Removed some wrong or obsolete information. Made it xinclude the

tutorial programs tut1.c and tut2.c
This commit is contained in:
Frank Mori Hess 2008-02-08 18:48:27 +00:00
parent d73685a254
commit e3526fbd7c
2 changed files with 57 additions and 572 deletions

View file

@ -12,9 +12,7 @@
drivers, tools, and libraries for various forms of
<emphasis>data acquisition</emphasis>: reading and writing of analog
signals; reading and writing of digital inputs/outputs; pulse and
frequency counting; pulse generation; reading encoders; etc. The
project's home page may be found at
<ulink url="http://www.comedi.org">http://www.comedi.org</ulink>.
frequency counting; pulse generation; reading encoders; etc.
The source code is distributed in two main packages, comedi and
comedilib:
<itemizedlist>

View file

@ -5,13 +5,13 @@
%comedilib_entities;
]>
<section id="writingprograms">
<section id="writingprograms" xmlns:xi="http://www.w3.org/2001/XInclude">
<title>
Writing &comedi; programs
</title>
<para>
This Section describes how a well-installed and configured &comedi;
package can be used in an application, to communicate data with a set
This section describes how &comedi;
can be used in an application, to communicate data with a set
of &comedi; devices.
<xref linkend="acquisitionfunctions"/> gives more details about
the various acquisition functions with which the application
@ -33,49 +33,26 @@ Your first &comedi; program
This example requires a card that has analog or digital input. This
progam opens the device, gets the data, and prints it out:
<programlisting>
#include <![CDATA[<stdio.h>]]> /* for printf() */
#include <![CDATA[<]]><link linkend="comedi-comedilib-h">comedilib.h</link><![CDATA[>]]>
int subdev = 0; /* change this to your input subdevice */
int chan = 0; /* change this to your channel */
int range = 0; /* more on this later */
int aref = <link linkend="aref-ground">AREF_GROUND</link>; /* more on this later */
int main(int argc,char *argv[])
{
<link linkend="ref-type-comedi-t">comedi_t</link> *it;
<link linkend="ref-type-lsampl-t">lsampl_t</link> data;
it=<link linkend="func-ref-comedi-open">comedi_open</link>("/dev/comedi0");
<link linkend="func-ref-comedi-data-read">comedi_data_read</link>(it,subdev,chan,range,aref, &amp;data);
printf("%d\n",data);
return 0;
}
<xi:include href="../demo/tut1.c" parse="text"/>
</programlisting>
The
<function>
<link linkend="func-ref-comedi-open">comedi_open()</link>
</function> can only be successful if the
<filename>comedi0</filename> device file is configured to point to a
valid &comedi; driver. <xref linkend="cardconfiguration"/> explains
how this driver is linked to the <quote>device file</quote>.
</para>
<para>
The code above is basically the guts of
<filename>demo/inp.c</filename>, without error checking or fancy
options. Compile the program using
The source code file for the above program can be found in Comedilib,
at <filename>demo/tut1.c</filename>. You can compile the program using
</para>
<screen>
cc tut1.c -lcomedi -o tut1
</screen>
<para>
(Replace <literal>cc</literal> by your favourite C compiler command.)
The
<function>
<link linkend="func-ref-comedi-open">comedi_open</link>
</function> call can only be successful if the
<filename>comedi0</filename> device file is configured with a
valid &comedi; driver. <xref linkend="cardconfiguration"/> explains
how this driver is linked to the <quote>device file</quote>.
</para>
<para>
The <parameter class="function">range</parameter> variable tells
&comedi; which gain to use when measuring an analog voltage. Since we
@ -89,568 +66,78 @@ analog reference used.
<section id="convertingsamples">
<title>
Converting samples to voltages
Converting between integer data and physical units
</title>
<para>
If you selected an analog input subdevice, you probably noticed
that the output of <command>tut1</command> is a number between
<literal>0</literal> and <literal>4095</literal>, or
<literal>0</literal> and <literal>65535</literal>, depending on the
number of bits in the A/D converter. &comedi; samples are
<emphasis>always</emphasis> unsigned,
that the output of <command>tut1</command> is an unsigned number, for
example between <literal>0</literal> and <literal>65535</literal>
for a 16 bit analog input. &comedi; samples are
unsigned,
with <literal>0</literal> representing the lowest voltage of the ADC,
and <literal>4095</literal>
the highest. &comedi; compensates for anything else the manual for
your device says. However, you probably prefer to have this number
and a hardware-dependent maximum value representing the highest voltage.
