1
0
Fork 0
mirror of https://github.com/warmcat/libwebsockets.git synced 2025-03-16 00:00:07 +01:00
libwebsockets/minimal-examples/http-client/minimal-http-client-multi/minimal-http-client-multi.c
Andy Green 48366de1d1 unix plat: add minimal wsi fd map option
An lws context usually contains a processwide fd -> wsi lookup table.

This allows any possible fd returned by a *nix type OS to be immediately
converted to a wsi just by indexing an array of struct lws * the size of
the highest possible fd, as found by ulimit -n or similar.

This works modestly for Linux type systems where the default ulimit -n for
a process is 1024, it means a 4KB or 8KB lookup table for 32-bit or
64-bit systems.

However in the case your lws usage is much simpler, like one outgoing
client connection and no serving, this represents increasing waste.  It's
made much worse if the system has a much larger default ulimit -n, eg 1M,
the table is occupying 4MB or 8MB, of which you will only use one.

Even so, because lws can't be sure the OS won't return a socket fd at any
number up to (ulimit -n - 1), it has to allocate the whole lookup table
at the moment.

This patch looks to see if the context creation info is setting
info->fd_limit_per_thread... if it leaves it at the default 0, then
everything is as it was before this patch.  However if finds that
(info->fd_limit_per_thread * actual_number_of_service_threads) where
the default number of service threads is 1, is less than the fd limit
set by ulimit -n, lws switches to a slower lookup table scheme, which
only allocates the requested number of slots.  Lookups happen then by
iterating the table and comparing rather than indexing the array
directly, which is obviously somewhat of a performance hit.

However in the case where you know lws will only have a very few wsi
maximum, this method can very usefully trade off speed to be able to
avoid the allocation sized by ulimit -n.

minimal examples for client that can make use of this are also modified
by this patch to use the smaller context allocations.
2019-05-18 12:10:19 +01:00

