
Overview Xilkernel is a small, robust, and modular kernel. It is highly integrated with the Platform Studio
framework and is a free software library that you receive with the Xilinx Software Development
Kit (SDK). Xilkernel:

• Allows a high degree of customization, letting you tailor the kernel to an optimal level both
in terms of size and functionality.

• Supports the core features required in a lightweight embedded kernel, with a POSIX API.

• Works on MicroBlaze™ processor.

Xilkernel IPC services can be used to implement higher level services (such as networking,
video, and audio) and subsequently run applications using these services.

Why Use a
Kernel?

The following are a few of the deciding factors that can influence your choice of using a kernel
as the software platform for your next application project:

• Typical embedded control applications comprise various tasks that need to be performed
in a particular sequence or schedule. As the number of control tasks involved grows, it
becomes difficult to organize the sub-tasks manually, and to time-share the required work.
The responsiveness and the capability of such an application decreases dramatically
when the complexity is increased.

• Breaking down tasks as individual applications and implementing them on an operating
system (OS) is much more intuitive.

• A kernel enables the you to write code at an abstract level, instead of at a small, micro-
controller-level standalone code.

• Many common and legacy applications rely on OS services such as file systems, time
management, and so forth. Xilkernel is a thin library that provides these essential
services. Porting or using common and open source libraries (such as graphics or network
protocols) might require some form of these OS services also.

Key Features Xilkernel includes the following key features:

• High scalability into a given system through the inclusion or exclusion of functionality as
required.

• Complete kernel configuration and deployment within minutes from inside of SDK.

• Robustness of the kernel: system calls protected by parameter validity checks and proper
return of POSIX error codes.

• A POSIX API targeting embedded kernels, win core kernel features such as:

- Threads with round-robin or strict priority scheduling.

- Synchronization services: semaphores and mutex locks.

- IPC services: message queues and shared memory.

- Dynamic buffer pool memory allocation.

- Software timers.

- User-level interrupt handling.

• Static thread creation that startup with the kernel.

UG646 June 4, 2014

Xilkernel (v6.1)
UG646 June 4, 2014 www.xilinx.com 1

© 2014 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=1

Xilkernel Organization
• System call interface to the kernel.

• Exception handling for the MicroBlaze processor.

• Memory protection using MicroBlaze Memory Management (Protection) Unit (MMU)
features when available.

Xilkernel
Organization

The kernel is highly modular in design. You can select and customize the kernel modules that
are needed for the application at hand. Customizing the kernel is discussed in detail in “Kernel
Customization,” page 43(1). Figure 1 shows the various modules of Xilkernel:

Building
Xilkernel
Applications

Xilkernel is organized in the form of a library of kernel functions. This leads to a simple model
of kernel linkage. To build Xilkernel, you must include Xilkernel in your software platform,
configure it appropriately, and run Libgen to generate the Xilkernel library. Your application
sources can be edited and developed separately. After you have developed your application,
you must link with the Xilkernel library, thus pulling in all the kernel functionality to build the final
kernel image. The Xilkernel library is generated as libxilkernel.a. Figure 2, page 3 shows
this development flow.

Internally, Xilkernel also supports the much more powerful, traditional OS-like method of
linkage and separate executables. Conventional operating systems have the kernel image as a
separate file and each application that executes on the kernel as a separate file. However,
Xilinx recommends that you use the more simple and more elegant library linkage mode. This
mode provides maximum ease of use. It is also the preferred mode for debugging,
downloading, and bootloading. The separate executable mode is required only by those who
have advanced requirements in the form of separate executables. The separate executable
mode and its caveats are documented in “Deprecated Features,” page 51.

The following are the steps for the kernel linkage mode of application development:

1. Application source C files should include the file xmk.h as the first file among others. For
example, defining the includexmk.h flag makes available certain definitions and
declarations from the GNU include files that are required by Xilkernel and applications.

