mirror of
https://github.com/warmcat/libwebsockets.git
synced 2025-03-16 00:00:07 +01:00

Although RSA can be used directly for signing / JWS on large chunks of data since it's only operating on the hash, when JWE support arrives, which allows bulk encryption, it's going to be mandatory to support secondary AES ciphers to use on the bulk data. This adds generic support for all AES modes that OpenSSL and mbedTLS have in common, works on both mbedTLS and OpenSSL the same, and adds unit tests for each mode in api-test-gencrypto, to run in CI.
545 lines
14 KiB
C
545 lines
14 KiB
C
/*
|
|
* libwebsockets - lws-plugin-ssh-base - kex-25519.c
|
|
*
|
|
* Copyright (C) 2017 Andy Green <andy@warmcat.com>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation:
|
|
* version 2.1 of the License.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301 USA
|
|
*/
|
|
#include "libwebsockets.h"
|
|
#include "lws-ssh.h"
|
|
|
|
#include <string.h>
|
|
|
|
/*
|
|
* ssh-keygen -t ed25519
|
|
* head -n-1 srv-key-25519 | tail -n +2 | base64 -d | hexdump -C
|
|
*/
|
|
|
|
static void
|
|
lws_sized_blob(uint8_t **p, void *blob, uint32_t len)
|
|
{
|
|
lws_p32((*p), len);
|
|
*p += 4;
|
|
memcpy(*p, blob, len);
|
|
*p += len;
|
|
}
|
|
|
|
static const char key_leadin[] = "openssh-key-v1\x00\x00\x00\x00\x04none"
|
|
"\x00\x00\x00\x04none\x00"
|
|
"\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x33"
|
|
"\x00\x00\x00\x0bssh-ed25519\x00\x00\x00\x20",
|
|
key_sep[] = "\x00\x00\x00\x90\xb1\x4f\xa7\x28"
|
|
"\xb1\x4f\xa7\x28\x00\x00\x00\x0bssh-ed25519"
|
|
"\x00\x00\x00\x20",
|
|
key_privl[] = "\x00\x00\x00\x40",
|
|
key_trail[] = "\x00\x00\x00\x0cself-gen@cbl\x01";
|
|
|
|
static size_t
|
|
lws_gen_server_key_ed25519(struct lws_context *context, uint8_t *buf256,
|
|
size_t max_len)
|
|
{
|
|
uint8_t *p = buf256 + sizeof(key_leadin) - 1;
|
|
|
|
if (max_len < sizeof(key_leadin) - 1 + 32 + sizeof(key_sep) - 1 + 32 +
|
|
sizeof(key_privl) - 1 + 64 + sizeof(key_trail) - 1)
|
|
return 0;
|
|
|
|
memcpy(buf256, key_leadin, sizeof(key_leadin) - 1);
|
|
crypto_sign_ed25519_keypair(context, p, p + 32 + sizeof(key_sep) - 1 +
|
|
32 + sizeof(key_privl) - 1);
|
|
memcpy(p + 32 + sizeof(key_sep) - 1, p, 32);
|
|
p += 32;
|
|
memcpy(p, key_sep, sizeof(key_sep) - 1);
|
|
p += sizeof(key_sep) - 1 + 32;
|
|
memcpy(p, key_privl, sizeof(key_privl) - 1);
|
|
p += sizeof(key_privl) - 1 + 64;
|
|
memcpy(p, key_trail, sizeof(key_trail) - 1);
|
|
p += sizeof(key_trail) - 1;
|
|
|
|
lwsl_notice("%s: Generated key len %ld\n", __func__, (long)(p - buf256));
|
|
|
|
return p - buf256;
|
|
}
|
|
|
|
static int
|
|
lws_mpint_rfc4251(uint8_t *dest, const uint8_t *src, int bytes, int uns)
|
|
{
|
|
uint8_t *odest = dest;
|
|
|
|
while (!*src && bytes > 1) {
|
|
src++;
|
|
bytes--;
|
|
}
|
|
|
|
if (!*src) {
|
|
*dest++ = 0;
|
|
*dest++ = 0;
|
|
*dest++ = 0;
|
|
*dest++ = 0;
|
|
|
|
return 4;
|
|
}
|
|
|
|
if (uns && (*src) & 0x80)
|
|
bytes++;
|
|
|
|
*dest++ = bytes >> 24;
|
|
*dest++ = bytes >> 16;
|
|
*dest++ = bytes >> 8;
|
|
*dest++ = bytes;
|
|
|
|
if (uns && (*src) & 0x80) {
|
|
*dest++ = 0;
