added some scripts

This commit is contained in:
Steffen Vogel 2014-01-25 15:55:02 +01:00
parent 69c500f894
commit 8ccf408a68
2 changed files with 744 additions and 0 deletions

View file

@ -0,0 +1,345 @@
/**********************************************************************
** **
** Filename: import_dxf_polygons.ulp **
** **
** Author: Tim Ruetz **
** tim at caiaq.de **
** **
** This ULP imports polylines and splines from DXF files **
** Use it for importing vectorized logos, fonts etc. **
** Arcs, circles, splines, curves are not supported yet. **
** Since this is a very simple, rudimentary script it just uses **
** straight lines as approximation. **
** Please use a vector graphics editor to edit/refine you DXF file: **
** - add as many as needed vertexes to the shape **
** - convert all curves to straight lines **
** - no negative shapes are supported by eagle, so create openings **
** to connect negative shapes to outside (see example DXF) **
** **
***********************************************************************
** **
** Legal issues: This program is provided as it is. Without any **
** warranties of any kind of data lose or damages. **
** **
** Feel free to modify and improve this program and let me know. **
** **
** Version: 0.4 **
** Date: 04.07.2011 **
** **
***********************************************************************
** **
** Version history **
** **
** 0.1 initial version **
** **
** 0.2 added default pen with = 0.0 **
** added insert offset settings to dialog **
** **
** 0.3 increased coordinate precision **
** to import very tiny shapes **
** **
** 0.4 added WIRE vs POLYGON option **
** by Tod E. Kurt, http://todbot.com/blog/ **
** **
***********************************************************************
*/
#usage "<b>Simple DXF Polyline Import V0.3</b>\n"
"<p>"
"Imports and scales (only!) POLYLINE and SPLINE entries in DXF files."
"Splines are not drawn as splines but as stright lines!"
"<author>Author: Tim Ruetz (tim@caiaq.de)</author>"
string dxf_filename;
int dxf_len;
int i, j;
string dxf_filedata[];
int dxf_code;
string dxf_value;
int state = 0;
real vertex_x;
real vertex_y;
real vertex_x_buf;
real vertex_y_buf;
real scale = 1.0;
real pen_width = 0.2; // mm
real angle = 0.0; // degrees
real rot_s; // rotation sinus
real rot_c; // rotation cosinus
int mirror_flag = 0; // 1=mirror
real xmin, xmax;
real ymin, ymax;
real width_orig;
real height_orig;
real w, h;
string parse_msg = "";
string l;
string cmd;
string script_out;
int layer_cnt;
int layer_sel=0;
string layer_list[];
int pen_sel = 0;
string pen_list[] = { "0.0", "0.1", "0.2", "0.3", "0.4", "0.5", "1.0", "1.5", "2.0" };
int line_sel = 0;
string line_list[] = { "WIRE", "POLYGON" };
real offset_x = 0.0;
real offset_y = 0.0;
void find_layers()
{
if (library) {
layer_cnt=0;
library(L) {
L.layers(LA) {
if (LA.visible)
{
if ((LA.number < 17 || LA.number > 19) && (LA.number < 23 || LA.number > 25) && LA.number != 28)
{
if (LA.number == 94) layer_sel = layer_cnt;
sprintf(layer_list[layer_cnt++], "%3d - %s", LA.number, LA.name);
}
}
}
}
}
if (board) {
layer_cnt=0;
board(B) {
B.layers(LA) {
if (LA.visible)
{