X-Ref Target - Figure 1

Figure 1: Xilkernel Modules

1. Some of these features might not be fully supported in a given release of Xilkernel.

System Call Handler
Interrupt and Exception

HandlerScheduler

Software
Timers

Message
Queue

Thread
Management

Shared
Memory

Semaphores

User level interrupt
handling

User Application

Dynamic Buffer
Management

Xilkernel

Xilkernel Modules

X10226
UG646 June 4, 2014 www.xilinx.com 2Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=2

Building Xilkernel Applications
2. Your application software project links with the library libxil.a. This library contains the
actual kernel functions generated. Your application links with this and forms the final kernel
and application image.

3. Xilkernel is responsible for all first level interrupt and exception handling on both the
MicroBlaze and PowerPC processors. Therefore, you should not directly attempt to use any
of the methods of handling interrupts documented for standalone programs. Instead refer
to the section on interrupt handling for how to handle user level interrupts and exceptions.

4. You can control the memory map of the kernel by using the linker script feature of the final
software application project that links with the kernel. Automatic linker script generation
helps you here.

5. Your application must provide a main() which is the starting point of execution for your
kernel image. Inside your main(), you can do any initialization and setup that you need
to do. The kernel remains unstarted and dormant. At the point where your application setup
is complete and you want the kernel to start, you must invoke xilkernel_main() that
starts off the kernel, enables interrupts, and transfers control to your application processes,
as configured. Some system-level features may need to be enabled before invoking
xilkernel_main(). These are typically machine-state features such as cache
enablement, hardware exception enablement which must be “always ON” even when
context switching from application to application. Make sure that you setup such system
state before invoking xilkernel_main(). Also, you must not arbitrarily modify such
system-state in your application threads. If a context switch occurs when the system state
is modified, it could lead to subsequent threads executing without that state being enabled;
consequently, you must lock out context switches and interrupts before you modify such a
state.

Note: Your linker script must be aware of the requirements for the kernel.
X-Ref Target - Figure 2

Figure 2: Xilkernel Development Flow

Proc3Proc2Proc1

User Space

System Call Handler

Pure Separate Executable Mode Scenario

xilkernel.elf

Kernel Image

Proc6Proc5Proc4

User Space

System Call Handler

Kernel Bundled Executable Mode Scenario

libxilkernel.a

S
ys

te
m

 C
al

l
W

ra
pp

er
s

Kernel Image

X10128

Proc1

Proc2

Proc3
UG646 June 4, 2014 www.xilinx.com 3Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=3

Xilkernel Process Model
Xilkernel
Process Model

The units of execution within Xilkernel are called process contexts. Scheduling is done at the
process context level. There is no concept of thread groups combining to form, what is
conventionally called a process. Instead, all the threads are peers and compete equally for
resources. The POSIX threads API is the primary user-visible interface to these process
contexts. There are a few other useful additional interfaces provided, that are not a part of
POSIX. The interfaces allow creating, destroying, and manipulating created application
threads. The actual interfaces are described in detail in “Xilkernel API,” page 6. Threads are
manipulated with thread identifiers. The underlying process context is identified with a process
identifier pid_t.

Xilkernel
Scheduling
Model

Xilkernel supports either priority-driven, preemptive scheduling with time slicing (SCHED_PRIO)
or simple round-robin scheduling (SCHED_RR). This is a global scheduling policy and cannot be
changed on a per-thread basis. This must be configured statically at kernel generation time.

In SCHED_RR, there is a single ready queue and each process context executes for a
configured time slice before yielding execution to the next process context in the queue.

In SCHED_PRIO there are as many ready queues as there are priority levels. Priority 0 is the
highest priority in the system and higher values mean lower priority.

As shown in the following figure, the process that is at the head of the highest priority ready
queue is always scheduled to execute next. Within the same priority level, scheduling is round-
robin and time-sliced. If a ready queue level is empty, it is skipped and the next ready queue
level examined for schedulable processes. Blocked processes are off their ready queues and in
their appropriate wait queues. The number of priority levels can be configured for
SCHED_PRIO.

For both the scheduling models, the length of the ready queue can also be configured. If there
are wait queues inside the kernel (in semaphores, message queues), they are configured as
priority queues if scheduling mode is SCHED_PRIO. Otherwise, they are configured as simple
first-in-first-out (FIFO) queues.
X-Ref Target - Figure 3

Figure 3: Priority-Driven Scheduling

A0

1

2

13

14

15

B

Active

C D
(Blocked)

E

P
rio

rit
y

F

G
(Blocked)

X10132
UG646 June 4, 2014 www.xilinx.com 4Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=4

Xilkernel Scheduling Model
Each process context is in any of the following six states:

• PROC_NEW - A newly created process.

