/* * Copyright (c) 2010, Stefan Lankes, RWTH Aachen University * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** @brief Array of task structures (aka PCB) * * A task's id will be its position in this array. */ static task_t task_table[MAX_TASKS] = { \ [0] = {0, TASK_IDLE, NULL, NULL, 0, 0, SPINLOCK_IRQSAVE_INIT, SPINLOCK_INIT, NULL, NULL, ATOMIC_INIT(0), NULL, NULL}, \ [1 ... MAX_TASKS-1] = {0, TASK_INVALID, NULL, NULL, 0, 0, SPINLOCK_IRQSAVE_INIT, SPINLOCK_INIT, NULL, NULL,ATOMIC_INIT(0), NULL, NULL}}; static spinlock_irqsave_t table_lock = SPINLOCK_IRQSAVE_INIT; static readyqueues_t readyqueues = {task_table+0, NULL, 0, 0, {[0 ... MAX_PRIO-2] = {NULL, NULL}}, SPINLOCK_IRQSAVE_INIT}; task_t* current_task = task_table+0; extern const void boot_stack; /** @brief helper function for the assembly code to determine the current task * @return Pointer to the task_t structure of current task */ task_t* get_current_task(void) { return current_task; } uint32_t get_highest_priority(void) { return msb(readyqueues.prio_bitmap); } int multitasking_init(void) { if (BUILTIN_EXPECT(task_table[0].status != TASK_IDLE, 0)) { kputs("Task 0 is not an idle task\n"); return -ENOMEM; } task_table[0].prio = IDLE_PRIO; task_table[0].stack = (void*) &boot_stack; task_table[0].page_map = read_cr3(); // register idle task register_task(); return 0; } void finish_task_switch(void) { task_t* old; uint8_t prio; spinlock_irqsave_lock(&readyqueues.lock); if ((old = readyqueues.old_task) != NULL) { if (old->status == TASK_INVALID) { old->stack = NULL; old->last_stack_pointer = NULL; readyqueues.old_task = NULL; } else { prio = old->prio; if (!readyqueues.queue[prio-1].first) { old->next = old->prev = NULL; readyqueues.queue[prio-1].first = readyqueues.queue[prio-1].last = old; } else { old->next = NULL; old->prev = readyqueues.queue[prio-1].last; readyqueues.queue[prio-1].last->next = old; readyqueues.queue[prio-1].last = old; } readyqueues.old_task = NULL; readyqueues.prio_bitmap |= (1 << prio); } } spinlock_irqsave_unlock(&readyqueues.lock); if (current_task->heap) kfree(current_task->heap); } /** @brief A procedure to be called by * procedures which are called by exiting tasks. */ static void NORETURN do_exit(int arg) { task_t* curr_task = current_task; kprintf("Terminate task: %u, return value %d\n", curr_task->id, arg); page_map_drop(); // decrease the number of active tasks spinlock_irqsave_lock(&readyqueues.lock); readyqueues.nr_tasks--; spinlock_irqsave_unlock(&readyqueues.lock); curr_task->status = TASK_FINISHED; reschedule(); kprintf("Kernel panic: scheduler found no valid task\n"); while(1) { HALT; } } /** @brief A procedure to be called by kernel tasks */ void NORETURN leave_kernel_task(void) { int result; result = 0; //get_return_value(); do_exit(result); } /** @brief To be called by the systemcall to exit tasks */ void NORETURN sys_exit(int arg) { do_exit(arg); } /** @brief Aborting a task is like exiting it with result -1 */ void NORETURN abort(void) { do_exit(-1); } /** @brief Create a task with a specific entry point * * @todo Dont aquire table_lock for the whole task creation. * * @param id Pointer to a tid_t struct were the id shall be set * @param ep Pointer to the function the task shall start with * @param arg Arguments list * @param prio Desired priority of the new task * @param core_id Start the new task on the core with this id * * @return * - 0 on success * - -ENOMEM (-12) or -EINVAL (-22) on failure */ static int create_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio) { int ret = -ENOMEM; uint32_t i; if (BUILTIN_EXPECT(!ep, 0)) return -EINVAL; if (BUILTIN_EXPECT(prio == IDLE_PRIO, 0)) return -EINVAL; if (BUILTIN_EXPECT(prio > MAX_PRIO, 0)) return -EINVAL; spinlock_irqsave_lock(&table_lock); for(i=0; inext = task_table+i; readyqueues.queue[prio-1].last = task_table+i; } spinlock_irqsave_unlock(&readyqueues.lock); break; } } out: spinlock_irqsave_unlock(&table_lock); return ret; } int create_kernel_task(tid_t* id, entry_point_t ep, void* args, uint8_t prio) { if (prio > MAX_PRIO) prio = NORMAL_PRIO; return create_task(id, ep, args, prio); } #define MAX_ARGS (PAGE_SIZE - 2*sizeof(int) - sizeof(vfs_node_t*)) /** @brief Structure which keeps all * relevant data for a new user task to start */ typedef struct { /// Points to the node with the executable in the file system vfs_node_t* node; /// Argument count int argc; /// Environment var count int envc; /// Buffer for env and argv values char buffer[MAX_ARGS]; } load_args_t; /** @brief Internally used function to load tasks with a load_args_t structure * keeping all the information needed to launch. * * This is where the serious loading action is done. */ static int load_task(load_args_t* largs) { uint32_t i, offset, idx; uint32_t addr, npages, flags; size_t stack = 0, heap = 0; elf_header_t header; elf_program_header_t prog_header; //elf_section_header_t sec_header; fildes_t file; //TODO: init the hole fildes_t struct! task_t* curr_task = current_task; int err; if (!largs) return -EINVAL; memset(&file, 0x00, sizeof(file)); file.node = largs->node; if (!file.node) return -EINVAL; err = read_fs(&file, (uint8_t*)&header, sizeof(elf_header_t)); if (err < 0) { kprintf("read_fs failed: %d\n", err); return err; } if (BUILTIN_EXPECT(header.ident.magic != ELF_MAGIC, 0)) goto invalid; if (BUILTIN_EXPECT(header.type != ELF_ET_EXEC, 0)) goto invalid; if (BUILTIN_EXPECT(header.machine != ELF_EM_386, 0)) goto invalid; if (BUILTIN_EXPECT(header.ident._class != ELF_CLASS_32, 0)) goto invalid; if (BUILTIN_EXPECT(header.ident.data != ELF_DATA_2LSB, 0)) goto invalid; if (header.entry <= KERNEL_SPACE) goto invalid; // interpret program header table for (i=0; i> PAGE_BITS); if (prog_header.mem_size & (PAGE_SIZE-1)) npages++; addr = get_pages(npages); flags = PG_USER; //TODO: support of XD flags is missing // map page frames in the address space of the current task if (page_map(prog_header.virt_addr, addr, npages, flags|PG_RW)) kprintf("Could not map 0x%x at 0x%x\n", addr, prog_header.virt_addr); // clear pages memset((void*) prog_header.virt_addr, 0x00, npages*PAGE_SIZE); // update heap location if (heap < prog_header.virt_addr + prog_header.mem_size) heap = prog_header.virt_addr + prog_header.mem_size; // load program file.offset = prog_header.offset; read_fs(&file, (uint8_t*)prog_header.virt_addr, prog_header.file_size); flags = VMA_CACHEABLE; if (prog_header.flags & PF_R) flags |= VMA_READ; if (prog_header.flags & PF_W) flags |= VMA_WRITE; if (prog_header.flags & PF_X) flags |= VMA_EXECUTE; vma_add(prog_header.virt_addr, prog_header.virt_addr+npages*PAGE_SIZE-1, flags); if (!(prog_header.flags & PF_W)) page_set_flags(prog_header.virt_addr, npages, flags); break; case ELF_PT_GNU_STACK: // Indicates stack executability // create user-level stack npages = DEFAULT_STACK_SIZE >> PAGE_BITS; if (DEFAULT_STACK_SIZE & (PAGE_SIZE-1)) npages++; addr = get_pages(npages); stack = header.entry*2; // virtual address of the stack if (page_map(stack, addr, npages, PG_USER|PG_RW)) { kprintf("Could not map stack at 0x%x\n", stack); return -ENOMEM; } memset((void*) stack, 0x00, npages*PAGE_SIZE); // create vma regions for the user-level stack flags = VMA_CACHEABLE; if (prog_header.flags & PF_R) flags |= VMA_READ; if (prog_header.flags & PF_W) flags |= VMA_WRITE; if (prog_header.flags & PF_X) flags |= VMA_EXECUTE; vma_add(stack, stack+npages*PAGE_SIZE-1, flags); break; } } // setup heap if (!curr_task->heap) curr_task->heap = (vma_t*) kmalloc(sizeof(vma_t)); if (BUILTIN_EXPECT(!curr_task->heap || !heap, 0)) { kprintf("load_task: heap is missing!