333 lines
8.9 KiB
C

/*
* lws-minimal-http-client-multi
*
* Written in 2010-2019 by Andy Green <andy@warmcat.com>
*
* This file is made available under the Creative Commons CC0 1.0
* Universal Public Domain Dedication.
*
* This demonstrates the a minimal http client using lws, which makes
* 8 downloads simultaneously from warmcat.com.
*
* Currently that takes the form of 8 individual simultaneous tcp and
* tls connections, which happen concurrently. Notice that the ordering
* of the returned payload may be intermingled for the various connections.
*
* By default the connections happen all together at the beginning and operate
* concurrently, which is fast. However this is resource-intenstive, there are
* 8 tcp connections, 8 tls tunnels on both the client and server. You can
* instead opt to have the connections happen one after the other inside a
* single tcp connection and tls tunnel, using HTTP/1.1 pipelining. To be
* eligible to be pipelined on another existing connection to the same server,
* the client connection must have the LCCSCF_PIPELINE flag on its
* info.ssl_connection member (this is independent of whether the connection
* is in ssl mode or not).
*
* HTTP/1.0: Pipelining only possible if Keep-Alive: yes sent by server
* HTTP/1.1: always possible... serializes requests
* HTTP/2: always possible... all requests sent as individual streams in parallel
*/
#include <libwebsockets.h>
#include <string.h>
#include <signal.h>
#include <assert.h>
#include <time.h>
#define COUNT 8
struct user {
int index;
};
static int interrupted, completed, failed, numbered;
static struct lws *client_wsi[COUNT];
static struct user user[COUNT];
static int
callback_http(struct lws *wsi, enum lws_callback_reasons reason,
void *user, void *in, size_t len)
{
struct user *u = (struct user *)user;
switch (reason) {
case LWS_CALLBACK_ESTABLISHED_CLIENT_HTTP:
lwsl_user("LWS_CALLBACK_ESTABLISHED_CLIENT_HTTP: resp %u\n",
lws_http_client_http_response(wsi));
break;
/* because we are protocols[0] ... */
case LWS_CALLBACK_CLIENT_CONNECTION_ERROR:
lwsl_err("CLIENT_CONNECTION_ERROR: %s\n",
in ? (char *)in : "(null)");
client_wsi[u->index] = NULL;
failed++;
if (++completed == COUNT) {
lwsl_err("Done: failed: %d\n", failed);
interrupted = 1;
}
break;
/* chunks of chunked content, with header removed */
case LWS_CALLBACK_RECEIVE_CLIENT_HTTP_READ:
lwsl_user("RECEIVE_CLIENT_HTTP_READ: conn %d: read %d\n",
u->index, (int)len);
#if 0 /* enable to dump the html */
{
const char *p = in;
while (len--)
if (*p < 0x7f)
putchar(*p++);
else
putchar('.');
}
#endif
return 0; /* don't passthru */
/* uninterpreted http content */
case LWS_CALLBACK_RECEIVE_CLIENT_HTTP:
{
char buffer[1024 + LWS_PRE];
char *px = buffer + LWS_PRE;
int lenx = sizeof(buffer) - LWS_PRE;
if (lws_http_client_read(wsi, &px, &lenx) < 0)
return -1;
}
return 0; /* don't passthru */
case LWS_CALLBACK_COMPLETED_CLIENT_HTTP:
lwsl_user("LWS_CALLBACK_COMPLETED_CLIENT_HTTP %p: idx %d\n",
wsi, u->index);
client_wsi[u->index] = NULL;
if (++completed == COUNT) {
if (!failed)
lwsl_user("Done: all OK\n");
else
lwsl_err("Done: failed: %d\n", failed);
interrupted = 1;
/* so we exit immediately */
lws_cancel_service(lws_get_context(wsi));
}
break;
case LWS_CALLBACK_CLOSED_CLIENT_HTTP:
if (u && client_wsi[u->index]) {
/*
* If it completed normally, it will have been set to
* NULL then already. So we are dealing with an
* abnormal, failing, close
*/
client_wsi[u->index] = NULL;
failed++;
if (++completed == COUNT) {
lwsl_err("Done: failed: %d\n", failed);
interrupted = 1;
}
}
break;
default:
break;
}
return lws_callback_http_dummy(wsi, reason, user, in, len);
}
static const struct lws_protocols protocols[] = {
{ "http", callback_http, 0, 0, },
{ NULL, NULL, 0, 0 }
};
static void
sigint_handler(int sig)
{
interrupted = 1;
}
#if defined(WIN32)
int gettimeofday(struct timeval * tp, struct timezone * tzp)
{
// Note: some broken versions only have 8 trailing zero's, the correct epoch has 9 trailing zero's
// This magic number is the number of 100 nanosecond intervals since January 1, 1601 (UTC)
// until 00:00:00 January 1, 1970
static const uint64_t EPOCH = ((uint64_t) 116444736000000000ULL);
SYSTEMTIME system_time;
FILETIME file_time;
uint64_t time;
GetSystemTime( &system_time );