• PROC_READY - A process ready to execute.

• PROC_RUN - A process that is running.

• PROC_WAIT - A process that is blocked on a resource.

• PROC_DELAY - A process that is waiting for a timeout.

• PROC_TIMED_WAIT - A process that is blocked on a resource and has an associated
timeout.

When a process terminates, it enters a dead state called PROC_DEAD. The process context state
diagram is shown in the following figure.
X-Ref Target - Figure 4

Figure 4: Process Context States

ki
lle

d killed

ki
lle

d

kil
led

E
X

IT

A
C

T
IV

A
T

E
D

SCHEDULED OUT

SCHEDULED IN

TIMEOUT

BLOCKED

B
LO

C
K

E
D

U
N

B
LO

C
K

E
D

B
LO

C
K

E
D

U
N

B
LO

C
K

E
D

/T
IM

E
O

U
T

PROC_READY PROC_WAIT
PROC_TIMED

_WAIT
PROC_DELAY

PROC_RUN

PROC_DEAD

PROC_NEW

X10227
UG646 June 4, 2014 www.xilinx.com 5Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=5

POSIX Interface
POSIX Interface Xilkernel provides a POSIX interface to the kernel. Not all the concepts and interfaces defined
by POSIX are available. A subset covering the most useful interfaces and concepts are
implemented. Xilkernel programs can run almost equivalently on your desktop OS, like Linux or
SunOS. This makes for easy application development, portability and legacy software support.
The programming model appeals to those who have worked on equivalent POSIX interfaces on
traditional operating systems. For those interfaces that have been provided, POSIX is
rigorously adhered to in almost all cases. For cases that do differ, the differences are clearly
specified. Refer to “Xilkernel API”, for the actual interfaces and their descriptions.

Xilkernel
Functions

Click an item below view function summaries and descriptions for:

• Thread Management

• Semaphores

• Message Queues

• Shared Memory

• Mutex Locks

• Dynamic Buffer Memory Management

• Software Timers

• Memory Protection Overview

Xilkernel API Thread Management

Xilkernel supports the basic POSIX threads API. Thread creation and manipulation is done in
standard POSIX notation. Threads are identified by a unique thread identifier. The thread
identifier is of type pthread_t. This thread identifier uniquely identifies a thread for an
operation. Threads created in the system have a kernel wrapper to which they return control to
when they terminate. So, a specific exit function is not required at the end of the thread’s code.

Thread stack is allocated automatically on behalf of the thread from a pool of Block Starting
Symbol (BSS) memory that is statically allocated based upon the maximum number of system
threads. You can also assign a custom piece of memory as the stack for each thread to create
dynamically.

The entire thread module is optional and can be configured in or out as a part of the software
specification. See “Configuring Thread Management,” page 45 for more details on customizing
this module.
UG646 June 4, 2014 www.xilinx.com 6Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=6

Xilkernel API
Thread Management Function Summary

The following list is a linked summary of the thread management functions in Xilkernel. Click on
a function to view a detailed description.

int pthread_create(pthread_t thread, pthread_attr_t* att, void*(*start_func)(void*),void*
param)
void pthread_exit(void *value_ptr)
int pthread_join(pthread_t thread, void **value_ptr)
int pthread_detach(pthread_t target)
int pthread_equal(pthread_t t1, pthread_t t2)
int pthread_getschedparam(pthread_t thread, int *policy, struct sched_param *param)
int pthread_setschedparam(pthread_t thread, int policy, const struct sched_param *param)
int pthread_attr_init(pthread_attr_t* attr)
int pthread_attr_destroy (pthread_attr_t* attr)
int pthread_attr_setdetachstate(pthread_attr_t* attr, int dstate)
int pthread_attr_getdetachstate(pthread_attr_t* attr, int *dstate)
int pthread_attr_setschedparam(pthread_attr_t* attr, struct sched_param *schedpar)
int pthread_attr_getschedparam(pthread_attr_t* attr, struct sched_param* schedpar)
int pthread_attr_setstack(const pthread_attr_t *attr, void *stackaddr, size_t stacksize)
int pthread_attr_getstack(const pthread_attr_t *attr, void **stackaddr, size_t *stacksize)
pid_t get_currentPID(void)
int kill(pid_tpid)
int process_status(pid_t pid, p_stat *ps)
int xmk_add_static_thread(void* (*start_routine)(void *), int sched_priority)
int yield(void)
UG646 June 4, 2014 www.xilinx.com 7Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=7