\n"); return -ENOMEM; } curr_task->heap->flags = VMA_HEAP|VMA_USER; curr_task->heap->start = heap; curr_task->heap->end = heap; if (BUILTIN_EXPECT(!stack, 0)) { kprintf("Stack is missing!\n"); return -ENOMEM; } // push strings on the stack offset = DEFAULT_STACK_SIZE-8; memset((void*) (stack+offset), 0, 4); offset -= MAX_ARGS; memcpy((void*) (stack+offset), largs->buffer, MAX_ARGS); idx = offset; // push argv on the stack offset -= largs->argc * sizeof(char*); for(i=0; iargc; i++) { ((char**) (stack+offset))[i] = (char*) (stack+idx); while(((char*) stack)[idx] != '\0') idx++; idx++; } // push env on the stack offset -= (largs->envc+1) * sizeof(char*); for(i=0; ienvc; i++) { ((char**) (stack+offset))[i] = (char*) (stack+idx); while(((char*) stack)[idx] != '\0') idx++; idx++; } ((char**) (stack+offset))[largs->envc] = NULL; // push pointer to env offset -= sizeof(char**); if (!(largs->envc)) *((char***) (stack+offset)) = NULL; else *((char***) (stack+offset)) = (char**) (stack + offset + sizeof(char**)); // push pointer to argv offset -= sizeof(char**); *((char***) (stack+offset)) = (char**) (stack + offset + 2*sizeof(char**) + (largs->envc+1) * sizeof(char*)); // push argc on the stack offset -= sizeof(int); *((int*) (stack+offset)) = largs->argc; kfree(largs); // clear fpu state => currently not supported //curr_task->flags &= ~(TASK_FPU_USED|TASK_FPU_INIT); jump_to_user_code(header.entry, stack+offset); return 0; invalid: kprintf("Invalid executable!\n"); kprintf("magic number 0x%x\n", (uint32_t) header.ident.magic); kprintf("header type 0x%x\n", (uint32_t) header.type); kprintf("machine type 0x%x\n", (uint32_t) header.machine); kprintf("elf ident class 0x%x\n", (uint32_t) header.ident._class); kprintf("elf identdata !0x%x\n", header.ident.data); kprintf("program entry point 0x%x\n", (size_t) header.entry); return -EINVAL; } /** @brief This call is used to adapt create_task calls * which want to have a start function and argument list */ static int user_entry(void* arg) { int ret; finish_task_switch(); if (BUILTIN_EXPECT(!arg, 0)) return -EINVAL; ret = load_task((load_args_t*) arg); kfree(arg); return ret; } /** @brief Luxus-edition of create_user_task functions. Just call with an exe name * * @param id Pointer to the tid_t structure which shall be filles * @param fname Executable's path and filename * @param argv Arguments list * @return * - 0 on success * - -ENOMEM (-12) or -EINVAL (-22) on failure */ int create_user_task(tid_t* id, const char* fname, char** argv) { vfs_node_t* node; int argc = 0; size_t i, buffer_size = 0; load_args_t* load_args = NULL; char *dest, *src; node = findnode_fs((char*) fname); if (!node || !(node->type == FS_FILE)) return -EINVAL; // determine buffer size of argv if (argv) { while (argv[argc]) { buffer_size += (strlen(argv[argc]) + 1); argc++; } } if (argc <= 0) return -EINVAL; if (buffer_size >= MAX_ARGS) return -EINVAL; load_args = kmalloc(sizeof(load_args_t)); if (BUILTIN_EXPECT(!load_args, 0)) return -ENOMEM; load_args->node = node; load_args->argc = argc; load_args->envc = 0; dest = load_args->buffer; for (i=0; iprio; if (task->status == TASK_BLOCKED) { task->status = TASK_READY; ret = 0; spinlock_irqsave_lock(&readyqueues.lock); // increase