SystemTimeToFileTime( &system_time, &file_time );
time = ((uint64_t)file_time.dwLowDateTime ) ;
time += ((uint64_t)file_time.dwHighDateTime) << 32;
tp->tv_sec = (long) ((time - EPOCH) / 10000000L);
tp->tv_usec = (long) (system_time.wMilliseconds * 1000);
return 0;
}
#endif
unsigned long long us(void)
{
struct timeval t;
gettimeofday(&t, NULL);
return (t.tv_sec * 1000000ull) + t.tv_usec;
}
static void
lws_try_client_connection(struct lws_client_connect_info *i, int m)
{
char path[128];
if (numbered) {
lws_snprintf(path, sizeof(path), "/%d.png", m + 1);
i->path = path;
} else
i->path = "/";
i->pwsi = &client_wsi[m];
user[m].index = m;
i->userdata = &user[m];
if (!lws_client_connect_via_info(i)) {
failed++;
if (++completed == COUNT) {
lwsl_user("Done: failed: %d\n", failed);
interrupted = 1;
}
} else
lwsl_user("started connection %p: idx %d (%s)\n",
client_wsi[m], m, i->path);
}
int main(int argc, const char **argv)
{
struct lws_context_creation_info info;
struct lws_client_connect_info i;
struct lws_context *context;
unsigned long long start, next;
const char *p;
int n = 0, m, staggered = 0, logs =
LLL_USER | LLL_ERR | LLL_WARN | LLL_NOTICE
/* for LLL_ verbosity above NOTICE to be built into lws,
* lws must have been configured and built with
* -DCMAKE_BUILD_TYPE=DEBUG instead of =RELEASE */
/* | LLL_INFO */ /* | LLL_PARSER */ /* | LLL_HEADER */
/* | LLL_EXT */ /* | LLL_CLIENT */ /* | LLL_LATENCY */
/* | LLL_DEBUG */;
signal(SIGINT, sigint_handler);
memset(&i, 0, sizeof i); /* otherwise uninitialized garbage */
staggered = !!lws_cmdline_option(argc, argv, "-s");
if ((p = lws_cmdline_option(argc, argv, "-d")))
logs = atoi(p);
lws_set_log_level(logs, NULL);
lwsl_user("LWS minimal http client [-s (staggered)] [-p (pipeline)]\n");
lwsl_user(" [--h1 (http/1 only)] [-l (localhost)] [-d <logs>]\n");
lwsl_user(" [-n (numbered)]\n");
memset(&info, 0, sizeof info); /* otherwise uninitialized garbage */
info.options = LWS_SERVER_OPTION_DO_SSL_GLOBAL_INIT;
info.port = CONTEXT_PORT_NO_LISTEN; /* we do not run any server */
info.protocols = protocols;
/*
* since we know this lws context is only ever going to be used with
* COUNT client wsis / fds / sockets at a time, let lws know it doesn't
* have to use the default allocations for fd tables up to ulimit -n.
* It will just allocate for 1 internal and COUNT + 1 (allowing for h2
* network wsi) that we will use.
*/
info.fd_limit_per_thread = 1 + COUNT + 1;
#if defined(LWS_WITH_MBEDTLS)
/*
* OpenSSL uses the system trust store. mbedTLS has to be told which
* CA to trust explicitly.
*/
info.client_ssl_ca_filepath = "./warmcat.com.cer";
#endif
context = lws_create_context(&info);
if (!context) {
lwsl_err("lws init failed\n");
return 1;
}
i.context = context;
i.ssl_connection = LCCSCF_USE_SSL;
/* enables h1 or h2 connection sharing */
if (lws_cmdline_option(argc, argv, "-p"))
i.ssl_connection |= LCCSCF_PIPELINE;
/* force h1 even if h2 available */
if (lws_cmdline_option(argc, argv, "--h1"))
i.alpn = "http/1.1";
if (lws_cmdline_option(argc, argv, "-l")) {
i.port = 7681;
i.address = "localhost";
i.ssl_connection |= LCCSCF_ALLOW_SELFSIGNED;
} else {
i.port = 443;
i.address = "warmcat.com";
}
if (lws_cmdline_option(argc, argv, "-n"))
numbered = 1;
if ((p = lws_cmdline_option(argc, argv, "--port")))
i.port = atoi(p);
i.host = i.address;
i.origin = i.address;
i.method = "GET";
i.protocol = protocols[0].name;
if (!staggered)
/*
* just pile on all the connections at once, testing the
* pipeline queuing before the first is connected
*/
for (m = 0; m < (int)LWS_ARRAY_SIZE(client_wsi); m++)
lws_try_client_connection(&i, m);
next = start = us();
m = 0;
while (n >= 0 && !interrupted) {
if (staggered) {
/*
* open the connections at 100ms intervals, with the
* last one being after 1s, testing both queuing, and
* direct H2 stream addition stability
*/
if (us() > next && m < (int)LWS_ARRAY_SIZE(client_wsi)) {
lws_try_client_connection(&i, m++);
if (m == (int)LWS_ARRAY_SIZE(client_wsi) - 1)
next = us() + 1000000;
else
next = us() + 300000;
}
}
n = lws_service(context, 100);
}
lwsl_user("Duration: %lldms\n", (us() - start) / 1000);
lws_context_destroy(context);
lwsl_user("Exiting with %d\n", failed || completed != COUNT);
return failed || completed != COUNT;
}