if ((LA.number < 17 || LA.number > 19) && (LA.number < 23 || LA.number > 25) && LA.number != 28)
sprintf(layer_list[layer_cnt++], "%3d - %s", LA.number, LA.name);
}
}
}
}
if (schematic) {
layer_cnt=0;
schematic(S) {
S.layers(LA) {
if (LA.visible)
{
if (LA.number < 95 || LA.number > 96)
{
if (LA.number == 94) layer_sel = layer_cnt;
sprintf(layer_list[layer_cnt++], "%3d - %s", LA.number, LA.name);
}
}
}
}
}
}
void update_script()
{
script_out = "";
// script_out += "SET UNDO_LOG OFF;\n";
script_out += "GRID MM;\n";
script_out += "SET WIDTH "+pen_list[pen_sel]+";\n";
script_out += "CHANGE POUR SOLID;\n";
script_out += "LAYER "+strsub(layer_list[layer_sel],0, 3)+";\n";
script_out += "SET WIRE_BEND 2;\n";
script_out += cmd;
// script_out += "SET UNDO_LOG ON;\n";
}
void parse_dxf()
{
string cmd_temp = "";
int vertexes = 0;
cmd = "";
xmin = ymin = 100000.0;
xmax = ymax = -100000.0;
rot_s = sin(angle / 180.0 * PI);
rot_c = cos(angle / 180.0 * PI);
for (i=0; i<dxf_len; i+=2)
{
dxf_code = strtol(dxf_filedata[i]);
dxf_value = dxf_filedata[i+1];
if (dxf_code == 0)
{
if (state > 2 && dxf_value != "VERTEX")
{
if (vertexes > 2) // only draw polygons with at least 3 vertexes
{
cmd += cmd_temp+";\n";
}
state = 0;
cmd_temp="";
vertexes = 0;
}
if (dxf_value == "POLYLINE")
state = 1;
if (dxf_value == "VERTEX" && state==1)
{
cmd_temp += line_list[line_sel];
// cmd_temp += "POLYGON";
state=2;
}
if (dxf_value == "SPLINE")
{
cmd_temp += line_list[line_sel];
// cmd_temp += "POLYGON";
state = 2;
}
}
if (state >= 2)
{
if (dxf_code == 10)
vertex_x = strtod(dxf_value) * scale;
if (dxf_code == 20)
{
state = 3;
vertex_y = strtod(dxf_value) * scale;
if (vertex_x > xmax) xmax = vertex_x;
if (vertex_x < xmin) xmin = vertex_x;
if (vertex_y > ymax) ymax = vertex_y;
if (vertex_y < ymin) ymin = vertex_y;
if (vertex_x != vertex_x_buf || vertex_y != vertex_y_buf)
{
vertex_x_buf = vertex_x;
vertex_y_buf = vertex_y;
if (mirror_flag)
vertex_x = -vertex_x;
sprintf(l, " (%5.6f %5.6f)", (vertex_x * rot_c - vertex_y * rot_s) + offset_x, (vertex_y * rot_c + vertex_x * rot_s) + offset_y);
cmd_temp += l;
vertexes++;
}
}
}
}
sprintf(parse_msg, "%s\n\nWidth: %5.3f mm\nHeight: %5.3f mm\n\nLeft: %5.3f mm\nRight: %5.3f mm\n\nTop: %5.3f mm\nBottom: %5.3f mm\n\n",
dxf_filename, xmax-xmin, ymax-ymin, xmin + offset_x, xmax + offset_x, ymin + offset_y, ymax + offset_y);
if (scale==1.0) // at least the first time
{
w = width_orig = xmax-xmin;
h = height_orig = ymax-ymin;
}
update_script();
}
//
// main()
//
find_layers();
dxf_filename = dlgFileOpen("DXF file to import", ".", "DXF files (*.dxf);;All files (*)");
if (dxf_filename == "") exit (0);
dxf_len = fileread(dxf_filedata, dxf_filename);
if (dxf_len<1) exit(0);
parse_dxf();
// dialog
int result = dlgDialog("Simple DXF Polyline Import") {
dlgTabWidget {
dlgTabPage("Settings")
{
dlgGridLayout {
dlgCell(0, 0) dlgLabel("Scale");
dlgCell(0, 1) dlgRealEdit(scale, 0.0, 999.0);
dlgCell(0, 2) dlgPushButton("+Rescale") parse_dxf();
dlgCell(1, 0) dlgLabel("Scale to width [mm]");
dlgCell(1, 1) dlgRealEdit(w, 0.1, 9999.0);
dlgCell(1, 2) dlgPushButton("+Scale to width") { scale = w/width_orig; h=scale*height_orig; parse_dxf(); }
dlgCell(2, 0) dlgLabel("Scale to height [mm]");
dlgCell(2, 1) dlgRealEdit(h, 0.1, 9999.0);