the number of ready tasks readyqueues.nr_tasks++; // add task to the runqueue if (!readyqueues.queue[prio-1].last) { readyqueues.queue[prio-1].last = readyqueues.queue[prio-1].first = task; task->next = task->prev = NULL; readyqueues.prio_bitmap |= (1 << prio); } else { task->prev = readyqueues.queue[prio-1].last; task->next = NULL; readyqueues.queue[prio-1].last->next = task; readyqueues.queue[prio-1].last = task; } spinlock_irqsave_unlock(&readyqueues.lock); } irq_nested_enable(flags); return ret; } /** @brief Block current task * * The current task's status will be changed to TASK_BLOCKED * * @return * - 0 on success * - -EINVAL (-22) on failure */ int block_current_task(void) { tid_t id; uint32_t prio; int ret = -EINVAL; uint8_t flags; flags = irq_nested_disable(); id = current_task->id; prio = current_task->prio; if (task_table[id].status == TASK_RUNNING) { task_table[id].status = TASK_BLOCKED; ret = 0; spinlock_irqsave_lock(&readyqueues.lock); // reduce the number of ready tasks readyqueues.nr_tasks--; // remove task from queue if (task_table[id].prev) task_table[id].prev->next = task_table[id].next; if (task_table[id].next) task_table[id].next->prev = task_table[id].prev; if (readyqueues.queue[prio-1].first == task_table+id) readyqueues.queue[prio-1].first = task_table[id].next; if (readyqueues.queue[prio-1].last == task_table+id) { readyqueues.queue[prio-1].last = task_table[id].prev; if (!readyqueues.queue[prio-1].last) readyqueues.queue[prio-1].last = readyqueues.queue[prio-1].first; } // No valid task in queue => update prio_bitmap if (!readyqueues.queue[prio-1].first) readyqueues.prio_bitmap &= ~(1 << prio); spinlock_irqsave_unlock(&readyqueues.lock); } irq_nested_enable(flags); return ret; } size_t** scheduler(void) { task_t* orig_task; uint32_t prio; orig_task = current_task; spinlock_irqsave_lock(&readyqueues.lock); /* signalizes that this task could be reused */ if (current_task->status == TASK_FINISHED) { current_task->status = TASK_INVALID; readyqueues.old_task = current_task; } else readyqueues.old_task = NULL; // reset old task prio = msb(readyqueues.prio_bitmap); // determines highest priority if (prio > MAX_PRIO) { if ((current_task->status == TASK_RUNNING) || (current_task->status == TASK_IDLE)) goto get_task_out; current_task = readyqueues.idle; } else { // Does the current task have an higher priority? => no task switch if ((current_task->prio > prio) && (current_task->status == TASK_RUNNING)) goto get_task_out; if (current_task->status == TASK_RUNNING) { current_task->status = TASK_READY; readyqueues.old_task = current_task; } current_task = readyqueues.queue[prio-1].first; if (BUILTIN_EXPECT(current_task->status == TASK_INVALID, 0)) { kprintf("Upps!!!!!!! Got invalid task %d, orig task %d\n", current_task->id, orig_task->id); } current_task->status = TASK_RUNNING; // remove new task from queue // by the way, priority 0 is only used by the idle task and doesn't need own queue readyqueues.queue[prio-1].first = current_task->next; if (!current_task->next) { readyqueues.queue[prio-1].last = NULL; readyqueues.prio_bitmap &= ~(1 << prio); } current_task->next = current_task->prev = NULL; } get_task_out: spinlock_irqsave_unlock(&readyqueues.lock); if (current_task != orig_task) { //kprintf("schedule from %u to %u with prio %u\n", orig_task->id, current_task->id, (uint32_t)current_task->prio); return (size_t**) &(orig_task->last_stack_pointer); } return NULL; } void reschedule(void) { size_t** stack; uint8_t flags; flags = irq_nested_disable(); if ((stack = scheduler())) switch_context(stack); irq_nested_enable(flags); }