|
|
bytes--;
|
|
}
|
|
|
|
while (bytes--)
|
|
*dest++ = *src++;
|
|
|
|
return lws_ptr_diff(dest, odest);
|
|
}
|
|
|
|
int
|
|
ed25519_key_parse(uint8_t *p, size_t len, char *type, size_t type_len,
|
|
uint8_t *pub, uint8_t *pri)
|
|
{
|
|
uint32_t l, publ, m;
|
|
uint8_t *op = p;
|
|
|
|
if (len < 180)
|
|
return 1;
|
|
|
|
if (memcmp(p, "openssh-key-v1", 14))
|
|
return 2;
|
|
|
|
p += 15;
|
|
|
|
l = lws_g32(&p); /* ciphername */
|
|
if (l != 4 || memcmp(p, "none", 4))
|
|
return 3;
|
|
p += l;
|
|
|
|
l = lws_g32(&p); /* kdfname */
|
|
if (l != 4 || memcmp(p, "none", 4))
|
|
return 4;
|
|
p += l;
|
|
|
|
l = lws_g32(&p); /* kdfoptions */
|
|
if (l)
|
|
return 5;
|
|
|
|
l = lws_g32(&p); /* number of keys */
|
|
if (l != 1)
|
|
return 6;
|
|
|
|
publ = lws_g32(&p); /* length of pubkey block */
|
|
if ((size_t)((p - op) + publ) >= len)
|
|
return 7;
|
|
|
|
l = lws_g32(&p); /* key type length */
|
|
if (l > 31)
|
|
return 8;
|
|
m = l;
|
|
if (m >= type_len)
|
|
m = (uint32_t)type_len -1 ;
|
|
lws_strncpy(type, (const char *)p, m + 1);
|
|
|
|
p += l;
|
|
l = lws_g32(&p); /* pub key length */
|
|
if (l != 32)
|
|
return 10;
|
|
|
|
p += l;
|
|
|
|
publ = lws_g32(&p); /* length of private key block */
|
|
if ((size_t)((p - op) + publ) != len)
|
|
return 11;
|
|
|
|
l = lws_g32(&p); /* checkint 1 */
|
|
if (lws_g32(&p) != l) /* must match checkint 2 */
|
|
return 12;
|
|
|
|
l = lws_g32(&p); /* key type length */
|
|
|
|
p += l;
|
|
l = lws_g32(&p); /* public key part length */
|
|
if (l != LWS_SIZE_EC25519_PUBKEY)
|
|
return 15;
|
|
|
|
if (pub)
|
|
memcpy(pub, p, LWS_SIZE_EC25519_PUBKEY);
|
|
p += l;
|
|
l = lws_g32(&p); /* private key part length */
|
|
if (l != LWS_SIZE_EC25519_PRIKEY)
|
|
return 16;
|
|
|
|
if (pri)
|
|
memcpy(pri, p, LWS_SIZE_EC25519_PRIKEY);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_genhash_update_len(struct lws_genhash_ctx *ctx, const void *input, size_t ilen)
|
|
{
|
|
uint32_t be;
|
|
|
|
lws_p32((uint8_t *)&be, (uint32_t)ilen);
|
|
|
|
if (lws_genhash_update(ctx, (uint8_t *)&be, 4))
|
|
return 1;
|
|
if (lws_genhash_update(ctx, input, ilen))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kex_ecdh_dv(uint8_t *dest, int dest_len, const uint8_t *kbi, int kbi_len,
|
|
const uint8_t *H, char c, const uint8_t *session_id)
|
|
{
|
|
uint8_t pool[LWS_SIZE_SHA256];
|
|
struct lws_genhash_ctx ctx;
|
|
int n = 0, m;
|
|
|
|
/*
|
|
* Key data MUST be taken from the beginning of the hash output.
|
|
* As many bytes as needed are taken from the beginning of the hash
|
|
* value.
|
|
*
|
|
* If the key length needed is longer than the output of the HASH,
|
|
* the key is extended by computing HASH of the concatenation of K
|
|
* and H and the entire key so far, and appending the resulting
|
|
* bytes (as many as HASH generates) to the key. This process is
|
|
* repeated until enough key material is available; the key is taken
|
|
* from the beginning of this value. In other words:
|
|
*
|
|
* K1 = HASH(K || H || X || session_id) (X is e.g., "A")
|
|
* K2 = HASH(K || H || K1)
|
|
* K3 = HASH(K || H || K1 || K2)
|
|
* ...