Xilkernel API
Thread Management Function Descriptions

The following descriptions are the thread management interface identifiers.

int pthread_create(pthread_t thread, pthread_attr_t* att,
void*(*start_func)(void*),void* param)

void pthread_exit(void *value_ptr)

Parameters thread is the location at which to store the created thread’s identifier.

attr is the pointer to thread creation attributes structure.

start_func is the start address of the function from which the thread needs to
execute.

param is the pointer argument to the thread function.

Returns 0 and thread identifier of the created thread in *thread, on success.

-1 if thread refers to an invalid location.

EINVAL if attr refers to invalid attributes.

EAGAIN if resources unavailable to create the thread.

Description pthread_create() creates a new thread, with attributes specified by attr,
within a process. If attr is NULL, the default attributes are used. If the attributes
specified by attr are modified later, the thread’s attributes are not affected. Upon
successful completion, pthread_create() stores the ID of the created thread in
the location referenced by thread. The thread is created executing start_routine
with arg as its sole argument. If the start_routine returns, the effect is as if
there was an implicit call to pthread_exit() using the return value of
start_routine as the exit status. This is explained in the pthread_exit
description.

You can control various attributes of a thread during its creation. See the
pthread_attr routines for a description of the kinds of thread creation attributes
that you can control.

Includes xmk.h, pthread.h

Parameters value_ptr is a pointer to the return value of the thread.

Returns None.

Description The pthread_exit() function terminates the calling thread and makes the
value value_ptr available to any successful join with the terminating thread.
Thread termination releases process context resources including, but not limited
to, memory and attributes. An implicit call to pthread_exit() is made when a
thread returns from the creating start routine. The return value of the function
serves as the thread’s exit status. Therefore no explicit pthread_exit() is
required at the end of a thread.

Includes xmk.h, pthread.h
UG646 June 4, 2014 www.xilinx.com 8Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=8

Xilkernel API
int pthread_join(pthread_t thread, void **value_ptr)

pthread_t pthread_self(void)

int pthread_detach(pthread_t target)

int pthread_equal(pthread_t t1, pthread_t t2)

Parameters value_ptr is a pointer to the return value of the thread.

Returns 0 on success.
ESRCH if the target thread is not in a joinable state or is an invalid thread.
EINVAL if the target thread already has someone waiting to join with it.

Description The pthread_join() function suspends execution of the calling thread until
the pthread_t (target thread) terminates, unless the target thread has already
terminated.Upon return from a successful pthread_join() call with a non-
NULL value_ptr argument, the value passed to the pthread_exit()
function by the terminating thread is made available in the location referenced by
value_ptr. When a pthread_join() returns successfully, the target
thread has been terminated. The results of multiple simultaneous calls to
pthread_join() specifying the same target thread are that only one thread
succeeds and the others fail with EINVAL.

Note: No deadlock detection is provided.

Includes xmk.h, pthread.h

Parameters None.

Returns On success, returns thread identifier of current thread.
Error behavior not defined.

Description The pthread_self() function returns the thread ID of the calling thread.

Includes xmk.h, pthread.h

Parameters target is the target thread to detach.

Returns 0 on success.
ESRCH if target thread cannot be found.

Description The pthread_detach() function indicates to the implementation that
storage for the thread can be reclaimed when that thread terminates. If thread
has not terminated, pthread_detach() does not cause it to terminate. The
effect of multiple pthread_detach() calls on the same target thread is
unspecified.

Includes xmk.h, pthread.h

Parameters t1 and t2 are the two thread identifiers to compare.

Returns 1 if t1 and t2 refer to threads that are equal.
0 otherwise.