&comedi; compensates for anything else the manual for
your device says (for example, many boards represent bipolar
analog input voltages as signed integers). However, you probably prefer to have this number
translated to a voltage. Naturally, as a good programmer, your first
question is: <quote>How do I do this in a device-independent
manner?</quote>
</para>
<para>
Most devices give you a choice of gain and unipolar/bipolar
input, and &comedi; allows you to select which of these to use. This
parameter is called the <quote>range parameter,</quote> since it
specifies the <quote>input range</quote> for analog input (or
<quote>output range</quote> for analog output.) The range parameter
represents both the gain and the unipolar/bipolar aspects.
The functions
<link linkend="func-ref-comedi-to-physical"><function>comedi_to_physical</function></link> and
<link linkend="func-ref-comedi-from-physical"><function>comedi_from_physical</function></link>
are used to convert between &comedi;'s integer data and floating point numbers corresponding
to physical values (voltages, etc.). In order to use the conversion functions, you must
first obtain a <link linkend="ref-type-comedi-polynomial-t">comedi_polynomial_t</link>
corresponding to the subdevice, range, and possibly channel the integer data is associated
with. The comedi_polynomial_t object specifies the polynomial function that will be applied
to convert between &comedi;'s integer data and physical values.
</para>
<para>
&comedi; keeps the number of available ranges and the largest
sample value for each subdevice/channel combination. (Some
devices allow different input/output ranges for different
channels in a subdevice.)
</para>
<para>
The largest sample value can be found using the function
<programlisting>
<link linkend="ref-type-lsampl-t">lsampl_t</link> <link linkend="func-ref-comedi-get-maxdata">comedi_get_maxdata</link>(<link linkend="ref-type-comedi-t">comedi_t</link> * device, unsigned int subdevice, unsigned int channel))
</programlisting>
The number of available ranges can be found using the function:
<programlisting>
int <link linkend="func-ref-comedi-get-n-ranges">comedi_get_n_ranges</link>(<link linkend="ref-type-comedi-t">comedi_t</link> * device, unsigned int subdevice, unsigned int channel);
</programlisting>
</para>
<para>
For each value of the range parameter for a particular
subdevice/channel, you can get range information using:
<programlisting>
<link linkend="ref-type-comedi-range">comedi_range</link> * <link linkend="func-ref-comedi-get-range">comedi_get_range</link>(<link linkend="ref-type-comedi-t">comedi_t</link> * device,
unsigned int subdevice, unsigned int channel, unsigned int range);
</programlisting>
which returns a pointer to a
<link linkend="ref-type-comedi-range">comedi_range</link>
structure, which has the following contents:
<programlisting>
typedef struct{
double min;
double max;
unsigned int unit;
}comedi_range;
</programlisting>
The structure element <parameter class="function">min</parameter>
represents the voltage corresponding to
<link linkend="func-ref-comedi-data-read">comedi_data_read()</link>
returning <literal>0</literal>,
and <parameter class="function">max</parameter> represents
<link linkend="func-ref-comedi-data-read">comedi_data_read()</link>
returning <parameter class="function">maxdata</parameter>,
(i.e., <literal>4095</literal> for <literal>12</literal> bit A/C
converters, <literal>65535</literal> for <literal>16</literal> bit,
or, <literal>1</literal> for digital input; more on this in a bit.)
The <parameter class="function">unit</parameter> entry tells you if
<parameter class="function">min</parameter> and
<parameter class="function">max</parameter> refer to voltage, current,
or are dimensionless (e.g., for digital I/O).
