream can also append the guid of the secure stream,
it's copied into the new object tag and so is still available
cleanly after the stream is destroyed if the wsi outlives it.
CTest does not directly support daemon spawn as part of the test flow,
we have to specify it as a "fixture" dependency and then hack up daemonization
in a shellscript... this last part unfortunately limits its ability to run to
unix type platforms.
On those though, if the PROXY_API cmake option is enabled, the ctest flow will
spawn the proxy and run lws-minimal-secure-strems-client against it
At the moment you can define and set per-stream metadata at the client,
which will be string-substituted and if configured in the policy, set in
related outgoing protocol specific content like h1 headers.
This patch extends the metadata concept to also check incoming protocol-
specific content like h1 headers and where it matches the binding in the
streamtype's metadata entry, make it available to the client by name, via
a new lws_ss_get_metadata() api.
Currently warmcat.com has additional headers for
server: lwsws (well-known header name)
test-custom-header: hello (custom header name)
minimal-secure-streams test is updated to try to recover these both
in direct and -client (via proxy) versions. The corresponding metadata
part of the "mintest" stream policy from warmcat.com is
{
"srv": "server:"
}, {
"test": "test-custom-header:"
},
If built direct, or at the proxy, the stream has access to the static
policy metadata definitions and can store the rx metadata in the stream
metadata allocation, with heap-allocated a value. For client side that
talks to a proxy, only the proxy knows the policy, and it returns rx
metadata inside the serialized link to the client, which stores it on
the heap attached to the stream.
In addition an optimization for mapping static policy metadata definitions
to individual stream handle metadata is changed to match by name.
Formalize the LWSSSSRET_ enums into a type "lws_ss_state_return_t"
returned by the rx, tx and state callbacks, and some private helpers
lws_ss_backoff() and lws_ss_event_helper().
Remove LWSSSSRET_SS_HANDLE_DESTROYED concept... the two helpers that could
have destroyed the ss and returned that, now return LWSSSSRET_DESTROY_ME
to the caller to perform or pass up to their caller instead.
Handle helper returns in all the ss protocols and update the rx / tx
calls to have their returns from rx / tx / event helper and ss backoff
all handled by unified code.
Currently we always reserve a fakewsi per pt so events that don't have a related actual
wsi, like vhost-protocol-init or vhost cert init via protocol callback can make callbacks
that look reasonable to user protocol handler code expecting a valid wsi every time.
This patch splits out stuff that user callbacks often unconditionally expect to be in
a wsi, like context pointer, vhost pointer etc into a substructure, which is composed
into struct lws at the top of it. Internal references (struct lws is opaque, so there
are only internal references) are all updated to go via the substructre, the compiler
should make that a NOP.
Helpers are added when fakewsi is used and referenced.
If not PLAT_FREERTOS, we continue to provide a full fakewsi in the pt as before,
although the helpers improve consistency by zeroing down the substructure. There is
a huge amount of user code out there over the last 10 years that did not always have
the minimal examples to follow, some of it does some unexpected things.
If it is PLAT_FREERTOS, that is a newer thing in lws and users have the benefit of
being able to follow the minimal examples' approach. For PLAT_FREERTOS we don't
reserve the fakewsi in the pt any more, saving around 800 bytes. The helpers then
create a struct lws_a (the substructure) on the stack, zero it down (but it is only
like 4 pointers) and prepare it with whatever we know like the context.
Then we cast it to a struct lws * and use it in the user protocol handler call.
In this case, the remainder of the struct lws is undefined. However the amount of
old protocol handlers that might touch things outside of the substructure in
PLAT_FREERTOS is very limited compared to legacy lws user code and the saving is
significant on constrained devices.
User handlers should not be touching everything in a wsi every time anyway, there
are several cases where there is no valid wsi to do the call with. Dereference of
things outside the substructure should only happen when the callback reason shows
there is a valid wsi bound to the activity (as in all the minimal examples).
- Add low level system message distibution framework
- Add support for local Secure Streams to participate using _lws_smd streamtype
- Add apit test and minimal example
- Add SS proxy support for _lws_smd
See minimal-secure-streams-smd README.md
Secure Streams is an optional layer on top of lws that separates policy
like endpoint selection and tls cert validation into a device JSON
policy document.
Code that wants to open a client connection just specifies a streamtype name,
and no longer deals with details like the endpoint, the protocol (!) or anything
else other than payloads and optionally generic metadata; the JSON policy
contains all the details for each streamtype. h1, h2, ws and mqtt client
connections are supported.
Logical secure streams outlive any particular connection and supports "nailed-up"
connectivity regardless of underlying connection stability.