Description The pthread_equal() function returns a non-zero value if t1 and t2 are
equal; otherwise, zero is returned. If either t1 or t2 are not valid thread IDs, zero
is returned.

Includes xmk.h, pthread.h
UG646 June 4, 2014 www.xilinx.com 9Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=9

Xilkernel API
int pthread_getschedparam(pthread_t thread, int *policy,
struct sched_param *param)

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param)

Parameters thread is the identifier of the thread on which to perform the operation.
policy is a pointer to the location where the global scheduling policy is stored.
param is a pointer to the scheduling parameters structure.

Returns 0 on success.
ESRCH if the value specified by thread does not refer to an existing thread.
EINVAL if param or policy refer to invalid memory.

Description The pthread_getschedparam() function gets the scheduling policy and
parameters of an individual thread. For SCHED_RR there are no scheduling
parameters; consequently, this routine is not defined for SCHED_RR.
For SCHED_PRIO, the only required member of the sched_param structure is
the priority sched_priority. The returned priority value is the value specified
by the most recent pthread_getschedparam() or
pthread_create() call affecting the target thread.
It does not reflect any temporary adjustments to its priority as a result of any
priority inheritance or ceiling functions.
This routine is defined only if scheduling type is SCHED_PRIO.

Returns xmk.h, pthread.h

Parameters thread is the identifier of the thread on which to perform the operation.
policy is ignored.
param is a pointer to the scheduling parameters structure.

Returns 0 on success.
ESRCH if thread does not refer to a valid thread.
EINVAL if the scheduling parameters are invalid.

Description The pthread_setschedparam() function sets the scheduling policy and
parameters of individual threads to be retrieved. For SCHED_RR there are no
scheduling parameters; consequently this routine is not defined for SCHED_RR.
For SCHED_PRIO, the only required member of the sched_param structure is
the priority sched_priority. The priority value must be a valid value as
configured in the scheduling parameters of the kernel. The policy parameter is
ignored.

Note: This routine is defined only if scheduling type is SCHED_PRIO.

Includes xmk.h, pthread.h
UG646 June 4, 2014 www.xilinx.com 10Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=10

Xilkernel API
int pthread_attr_init(pthread_attr_t* attr)

int pthread_attr_destroy (pthread_attr_t* attr)

int pthread_attr_setdetachstate(pthread_attr_t* attr, int
dstate)

Parameters attr is a pointer to the attribute structure to be initialized.

Returns 0 on success.
1 on failure.
EINVAL on invalid attr parameter.

Description The pthread_attr_init() function initializes a thread attributes object
attr with the default value for all of the individual attributes used by a given
implementation. The function contents are defined in the sys/types.h
header.

Note: This function does not make a call to the kernel.

Includes xmk.h, pthread.h

Parameters attr is a pointer to the thread attributes that must be destroyed.

Returns 0 on success.
EINVAL on errors.

Description The pthread_attr_destroy() function destroys a thread attributes
object and sets attr to an implementation-defined invalid value.
Re-initialize a destroyed attr attributes object with
pthread_attr_init(); the results of otherwise referencing the object
after it is destroyed are undefined.

Note: This function does not make a call to the kernel.

Includes xmk.h, pthread.h

Parameters attr is the attribute structure on which the operation is to be performed.
dstate is the detachstate required.

Returns 0 on success.
EINVAL on invalid parameters.

Description The detachstate attribute controls whether the thread is created in a detached
state. If the thread is created detached, then when the thread exits, the thread’s
resources are detached without requiring a pthread_join() or a call
pthread_detach().The application can set detachstate to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

Note: This does not make a call into the kernel.

Includes xmk.h, pthread.h
UG646 June 4, 2014 www.xilinx.com 11Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=11

Xilkernel API
int pthread_attr_getdetachstate(pthread_attr_t* attr, int
*dstate)

int pthread_attr_setschedparam(pthread_attr_t* attr,
struct sched_param *schedpar)

int pthread_attr_getschedparam(pthread_attr_t* attr,
struct sched_param* schedpar)

Parameters attr is the attribute structure on which the operation is to be performed.
dstate is the location in which to store the detachstate.

Returns 0 on success.
EINVAL on invalid parameters.