dlgCell(2, 2) dlgPushButton("+Scale to height") { scale = h/height_orig; w=scale*width_orig; parse_dxf(); }
dlgCell(3, 0) dlgLabel("Info");
dlgCell(3, 1, 3, 2) dlgTextView(parse_msg);;
dlgCell(4, 0) dlgLabel("Import to layer");
dlgCell(4, 1, 4, 2) dlgComboBox(layer_list, layer_sel) update_script();
dlgCell(5, 0) dlgLabel("Wire or Polygon");
dlgCell(5, 1, 5,2) dlgComboBox( line_list, line_sel) parse_dxf();
dlgCell(6, 0) dlgLabel("Pen width [mm]");
dlgCell(6, 1, 6, 2) dlgComboBox(pen_list, pen_sel) update_script();
dlgCell(7, 0) dlgLabel("Angle (ccw)");
dlgCell(7, 1) dlgRealEdit(angle, 0.0, 360.0) parse_dxf();
dlgCell(7, 2) dlgCheckBox("Mirror", mirror_flag) parse_dxf();
dlgCell(8, 0) dlgLabel("Insert offset [mm] x=");
dlgCell(8, 1, 8,2) {
dlgGridLayout {
dlgCell (1, 1) dlgRealEdit(offset_x, -999.0, 999.0) parse_dxf();
dlgCell (1, 2) dlgLabel("y=");
dlgCell (1, 3) dlgRealEdit(offset_y, -999.0, 999.0) parse_dxf();
}
}
}
}
dlgTabPage("Generated Script")
{
dlgTextView(script_out);
}
}
dlgGridLayout {
dlgCell(0, 0) dlgPushButton("-Cancel") dlgReject();
dlgCell(0, 3) {
dlgPushButton("+Execute")
{
parse_dxf();
dlgAccept();
}
}
}
};
if (result == 0)
exit(0);
else
{
exit(script_out);
}

399
scripts/svg2poly.ulp Normal file
View file

@ -0,0 +1,399 @@
/*
* svg2poly.ulp
* Feb 2012, By Cruz Monrreal II (Cruz.Monrreal@gmail.com)
*
* Imports select .svg file and will draw it as a set of polygons
* For best results, follow Inkscape instructions as closely as
* possible.
*
*
* NOTE: This is not a universal .svg converter. The spec is
* simply too large, and the .ulp language is not robust
* enough to create an entire .svg parser.
*
*/
#usage "<b>Convert a modified SVG file to a Polygon</b><p>\n"
" run svg2poly -ratio num\n"
" run svg2poly -ratiox numx -ratioy numy -layer layername -outline thickness\n<p>"
" The polygons will automatically be centered about the current 'mark'</p>\n"
" For instructions on how to prepare the SVG file, go to www.thinkmaketest.com\\nn"
"<author>Author: Cruz Monrreal II\n(cruz.monrreal@gmail.com)\n1-Feb-2011</author>"
/* Inputs, Defaults */
string layer = "tDocu";
int outline = 0;
real ratioX = 1.0, ratioY = 1.0;
/* Globals */
string tmp[], master_xml;
int poly_start[], num_pts=0, num_polys=0;
real pts_x[], pts_y[];
real tmp_coords[];
/* Output */
string cmd;
/*
* Stack imlemented to get around lack of recursion
*/
string stack = "";
/*** Stack Helper Functions ***/
void push(string s){ stack = (stack == "") ? s : stack + "|" + s; }
string pull()
{
string tmp;
if (stack == "")
// Nothing in stack
return "";
else if (strrstr(stack, "|") == -1){
// Stack only has one element
tmp = stack;
stack = "";
return tmp;
}
// Search for the last `|` in string
// Return string past last `|`
tmp = strsub(stack, strrstr(stack, "|") + 1);
stack = strsub(stack, 0, strrstr(stack, "|"));
return tmp;
}
/*
* Encodes all necessary information into a single string
* for stack-based recursion
*/
string pack(string xml, int repush, int num_pts)
{
string tmp;
sprintf(tmp, "%s^%d^%d", xml, repush, num_pts);
return tmp;
}
/*** Functions ***/
void print(string s) {printf("%s\n", s);}
/*
* Sets up the eagle commands for the script.