</para>
<para>
<quote>Could it get easier?</quote> you say. Well, yes. Use
the function <function>comedi_to_phys()</function>
<link linkend="func-ref-comedi-to-phys">comedi_to_phys()</link>, which
converts data values to physical units. Call it using something like
</para>
<programlisting>
volts=<link linkend="func-ref-comedi-to-phys">comedi_to_phys</link>(it,data,range,maxdata);
</programlisting>
<para>
and the opposite
</para>
<programlisting>
data=<link linkend="func-ref-comedi-from-phys">comedi_from_phy</link>s(it,volts,range,maxdata);
</programlisting>
</section>
<section id="usingfileinterface">
<title>
Using the file interface
</title>
<para>
In addition to providing low level routines for data
access, the &comedi; library provides higher-level access,
much like the standard <acronym>C</acronym> library provides
<function>fopen()</function>, etc. as a high-level (and portable)
alternative to the direct <acronym>UNIX</acronym> system calls
<function>open()</function>, etc. Similarily to
<function>fopen()</function>, we have
<link linkend="func-ref-comedi-open">comedi_open()</link>:
</para>
<programlisting>
file=<link linkend="func-ref-comedi-open">comedi_open</link>("/dev/comedi0");
</programlisting>
<para>
where <parameter class="function">file</parameter> is of type
<parameter>(<link linkend="ref-type-comedi-t">comedi_t</link> *)</parameter>.
This function calls <function>open()</function>, as done explicitly in
a previous section, but also fills the
<link linkend="ref-type-comedi-t">comedi_t</link>
structure with lots of goodies; this information will be useful soon.
</para>
<para>
Specifically, you need to know
<parameter class="function">maxdata</parameter> for a specific
subdevice/channel. How about:
<programlisting>
maxdata=<link linkend="func-ref-comedi-get-maxdata">comedi_get_maxdata</link>(file,subdevice,channel);
</programlisting>
Wow! How easy. And the range information?
<programlisting>
<link linkend="ref-type-comedi-range">comedi_range</link> * <link linkend="func-ref-comedi-get-range">comedi_get_range</link>
(<link linkend="ref-type-comedi-t">comedi_t</link>comedi_t *it,unsigned int subdevice,unsigned int chan,unsigned int range);
</programlisting>
A <link linkend="ref-type-comedi-polynomial-t">comedi_polynomial_t</link> may be obtained
from one of two functions:
<link linkend="func-ref-comedi-get-hardcal-converter"><function>comedi_get_hardcal_converter</function></link> or
<link linkend="func-ref-comedi-get-softcal-converter"><function>comedi_get_softcal_converter</function></link>.
Which function to use depends on whether your board does calibration in hardware, or relies on
the host computer for a software calibration. The
SDF_SOFT_CALIBRATED flag (queried by calling
<link linkend="func-ref-comedi-get-subdevice-flags"><function>comedi_get_subdevice_flags</function></link>)
will be set for boards that use software calibration.
</para>
</section>
<section id="secondprogram">
<title>
Your second &comedi; program: simple acquisition
Your second &comedi; program
</title>
<para>
Actually, this is the first &comedi; program again, just
that we've added what we've learned.
Actually, this is the first &comedi; program again, except
we've added code to convert the integer data value to physical units.
The program handles both the case of a software-calibrated
board and a hardware-calibrated board.
</para>
<programlisting>
#include &lt;stdio.h&gt; /* for printf() */
#include <![CDATA[<]]><link linkend="comedi-comedilib-h">comedilib.h</link><![CDATA[>]]>
int subdev = 0; /* change this to your input subdevice */
int chan = 0; /* change this to your channel */
int range = 0; /* more on this later */
int aref = 0; /* more on this later */
int main(int argc,char *argv[])
{
<link linkend="ref-type-comedi-t">comedi_t</link> *cf;
int chan=0;
<link linkend="ref-type-lsampl-t">lsampl_t</link> data;
int maxdata,rangetype;
double volts;
cf=<link linkend="func-ref-comedi-open">comedi_open</link>("/dev/comedi0");
maxdata=<link linkend="func-ref-comedi-get-maxdata">comedi_get_maxdata</link>(cf,subdev,chan);
rangetype=comedi_get_rangetype(cf,subdev,chan);
<link linkend="func-ref-comedi-data-read">comedi_data_read</link>(cf->fd,subdev,chan,range,aref,&amp;data);
volts=<link linkend="func-ref-comedi-to-phys">comedi_to_phys</link>(data,rangetype,range,maxdata);
printf("%d %g\n",data,volts);
return 0;
}
<xi:include href="../demo/tut2.c" parse="text"/>
</programlisting>
</section>
<section id="thirdprogram">
<title>
Your third &comedi; program: instructions
</title>
<para>
This program (taken from the set of demonstration examples that come
with &comedi;) shows how to use a somewhat more flexible acquisition
function, the so-called <link linkend="instructions">instruction</link>.