|
|
* key = K1 || K2 || K3 || ...
|
|
*/
|
|
|
|
while (n < dest_len) {
|
|
|
|
if (lws_genhash_init(&ctx, LWS_GENHASH_TYPE_SHA256))
|
|
return 1;
|
|
|
|
if (lws_genhash_update(&ctx, kbi, kbi_len))
|
|
goto hash_failed;
|
|
if (lws_genhash_update(&ctx, H, LWS_SIZE_SHA256))
|
|
goto hash_failed;
|
|
|
|
if (!n) {
|
|
if (lws_genhash_update(&ctx, (void *)&c, 1))
|
|
goto hash_failed;
|
|
if (lws_genhash_update(&ctx, session_id,
|
|
LWS_SIZE_EC25519))
|
|
goto hash_failed;
|
|
} else
|
|
if (lws_genhash_update(&ctx, pool, LWS_SIZE_EC25519))
|
|
goto hash_failed;
|
|
|
|
lws_genhash_destroy(&ctx, pool);
|
|
|
|
m = LWS_SIZE_EC25519;
|
|
if (m > (dest_len - n))
|
|
m = dest_len - n;
|
|
|
|
memcpy(dest, pool, m);
|
|
n += m;
|
|
dest += m;
|
|
}
|
|
|
|
return 0;
|
|
|
|
hash_failed:
|
|
lws_genhash_destroy(&ctx, NULL);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static const unsigned char basepoint[32] = { 9 };
|
|
|
|
size_t
|
|
get_gen_server_key_25519(struct per_session_data__sshd *pss, uint8_t *b,
|
|
size_t len)
|
|
{
|
|
size_t s, mylen;
|
|
|
|
mylen = pss->vhd->ops->get_server_key(pss->wsi, b, len);
|
|
if (mylen)
|
|
return mylen;
|
|
|
|
/* create one then */
|
|
lwsl_notice("Generating server hostkey\n");
|
|
s = lws_gen_server_key_ed25519(pss->vhd->context, b, len);
|
|
lwsl_notice(" gen key len %ld\n", (long)s);
|
|
if (!s)
|
|
return 0;
|
|
/* set the key */
|
|
if (!pss->vhd->ops->set_server_key(pss->wsi, b, s))
|
|
return 0;
|
|
|
|
/* new key stored OK */
|
|
|
|
return s;
|
|
}
|
|
|
|
int
|
|
kex_ecdh(struct per_session_data__sshd *pss, uint8_t *reply, uint32_t *plen)
|
|
{
|
|
uint8_t pri_key[64], temp[64], payload_sig[64 + 32], a, *lp, kbi[64];
|
|
struct lws_kex *kex = pss->kex;
|
|
struct lws_genhash_ctx ctx;
|
|
unsigned long long smlen;
|
|
uint8_t *p = reply + 5;
|
|
uint32_t be, kbi_len;
|
|
uint8_t servkey[256];
|
|
char keyt[33];
|
|
int r, c;
|
|
|
|
r = (int)get_gen_server_key_25519(pss, servkey, (int)sizeof(servkey));
|
|
if (!r) {
|
|
lwsl_err("%s: Failed to get or gen server key\n", __func__);
|
|
|
|
return 1;
|
|
}
|
|
|
|
r = ed25519_key_parse(servkey, r, keyt, sizeof(keyt),
|
|
pss->K_S /* public key */, pri_key);
|
|
if (r) {
|
|
lwsl_notice("%s: server key parse failed: %d\n", __func__, r);
|
|
|
|
return 1;
|
|
}
|
|
keyt[32] = '\0';
|
|
|
|
lwsl_info("Server key type: %s\n", keyt);
|
|
|
|
/*
|
|
* 1) Generate ephemeral key pair [ eph_pri_key | kex->Q_S ]
|
|
* 2) Compute shared secret.
|
|
* 3) Generate and sign exchange hash.