*/
void setup_cmd()
{
int i;
// Search for parameters
for(i=0; i<argc; i++){
if (argv[i] == "-ratio"){ // Scale SVG in the X and Y Axis
if (i+1 < argc){ // Make sure that there's another argument
if (strstr(argv[i+1], "-") == -1){ // And that it's not a command
ratioX = ratioY = strtod(argv[i+1]);
i++;
}
}
}else if (argv[i] == "-ratiox"){ //Scale SVG in X Axis
if (i+1 < argc){
if (strstr(argv[i+1], "-") == -1) {
ratioX = strtod(argv[i+1]);
i++;
}
}
}else if (argv[i] == "-ratioy"){ // Scale SVG in Y Axis
if (i+1 < argc){
if (strstr(argv[i+1], "-") == -1){
ratioY = strtod(argv[i+1]);
i++;
}
}
}else if (argv[i] == "-layer"){ // Change layer that SVG is drawn on
if (i+1 < argc){
if (strstr(argv[i+1], "-") == -1){
layer = argv[i+1];
i++;
}
}
}else if (argv[i] == "-outline"){ // Draw an outline of a given size
if (i+1 < argc){
if (strstr(argv[i+1], "-") == -1){
outline = strtol(argv[i+1]);
i++;
}
}
}
}
// Arguments passed to replace defaults
/*switch (argc){
case 5:
outline = strtol(argv[4]);
case 4:
layer = argv[3];
case 3:
ratioX = strtod(argv[2]);
ratioY = strtod(argv[1]);
break;
case 2:
ratioX = ratioY = strtod(argv[1]);
}*/
// Write it all to the eagle command
sprintf(cmd, "set wire_bend 2;\nchange layer %s;\nset width %d;\npoly", layer, outline);
}
string matrix_to_translate(string translate){
// Might need to implement sin & cos...
return translate;
}
/*
* Converts svg formatted coordinates to usable peices
* WARNING: Function assumes string is formatted correctly
*/
int svgcoords_to_coords(string s)
{
string coords[];
strsplit(coords, s, ',');
tmp_coords[0] = strtod(coords[0]);
tmp_coords[1] = strtod(coords[1]);
// Lower the point resolution
sprintf(s, "%2.2f,%2.2f", tmp_coords[0], tmp_coords[1]);
strsplit(coords, s, ',');
tmp_coords[0] = strtod(coords[0]);
tmp_coords[1] = strtod(coords[1]);
return 0;
}
/*
* Extract points from a given svg path.
* ASSUMES: User followed instructions on site
* File was saved as Plain SVG & NO Relative Moves allowed
*/
void extract_pts(string pts, string transform)
{
string svg_cmds[];
int num = strsplit(svg_cmds, pts, ' '),
new_pts = 0;
int i = 3;
// Path format:
// M x,y L x,y L x,y L x,y ....
poly_start[num_pts] = 1;
svgcoords_to_coords(svg_cmds[1]);
pts_x[num_pts] = tmp_coords[0];
pts_y[num_pts++] = tmp_coords[1];
new_pts++;
printf("%2d) %2.2f,%2.2f\n", num_polys, tmp_coords[0], tmp_coords[1]);
// Assume that the only commands left are 'L'
for(; i<num; i+=2){
svgcoords_to_coords(svg_cmds[i]);
if (tmp_coords[0] != pts_x[num_pts-1] || tmp_coords[1] != pts_y[num_pts-1]){
poly_start[num_pts] = 0;
pts_x[num_pts] = tmp_coords[0];
pts_y[num_pts] = tmp_coords[1];
//if (transform == "")
printf(" %2.2f,%2.2f\n", pts_x[num_pts], pts_y[num_pts]);
poly_start[num_pts++] = 0;
new_pts++;
}
}
// Apply transform if needed
if (transform != ""){
//print(" Local transform: " + transform);
if (strstr(transform, "translate") != -1){
int a = strchr(transform, '('),
b = strchr(transform, ')', a+1);
int offset = num_pts - new_pts;
// Extract translation offsets
svgcoords_to_coords(strsub(transform, a+1, b-a-1));
// Translate points
for(int i=0; i < num/2; i++){
pts_x[i + offset] += tmp_coords[0];
pts_y[i + offset] += tmp_coords[1];
//printf("%f, %f\n", pts_x[i + offset], pts_y[i + offset]);
}
}else if (strstr(transform, "matrix") != -1){
// Do Matrix math (yay...)