<programlisting>
<![CDATA[
#include <stdio.h>
#include <]]><link linkend="comedi-comedilib-h">comedilib.h</link><![CDATA[>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/time.h>
#include <unistd.h>
#include "examples.h"
]]>
/*
* This example does 3 instructions in one system call. It does
* a gettimeofday() call, then reads N_SAMPLES samples from an
* analog input, and the another gettimeofday() call.
*
* (Note: The gettimeofday() value is obtained using an INSN_GTOD
* instruction, which places the seconds value in data[0] and the
* microseconds in data[1], so the seconds value is limited to
* 32-bits even on 64-bit systems.)
*/
#define MAX_SAMPLES 128
<link linkend="ref-type-comedi-t">comedi_t</link> *device;
int main(int argc, char *argv[])
{
int ret,i;
<link linkend="ref-type-comedi-insn">comedi_insn</link> insn[3];
<link linkend="ref-type-comedi-insnlist">comedi_insnlist</link> il;
<link linkend="ref-type-lsampl-t">lsampl_t</link> t1[2], t2[2];
<link linkend="ref-type-lsampl-t">lsampl_t</link> data[MAX_SAMPLES];
parse_options(argc,argv);
device=<link linkend="func-ref-comedi-open">comedi_open</link>(filename);
if(!device){
<link linkend="func-ref-comedi-perror">comedi_perror</link>(filename);
exit(0);
}
if(verbose){
printf("measuring device=%s subdevice=%d channel=%d range=%d analog reference=%d\n",
filename,subdevice,channel,range,aref);
}
/* Set up a the "instruction list", which is just a pointer
* to the array of instructions and the number of instructions.
*/
il.n_insns=3;
il.insns=insn;
/* Instruction 0: perform a gettimeofday() */
insn[0].insn=<link linkend="insn-gtod">INSN_GTOD</link>;
insn[0].n=2;
insn[0].data=t1;
/* Instruction 1: do 10 analog input reads */
insn[1].insn=<link linkend="insn-read">INSN_READ</link>;
insn[1].n=n_scan;
insn[1].data=data;
insn[1].subdev=subdevice;
insn[1].chanspec=<link linkend="ref-macro-CR-PACK">CR_PACK</link>(channel,range,aref);
/* Instruction 2: perform a gettimeofday() */
insn[2].insn=<link linkend="insn-gtod">INSN_GTOD</link>;
insn[2].n=2;
insn[2].data=t2;
ret=<link linkend="func-ref-comedi-do-insnlist">comedi_do_insnlist</link>(device,&amp;il);
if(ret<![CDATA[<]]>0){
<link linkend="func-ref-comedi-perror">comedi_perror</link>(filename);
exit(0);
}
printf("initial time: %d.%06d\n",t1[0],t1[1]);
for(i=0;i<![CDATA[<]]>n_scan;i++){
printf("%d\n",data[i]);
}
printf("final time: %d.%06d\n",t2[0],t2[1]);
printf("difference (us): %ld\n",(long)(t2[0]-t1[0])*1000000+(t2[1]-t1[1]));
return 0;
}
</programlisting>
</para>
</section>
<section id="fourthprogram">
<title>
Your fourth &comedi; program: commands
</title>
<para>
This example programs an analog output subdevice with &comedi;'s most
powerful acquisition function, the asynchronous
<link linkend="commandsstreaming">command</link>, to generate a waveform.
</para>
<para>
The waveform in this example is a sine wave, but this can be easily
changed to make a generic function generator.
</para>
<para>
The function generation algorithm is the same as what is typically
used in digital function generators. A 32-bit accumulator is
incremented by a phase factor, which is the amount (in radians) that
the generator advances each time step. The accumulator is then
shifted right by 20 bits, to get a 12 bit offset into a lookup table.
The value in the lookup table at that offset is then put into a buffer
for output to the DAC.
</para>
<para>
Once you have
issued the command, &comedi; expects you to keep the buffer full of
data to output to the acquisition card. This is done by
<function>write()</function>. Since there may be a delay between the
<link linkend="func-ref-comedi-command">comedi_command()</link>
and a subsequent <function>write()</function>, you
should fill the buffer using <function>write()</function> before you call
<link linkend="func-ref-comedi-command">comedi_command()</link>,
as is done here.
