/*
* The MIT License (MIT)
*
* Copyright © 2015 Franklin "Snaipe" Mathieu
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef CRITERION_ALLOC_H_
# define CRITERION_ALLOC_H_
# ifdef __cplusplus
# include
# include
using std::size_t;
# else
# include
# endif
# include "internal/common.h"
CR_BEGIN_C_API
/**
* Allocates a block of memory usable by the test.
*
* It is undefined behaviour to access a pointer returned by malloc(3)
* inside a test or its setup and teardown functions; cr_malloc must
* be use in its place for this purpose.
*
* This function is semantically identical to malloc(3).
*
* @param[in] size The minimal size in bytes of the newly allocated memory.
* @returns The pointer to the start of the allocated memory.
*/
CR_API void *cr_malloc(size_t size);
/**
* Allocates and zero-initialize a block of memory usable by the test.
*
* It is undefined behaviour to access a pointer returned by calloc(3)
* inside a test or its setup and teardown functions; cr_calloc must
* be use in its place for this purpose.
*
* This function is semantically identical to calloc(3).
*
* @param[in] nmemb The number of elements to allocate
* @param[in] size The minimal size of each element.
* @returns The pointer to the start of the allocated memory.
*/
CR_API void *cr_calloc(size_t nmemb, size_t size);
/**
* Reallocates a block of memory usable by the test.
*
* It is undefined behaviour to access a pointer returned by realloc(3)
* inside a test or its setup and teardown functions; cr_realloc must
* be used in its place for this purpose.
*
* This function is semantically identical to realloc(3).
*
* @param[in] ptr A pointer to the memory that needs to be resized.
* @param[in] size The minimal size of the reallocated memory.
* @returns The pointer to the start of the reallocated memory.
*/
CR_API void *cr_realloc(void *ptr, size_t size);
/**
* Free a block of memory allocated by cr_malloc, cr_free or cr_realloc.
*
* @param[in] ptr A pointer to the memory that needs to be freed.
*/
CR_API void cr_free(void *ptr);
CR_END_C_API
# ifdef __cplusplus
# include
namespace criterion {
void *(*const malloc)(size_t) = cr_malloc;
void (*const free)(void *) = cr_free;
void *(*const calloc)(size_t, size_t) = cr_calloc;
void *(*const realloc)(void *, size_t) = cr_realloc;
/**
* Allocates and construct a new object.
*
* It is undefined behaviour to access a pointer returned by the new
* operator inside a test or its setup and teardown functions;
* new_obj must be used in its place for this purpose.
*
* This function is semantically identical to the new operator.
*
* @tparam T The type of the object to construct
* @param[in] params The constructor parameters of T.
* @returns The pointer to the newly constructed object.
*/
template
T* new_obj(Params... params) {
T* obj = static_cast(cr_malloc(sizeof (T)));
new (obj) T(params...);
return obj;
}
/**
* Allocates and construct a new array of primitive types
*
* It is undefined behaviour to access a pointer returned by the new[]
* operator inside a test or its setup and teardown functions;
* new_arr must be used in its place for this purpose.
*
* This function is semantically identical to the new[] operator.
*
* @tparam T The compound type of the array to construct
* @param[in] len The length of the array.
* @returns The pointer to the newly constructed array.
*/
template
typename std::enable_if::value>::type*
new_arr(size_t len) {
void *ptr = cr_malloc(sizeof (size_t) + sizeof (T) * len);
*(reinterpret_cast(ptr)) = len;
T* arr = reinterpret_cast(reinterpret_cast(ptr) + 1);
return arr;
}
/**
* Allocates and construct a new array of object types
*
* It is undefined behaviour to access a pointer returned by the new[]
* operator inside a test or its setup and teardown functions;
* new_arr must be used in its place for this purpose.
*
* This function is semantically identical to the new[] operator.
*
* @tparam T The compound type of the array to construct
* @param[in] len The length of the array.
* @returns The pointer to the newly constructed array.
*/
template
T* new_arr(size_t len) {
void *ptr = cr_malloc(sizeof (size_t) + sizeof (T) * len);
*(reinterpret_cast(ptr)) = len;
T* arr = reinterpret_cast(reinterpret_cast(ptr) + 1);
for (size_t i = 0; i < len; ++i)
new (arr + i) T();
return arr;
}
/**
* Destroys and frees an object allocated by new_obj.
*
* This function is semantically identical to the delete operator.
*
* @tparam T The type of the object to construct
* @param[in] ptr The object to destroy.
*/
template
void delete_obj(T* ptr) {
ptr->~T();
cr_free(ptr);
}
/**
* Destroys and frees an array allocated by delete_arr.
*
* This function is semantically identical to the delete[] operator.
*
* @tparam T The type of the object to construct
* @param[in] ptr The object to destroy.
*/
template
void delete_arr(typename std::enable_if::value>::type* ptr) {
cr_free(ptr);
}
/**
* Destroys and frees an array allocated by delete_arr.
*
* This function is semantically identical to the delete[] operator.
*
* @tparam T The type of the object to construct
* @param[in] ptr The object to destroy.
*/
template
void delete_arr(T* ptr) {
size_t *ptr_ = reinterpret_cast(ptr);
size_t len = *(ptr_ - 1);
T* arr = reinterpret_cast(ptr_);
for (size_t i = 0; i < len; ++i)
arr[i].~T();
cr_free(ptr_ - 1);
}
/**
* Allocator for use in the STL.
*
* This internally uses calls to the cr_malloc function family, which
* means that STL collections can be safely used inside tests or
* setup/teardown functions if this allocator is used.
*/
template
struct allocator {
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
template
struct rebind {
typedef allocator other;
};
inline explicit allocator() {}
inline ~allocator() {}
inline explicit allocator(allocator const&) {}
template
inline explicit allocator(allocator const&) {}
inline pointer address(reference r) { return &r; }
inline const_pointer address(const_reference r) { return &r; }
inline pointer allocate(size_type cnt, typename std::allocator::const_pointer = 0) {
return reinterpret_cast(cr_malloc(cnt * sizeof (T)));
}
inline void deallocate(pointer p, size_type) { cr_free(p); }
inline size_type max_size() const {
return size_type(-1) / sizeof(T);
}
inline void construct(pointer p, const T& t) { new(p) T(t); }
inline void construct(pointer p, T&& t) { new (p) T(std::move(t)); }
inline void destroy(pointer p) { p->~T(); }
inline bool operator==(allocator const&) { return true; }
inline bool operator!=(allocator const& a) { return !operator==(a); }
};
}
# endif
#endif /* !CRITERION_ALLOC_H_ */