|
|
*
|
|
* 1) A 32 bytes private key should be generated for each new
|
|
* connection, using a secure PRNG. The following actions
|
|
* must be done on the private key:
|
|
*
|
|
* mysecret[0] &= 248;
|
|
* mysecret[31] &= 127;
|
|
* mysecret[31] |= 64;
|
|
*/
|
|
lws_get_random(pss->vhd->context, kex->eph_pri_key, LWS_SIZE_EC25519);
|
|
kex->eph_pri_key[0] &= 248;
|
|
kex->eph_pri_key[31] &= 127;
|
|
kex->eph_pri_key[31] |= 64;
|
|
|
|
/*
|
|
* 2) The public key is calculated using the cryptographic scalar
|
|
* multiplication:
|
|
*
|
|
* const unsigned char privkey[32];
|
|
* unsigned char pubkey[32];
|
|
*
|
|
* crypto_scalarmult (pubkey, privkey, basepoint);
|
|
*/
|
|
crypto_scalarmult_curve25519(kex->Q_S, kex->eph_pri_key, basepoint);
|
|
|
|
a = 0;
|
|
for (r = 0; r < (int)sizeof(kex->Q_S); r++)
|
|
a |= kex->Q_S[r];
|
|
if (!a) {
|
|
lwsl_notice("all zero pubkey\n");
|
|
return SSH_DISCONNECT_KEY_EXCHANGE_FAILED;
|
|
}
|
|
|
|
/*
|
|
* The shared secret, k, is defined in SSH specifications to be a big
|
|
* integer. This number is calculated using the following procedure:
|
|
*
|
|
* X is the 32 bytes point obtained by the scalar multiplication of
|
|
* the other side's public key and the local private key scalar.
|
|
*/
|
|
crypto_scalarmult_curve25519(pss->K, kex->eph_pri_key, kex->Q_C);
|
|
|
|
/*
|
|
* The whole 32 bytes of the number X are then converted into a big
|
|
* integer k. This conversion follows the network byte order. This
|
|
* step differs from RFC5656.
|
|
*/
|
|
kbi_len = lws_mpint_rfc4251(kbi, pss->K, LWS_SIZE_EC25519, 1);
|
|
|
|
/*
|
|
* The exchange hash H is computed as the hash of the concatenation of
|
|
* the following:
|
|
*
|
|
* string V_C, the client's identification string (CR and LF
|
|
* excluded)
|
|
* string V_S, the server's identification string (CR and LF
|
|
* excluded)
|
|
* string I_C, the payload of the client's SSH_MSG_KEXINIT
|
|
* string I_S, the payload of the server's SSH_MSG_KEXINIT
|
|
* string K_S, the host key
|
|
* mpint Q_C, exchange value sent by the client
|
|
* mpint Q_S, exchange value sent by the server
|
|
* mpint K, the shared secret
|
|
*
|
|
* However there are a lot of unwritten details in the hash
|
|
* definition...
|
|
*/
|
|
|
|
if (lws_genhash_init(&ctx, LWS_GENHASH_TYPE_SHA256)) {
|
|
lwsl_notice("genhash init failed\n");
|
|
return 1;
|
|
}
|
|
|
|
if (_genhash_update_len(&ctx, pss->V_C, strlen(pss->V_C)))
|
|
goto hash_probs;
|
|
if (_genhash_update_len(&ctx, pss->vhd->ops->server_string, /* aka V_S */
|
|
strlen(pss->vhd->ops->server_string)))
|
|
goto hash_probs;
|
|
if (_genhash_update_len(&ctx, kex->I_C, kex->I_C_payload_len))
|
|
goto hash_probs;
|
|
if (_genhash_update_len(&ctx, kex->I_S, kex->I_S_payload_len))
|
|
goto hash_probs;
|
|
/*
|
|
* K_S (host public key)
|
|
*
|
|
* sum of name + key lengths and headers
|
|
* name length: name
|
|
* key length: key
|
|
* ---> */
|
|
lws_p32((uint8_t *)&be, 8 + (int)strlen(keyt) + LWS_SIZE_EC25519);
|
|
if (lws_genhash_update(&ctx, (void *)&be, 4))
|
|
goto hash_probs;
|
|
|
|
if (_genhash_update_len(&ctx, keyt, strlen(keyt)))
|
|
goto hash_probs;
|
|
if (_genhash_update_len(&ctx, pss->K_S, LWS_SIZE_EC25519))
|
|
goto hash_probs;
|
|
/* <---- */
|
|
