1
0
Fork 0
mirror of https://github.com/warmcat/libwebsockets.git synced 2025-03-16 00:00:07 +01:00
libwebsockets/minimal-examples
Andy Green 286cf4357a sul: multiple timer domains
Adapt the pt sul owner list to be an array, and define two different lists,
one that acts like before and is the default for existing users, and another
that has the ability to cooperate with systemwide suspend to restrict the
interval spent suspended so that it will wake in time for the earliest
thing on this wake-suspend sul list.

Clean the api a bit and add lws_sul_cancel() that only needs the sul as the
argument.

Add a flag for client creation info to indicate that this client connection
is important enough that, eg, validity checking it to detect silently dead
connections should go on the wake-suspend sul list.  That flag is exposed in
secure streams policy so it can be added to a streamtype with
"swake_validity": true

Deprecate out the old vhost timer stuff that predates sul.  Add a flag
LWS_WITH_DEPRECATED_THINGS in cmake so users can get it back temporarily
before it will be removed in a v4.2.

Adapt all remaining in-tree users of it to use explicit suls.
2020-06-02 08:37:10 +01:00
..
abstract/protocols/smtp-client cmakelist: Augean Stables refactor 2020-05-27 08:40:12 +01:00
api-tests ss: add api test with ctest integration 2020-06-02 08:37:10 +01:00
client-server sul: multiple timer domains 2020-06-02 08:37:10 +01:00
crypto cmakelist: Augean Stables refactor 2020-05-27 08:40:12 +01:00
dbus-client sul: multiple timer domains 2020-06-02 08:37:10 +01:00
dbus-server cmakelist: Augean Stables refactor 2020-05-27 08:40:12 +01:00
embedded/lws-minimal-esp32 esp32: shift to support latest esp-idf 2020-05-27 08:40:12 +01:00
gtk/minimal-gtk cmakelist: Augean Stables refactor 2020-05-27 08:40:12 +01:00
http-client sul: multiple timer domains 2020-06-02 08:37:10 +01:00
http-server sul: multiple timer domains 2020-06-02 08:37:10 +01:00
mqtt-client cmakelist: Augean Stables refactor 2020-05-27 08:40:12 +01:00
raw sul: multiple timer domains 2020-06-02 08:37:10 +01:00
secure-streams sul: multiple timer domains 2020-06-02 08:37:10 +01:00
ws-client sul: multiple timer domains 2020-06-02 08:37:10 +01:00
ws-server sul: multiple timer domains 2020-06-02 08:37:10 +01:00
CMakeLists.txt cmakelist: Augean Stables refactor 2020-05-27 08:40:12 +01:00
README.md client: secure streams 2020-03-04 12:17:49 +00:00

name demonstrates
client-server Minimal examples providing client and server connections simultaneously
crypto Minimal examples related to using lws crypto apis
dbus-server Minimal examples showing how to integrate DBUS into lws event loop
http-client Minimal examples providing an http client
http-server Minimal examples providing an http server
raw Minimal examples related to adopting raw file or socket descriptors into the event loop
secure-streams Minimal examples related to the Secure Streams client api
ws-client Minimal examples providing a ws client
ws-server Minimal examples providing a ws server (and an http server)

FAQ

Getting started

Build and install lws itself first (note that after installing lws on *nix, you need to run ldconfig one time so the OS can learn about the new library. Lws installs in /usr/local by default, Debian / Ubuntu ldconfig knows to look there already, but Fedora / CentOS need you to add the line /usr/local/lib to /etc/ld.so.conf and run ldconfig)

Then start with the simplest:

http-server/minimal-http-server

Why are most of the sources split into a main C file file and a protocol file?

Lws supports three ways to implement the protocol callback code:

  • you can just add it all in the same source file

  • you can separate it as these examples do, and #include it into the main sources

  • you can build it as a standalone plugin that is discovered and loaded at runtime.

The way these examples are structured, you can easily also build the protocol callback as a plugin just with a different CMakeLists.txt... see https://github.com/warmcat/libwebsockets/tree/master/plugin-standalone for an example.

Why would we want the protocol as a plugin?

You will notice a lot of the main C code is the same boilerplate repeated for each example. The actual interesting part is in the protocol callback only.

Lws provides (-DLWS_WITH_LWSWS=1) a generic lightweight server app called 'lwsws' that can be configured by JSON. Combined with your protocol as a plugin, it means you don't actually have to make a special server "app" part, you can just use lwsws and pass per-vhost configuration from JSON into your protocol. (Of course in some cases you have an existing app you are bolting lws on to, then you don't care about this for that particular case).

Because lwsws has no dependency on whatever your plugin does, it can mix and match different protocols randomly without needing any code changes. It reduces the size of the task to just writing the code you care about in your protocol handler, and nothing else to write or maintain.

Lwsws supports advanced features like reload, where it starts a new server instance with changed config or different plugins, while keeping the old instance around until the last connection to it closes.

I get why there is a pss, but why is there a vhd?

The pss is instantiated per-connection. But there are almost always other variables that have a lifetime longer than a single connection.

You could make these variables "filescope" one-time globals, but that means your protocol cannot instantiate multiple times.

Lws supports vhosts (virtual hosts), for example both https://warmcat.com and https://libwebsockets are running on the same lwsws instance on the same server and same IP... each of these is a separate vhost.

Your protocol may be enabled on multiple vhosts, each of these vhosts provides a different vhd specific to the protocol instance on that vhost. For example many of the samples keep a linked-list head to a list of live pss in the vhd... that means it's cleanly a list of pss opened on that vhost. If another vhost has the protocol enabled, connections to that will point to a different vhd, and the linked-list head on that vhd will only list connections to his vhost.

The example "ws-server/minimal-ws-server-threads" demonstrates how to deliver external configuration data to a specific vhost + protocol combination using code. In lwsws, this is simply a matter of setting the desired JSON config.