/* REMEMBER: Inkscape y axis is inverted...*/
print(" TODO: Implement Matrix Transform");
}else
print("Unknown path transformation:\n " + transform);
}
//print("");
num_polys++;
}
/*
* Traverse through the tree of groups, adding points to paths,
* while applying group transforms in the process
*/
void extract_nested_data(string xml)
{
string ops[];
string children[];
int size;
push(pack(xml, 0, num_pts));
while(stack != ""){
strsplit(ops, pull(), '^');
// Find # of children
size = xmlelements(children, ops[0], "g/g");
if (size != 0 && ops[1] == "0"){
// Repush
push(ops[0] + "^1^" + ops[2]);
// Reverse push children
for(int i=size-1; i>=0; i--)
push(pack(children[i], 0, num_pts));
}else{
// Search for and add points
print("Searching group " + xmlattribute(ops[0], "g", "id"));
string paths[];
int num_paths = xmlelements(paths, ops[0], "g/path");
for(int i=0; i<num_paths; i++){
print(" Found Path " + xmlattribute(paths[i], "path", "id"));
// Extract points from each line/path
extract_pts(xmlattribute(paths[i], "path", "d"), xmlattribute(paths[i], "path", "transform"));
}
// Find and apply group transform
string transform = xmlattribute(ops[0], "g", "transform");
if (transform != ""){
// Figure out where to start the transform
int offset = 0;
if (ops[1] != "0")
offset = strtol(ops[2]);
print(" Found transform " + transform);
if (strstr(transform, "translate") != -1){
int a = strchr(transform, '('),
b = strchr(transform, ')', a+1);
// Extract translation offsets
svgcoords_to_coords(strsub(transform, a+1, b-a-1));
// Translate points
for(int i=offset; i < num_pts; i++){
pts_x[i] += tmp_coords[0];
pts_y[i] += tmp_coords[1];
//printf("%f, %f\n", pts_x[i + offset], pts_y[i + offset]);
}
}else if (strstr(transform, "matrix") != -1){
// Do Matrix math (yay...)
/* REMEMBER: Inkscape y axis is inverted...*/
print(" TODO: Implement Matrix Transform");
}else
print("Unknown path transformation:\n " + transform);
}else{
print(" No transform found");
}
}
}
}
/*
* Writes all activity to a log file, while doing its thing
*/
output("svg2poly.log", "wt")
{
setup_cmd();
// Select file
string file = dlgFileOpen("Select a file", "", "*.svg");
if (file != ""){
int i=0, j=0;
string svg[];
master_xml= "";
int len = fileread(svg, file);
// Read file into one massive xml line
for(; i<len; i++){
//print(svg[i]);
master_xml += svg[i];
}
// Extract Points and apply transformations
extract_nested_data(xmlelement(master_xml, "svg/g"));
// Correct Inkscape's Formatting issue
for(i=0; i<num_pts; i++)
pts_y[i] *= -1;
// Center object
real min_x, min_y,
max_x, max_y;
min_x = max_x = pts_x[0];
min_y = max_y = pts_y[0];
for(i=1; i<num_pts; i++){
// Find Min & Max
if (pts_x[i] < min_x)
min_x = pts_x[i];
if (pts_x[i] > max_x)
max_x = pts_x[i];
if (pts_y[i] < min_y)
min_y = pts_y[i];
if (pts_y[i] > max_y)
max_y = pts_y[i];
}
real x_center = (max_x - min_x)/2,
y_center = (max_y - min_y)/2;
// Apply offsets to all points
for(i=0; i < num_pts; i++){
pts_x[i] -= min_x + x_center;
pts_y[i] -= min_y + y_center;
}
printf("%f %f\n", x_center, y_center);
// Generate eagle command
for(i=0; i<num_pts; i++){
if (poly_start[i] == 1){
//printf("%2d) %3.4f %3.4f\n", j++, pts_x[i] * ratioX, pts_y[i] * ratioY);
if (i != 0)
sprintf(cmd, "%s;\npoly (R %f %f)", cmd, pts_x[i] * ratioX, pts_y[i] * ratioY);
else
sprintf(cmd, "%s (R %f %f)", cmd, pts_x[i] * ratioX, pts_y[i] * ratioY);
}else{
//printf(" %3.4f %3.4f\n", pts_x[i] * ratioX, pts_y[i] * ratioY);
sprintf(cmd, "%s (R %f %f)", cmd, pts_x[i] * ratioX, pts_y[i] * ratioY);
}
}
cmd += ";\n";
print("\nEagle Command:\n" + cmd);
exit(cmd);
}
exit("");
}