<programlisting>
<![CDATA[
#include <stdio.h>
#include <]]><link linkend="comedi-comedilib-h">comedilib.h</link><![CDATA[>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <getopt.h>
#include <ctype.h>
#include <math.h>
#include "examples.h"
]]>
double waveform_frequency = 10.0; /* frequency of the sine wave to output */
double amplitude = 4000; /* peak-to-peak amplitude, in DAC units (i.e., 0-4095) */
double offset = 2048; /* offset, in DAC units */
/* This is the size of chunks we deal with when creating and
outputting data. This *could* be 1, but that would be
inefficient */
#define BUF_LEN 4096
int subdevice;
int external_trigger_number = 0;
sampl_t data[BUF_LEN];
void <link linkend="dds-output">dds_output</link>(sampl_t *buf,int n);
void <link linkend="dds-init">dds_init</link>(void);
/* This define determines which waveform to use. */
#define <anchor id="dds-init-function"/>dds_init_function <link linkend="dds-init-sine">dds_init_sine</link>
void <link linkend="dds-init-sine">dds_init_sine</link>(void);
void <link linkend="dds-init-pseudocycloid">dds_init_pseudocycloid</link>(void);
void <link linkend="dds-init-sawtooth">dds_init_sawtooth</link>(void);
int <anchor id="comedi-internal-trigger"/>comedi_internal_trigger(<link linkend="ref-type-comedi-t">comedi_t</link> *dev, unsigned int subd, unsigned int trignum)
{
<link linkend="ref-type-comedi-insn">comedi_insn</link> insn;
<link linkend="ref-type-lsampl-t">lsampl_t</link> data[1];
memset(<![CDATA[&insn]]>, 0, sizeof(<link linkend="ref-type-comedi-insn">comedi_insn</link>));
insn.insn = <link linkend="insn-inttrig">INSN_INTTRIG</link>;
insn.subdev = subd;
insn.data = data;
insn.n = 1;
data[0] = trignum;
return <link linkend="func-ref-comedi-do-insn">comedi_do_insn</link>(dev, <![CDATA[&insn]]>);
}
int main(int argc, char *argv[])
{
<link linkend="ref-type-comedi-cmd">comedi_cmd</link> cmd;
int err;
int n,m;
int total=0;
<link linkend="ref-type-comedi-t">comedi_t</link> *dev;
unsigned int chanlist[16];
unsigned int maxdata;
<link linkend="ref-type-comedi-range">comedi_range</link> *rng;
int ret;
<link linkend="ref-type-lsampl-t">lsampl_t</link> insn_data = 0;
parse_options(argc,argv);
/* Force n_chan to be 1 */
n_chan = 2;
if(value){ waveform_frequency = value; }
dev = <link linkend="func-ref-comedi-open">comedi_open</link>(filename);
if(dev == NULL){
fprintf(stderr, "error opening %s\n", filename);
return -1;
}
subdevice = <link linkend="func-ref-comedi-find-subdevice-by-type">comedi_find_subdevice_by_type</link>(dev,COMEDI_SUBD_AO,0);
maxdata = <link linkend="func-ref-comedi-get-maxdata">comedi_get_maxdata</link>(dev,subdevice,0);
rng = <link linkend="func-ref-comedi-get-range">comedi_get_range</link>(dev,subdevice,0,0);
offset = (double)<link linkend="func-ref-comedi-from-phys">comedi_from_phys</link>(0.0,rng,maxdata);
amplitude = (double)<link linkend="func-ref-comedi-from-phys">comedi_from_phys</link>(1.0,rng,maxdata) - offset;
memset(<![CDATA[&cmd]]>,0,sizeof(cmd));
/* fill in the <link linkend="ref-type-comedi-cmd">command data structure</link>: */
cmd.subdev = subdevice;
cmd.flags = 0;
cmd.start_src = <link linkend="trig-int-start-src">TRIG_INT</link>;
cmd.start_arg = 0;