|
|
if (_genhash_update_len(&ctx, kex->Q_C, LWS_SIZE_EC25519))
|
|
goto hash_probs;
|
|
if (_genhash_update_len(&ctx, kex->Q_S, LWS_SIZE_EC25519))
|
|
goto hash_probs;
|
|
|
|
if (lws_genhash_update(&ctx, kbi, kbi_len))
|
|
goto hash_probs;
|
|
|
|
if (lws_genhash_destroy(&ctx, temp))
|
|
goto hash_probs;
|
|
|
|
/*
|
|
* Sign the 32-byte SHA256 "exchange hash" in temp
|
|
* The signature is itself 64 bytes
|
|
*/
|
|
smlen = LWS_SIZE_EC25519 + 64;
|
|
if (crypto_sign_ed25519(payload_sig, &smlen, temp, LWS_SIZE_EC25519,
|
|
pri_key))
|
|
return 1;
|
|
|
|
#if 0
|
|
l = LWS_SIZE_EC25519;
|
|
n = crypto_sign_ed25519_open(temp, &l, payload_sig, smlen, pss->K_S);
|
|
|
|
lwsl_notice("own sig sanity check says %d\n", n);
|
|
#endif
|
|
|
|
/* sig [64] and payload [32] concatenated in payload_sig
|
|
*
|
|
* The server then responds with the following
|
|
*
|
|
* uint32 packet length (exl self + mac)
|
|
* byte padding len
|
|
* byte SSH_MSG_KEX_ECDH_REPLY
|
|
* string server public host key and certificates (K_S)
|
|
* string Q_S (exchange value sent by the server)
|
|
* string signature of H
|
|
* padding
|
|
*/
|
|
*p++ = SSH_MSG_KEX_ECDH_REPLY;
|
|
|
|
/* server public host key and certificates (K_S) */
|
|
|
|
lp = p;
|
|
p +=4;
|
|
lws_sized_blob(&p, keyt, (int)strlen(keyt));
|
|
lws_sized_blob(&p, pss->K_S, LWS_SIZE_EC25519);
|
|
lws_p32(lp, lws_ptr_diff(p, lp) - 4);
|
|
|
|
/* Q_S (exchange value sent by the server) */
|
|
|
|
lws_sized_blob(&p, kex->Q_S, LWS_SIZE_EC25519);
|
|
|
|
/* signature of H */
|
|
|
|
lp = p;
|
|
p +=4;
|
|
lws_sized_blob(&p, keyt, (int)strlen(keyt));
|
|
lws_sized_blob(&p, payload_sig, 64);
|
|
lws_p32(lp, lws_ptr_diff(p, lp) - 4);
|
|
|
|
/* end of message */
|
|
|
|
lws_pad_set_length(pss, reply, &p, &pss->active_keys_stc);
|
|
*plen = lws_ptr_diff(p, reply);
|
|
|
|
if (!pss->active_keys_stc.valid)
|
|
memcpy(pss->session_id, temp, LWS_SIZE_EC25519);
|
|
|
|
/* RFC4253 7.2:
|
|
*
|
|
* The key exchange produces two values: a shared secret K,
|
|
* and an exchange hash H. Encryption and authentication
|
|
* keys are derived from these. The exchange hash H from the
|
|
* first key exchange is additionally used as the session
|
|
* identifier, which is a unique identifier for this connection.
|
|
* It is used by authentication methods as a part of the data
|
|
* that is signed as a proof of possession of a private key.
|
|
* Once computed, the session identifier is not changed,
|
|
* even if keys are later re-exchanged.
|
|
*
|
|
* The hash alg used in the KEX must be used for key derivation.
|
|
*
|
|
* 1) Initial IV client to server:
|
|
*
|
|
* HASH(K || H || "A" || session_id)
|
|
*
|
|
* (Here K is encoded as mpint and "A" as byte and session_id
|
|
* as raw data. "A" means the single character A, ASCII 65).
|
|
*
|
|
*
|
|
*/
|
|
for (c = 0; c < 3; c++) {
|
|
kex_ecdh_dv(kex->keys_next_cts.key[c], LWS_SIZE_CHACHA256_KEY,
|
|
kbi, kbi_len, temp, 'A' + (c * 2), pss->session_id);
|
|
kex_ecdh_dv(kex->keys_next_stc.key[c], LWS_SIZE_CHACHA256_KEY,
|
|
kbi, kbi_len, temp, 'B' + (c * 2), pss->session_id);
|
|
}
|
|
|
|
lws_explicit_bzero(temp, sizeof(temp));
|
|
|
|
return 0;
|
|
|
|
hash_probs:
|
|
lws_genhash_destroy(&ctx, NULL);
|
|
|
|
return 1;
|
|
}
|