cmd.scan_begin_src = <link linkend="trig-timer">TRIG_TIMER</link>;
cmd.scan_begin_arg = 1e9/freq;
cmd.convert_src = <link linkend="trig-now">TRIG_NOW</link>;
cmd.convert_arg = 0;
cmd.scan_end_src = <link linkend="trig-count">TRIG_COUNT</link>;
cmd.scan_end_arg = n_chan;
cmd.stop_src = <link linkend="trig-none">TRIG_NONE</link>;
cmd.stop_arg = 0;
cmd.chanlist = chanlist;
cmd.chanlist_len = n_chan;
chanlist[0] = <link linkend="ref-macro-CR-PACK">CR_PACK</link>(channel,range,aref);
chanlist[1] = <link linkend="ref-macro-CR-PACK">CR_PACK</link>(channel+1,range,aref);
<link linkend="dds-init">dds_init</link>();
<link linkend="dds-output">dds_output</link>(data,BUF_LEN);
<link linkend="dds-output">dds_output</link>(data,BUF_LEN);
dump_cmd(stdout,&amp;cmd);
if ((err = <link linkend="func-ref-comedi-command">comedi_command</link>(dev, &amp;cmd)) &lt; 0) {
<link linkend="func-ref-comedi-perror">comedi_perror</link>("comedi_command");
exit(1);
}
m=write(comedi_fileno(dev),data,BUF_LEN*sizeof(sampl_t));
if(m &lt; 0){
perror("write");
exit(1);
}
printf("m=%d\n",m);
ret = <link linkend="comedi-internal-trigger">comedi_internal_trigger</link>(dev, subdevice, 0);
if(ret &lt; 0){
perror("comedi_internal_trigger\n");
exit(1);
}
while(1){
<link linkend="dds-output">dds_output</link>(data,BUF_LEN);
n=BUF_LEN*sizeof(sampl_t);
while(n>0){
m=write(comedi_fileno(dev),(void *)data+(BUF_LEN*sizeof(sampl_t)-n),n);
if(m &lt; 0){
perror("write");
exit(0);
}
printf("m=%d\n",m);
n-=m;
}
total+=BUF_LEN;
}
return 0;
}
#define WAVEFORM_SHIFT 16
#define WAVEFORM_LEN (1 &lt;&lt; WAVEFORM_SHIFT)
#define WAVEFORM_MASK (WAVEFORM_LEN - 1)
sampl_t waveform[WAVEFORM_LEN];
unsigned int acc;
unsigned int adder;
void <anchor id="dds-init"/>dds_init(void)
{
<![CDATA[
adder=waveform_frequency/freq*(1<<16)*(1<<WAVEFORM_SHIFT);
]]>
<link linkend="dds-init-function">dds_init_function</link>();
}
void <anchor id="dds-output"/>dds_output(sampl_t *buf,int n)
{
int i;
sampl_t *p=buf;
<![CDATA[
for(i=0;i<n;i++){
*p=waveform[(acc>>16)&WAVEFORM_MASK];
]]>
p++;
acc+=adder;
}
}
void <anchor id="dds-init-sine"/>dds_init_sine(void)
{
int i;
<![CDATA[
for(i=0;i<WAVEFORM_LEN;i++){
waveform[i]=rint(offset+0.5*amplitude*cos(i*2*M_PI/WAVEFORM_LEN));
]]>
}
}
/* Yes, I know this is not the proper equation for a cycloid. Fix it. */
void <anchor id="dds-init-pseudocycloid"/>dds_init_pseudocycloid(void)
{
int i;
double t;
<![CDATA[
for(i=0;i<WAVEFORM_LEN/2;i++){
t=2*((double)i)/WAVEFORM_LEN;
waveform[i]=rint(offset+amplitude*sqrt(1-4*t*t));
}
for(i=WAVEFORM_LEN/2;i<WAVEFORM_LEN;i++){
t=2*(1-((double)i)/WAVEFORM_LEN);
waveform[i]=rint(offset+amplitude*sqrt(1-t*t));
}
]]>
}
void <anchor id="dds-init-sawtooth"/>dds_init_sawtooth(void)
{
int i;
<![CDATA[
for(i=0;i<WAVEFORM_LEN;i++){
waveform[i]=rint(offset+amplitude*((double)i)/WAVEFORM_LEN);
]]>
}
}
</programlisting>
</para>
<para>
The source code file for the above program can be found in Comedilib, at demo/tut2.c.
</para>
</section>
<section>
<title>Further examples</title>
<para>
See the demo subdirectory of Comedilib for more example programs. The directory contains
a README file with descriptions of the various demo programs.
</para>
</section>
</section>