Description The implementation stores either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE in dstate, if the value of detachstate was valid
in attr.

Note: This does not make a call into the kernel.

Includes xmk.h, pthread.h

Parameters attr is the attribute structure on which the operation is to be performed.
schedpar is the location of the structure that contains the scheduling
parameters.

Returns 0 on success.
EINVAL on invalid parameters.
ENOTSUP for invalid scheduling parameters.

Description The pthread_attr_setschedparam() function sets the scheduling
parameter attributes in the attr argument.
The contents of the sched_param structure are defined in the sched.h
header.

Note: This does not make a call into the kernel.

Includes xmk.h, pthread.h

Parameters attr is the attribute structure on which the operation is to be performed.
schedpar is the location at which to store the sched_param structure.

Returns 0 on success.
EINVAL on invalid parameters.

Description The pthread_attr_getschedparam() gets the scheduling parameter
attributes in the attr argument. The contents of the param structure are defined
in the sched.h header.

Note: This does not make a call to the kernel.

Includes xmk.h, pthread.h
UG646 June 4, 2014 www.xilinx.com 12Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=12

Xilkernel API
int pthread_attr_setstack(const pthread_attr_t *attr, void
*stackaddr, size_t stacksize)

int pthread_attr_getstack(const pthread_attr_t *attr, void
**stackaddr, size_t *stacksize)

pid_t get_currentPID(void)

Parameters attr is the attributes structure on which to perform the operation.
stackaddr is base address of the stack memory.
stacksize is the size of the memory block in bytes.

Returns 0 on success.
EINVAL if the attr param is invalid or if stackaddr is not aligned
appropriately.

Description The pthread_attr_setstack() function shall set the thread creation
stack attributes stackaddr and stacksize in the attr object.
The stack attributes specify the area of storage to be used for the created
thread's stack. The base (lowest addressable byte) of the storage is stackaddr,
and the size of the storage is stacksize bytes.
The stackaddr must be aligned appropriately according to the processor EABI,
to be used as a stack; for example, pthread_attr_setstack() might fail
with EINVAL if (stackaddr and 0x3) is not 0.

Note: For the MicroBlaze processor, the alignment required is 4 bytes.

Includes xmk.h, pthread.h

Parameters attr is the attributes structure on which to perform the operation.
stackaddr is the location at which to store the base address of the stack
memory.
stacksize is the location at which to store the size of the memory block in
bytes.

Returns 0 on success.
EINVAL on invalid attr.

Description The pthread_attr_getstack() function retrieves the thread creation
attributes related to stack of the specified attributes structure and stores it in
stackaddr and stacksize.

Includes xmk.h, pthread.h

Parameters None.

Returns The process identifier associated with the current thread or elf process.

Description Gets the underlying process identifier of the process context that is executing
currently. The process identifier is needed to perform certain operations like
kill() on both processes and threads.

Includes xmk.h, sys/process.h
UG646 June 4, 2014 www.xilinx.com 13Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=13

Xilkernel API
int kill(pid_tpid)

int process_status(pid_t pid, p_stat *ps)

int xmk_add_static_thread(void* (*start_routine)(void *),
int sched_priority)

Parameters pid is the PID of the process.

Returns 0 on success.
-1 on failure.

Description Removes the process context specified by pid from the system. If pid refers to
the current executing process context, then it is equivalent to the current process
context terminating. A kill can be invoked on processes that are suspended on
wait queues or on a timeout. No indication is given to other processes that are
dependant on this process context.

Note: This function is defined only if CONFIG_KILL is true. This can be
configured in with the enhanced features category of the kernel.

Includes xmk.h, sys/process.h

Parameters pid is the PID of process.
ps is the buffer where the process status is returned.

Returns Process status in ps on success.
NULL in ps on failure.

Description Get the status of the process or thread, whose pid is pid. The status is returned
in structure p_stat which has the following fields:
• pid is the process ID.
• state is the current scheduling state of the process.
The contents of p_stat are defined in the sys/ktypes.h header.

Includes xmk.h, sys/process.h

Parameters start_routine is the thread start routine.
sched_priority is the priority of the thread when the kernel is configured for
priority scheduling.

Returns 0 on success and -1 on failure.

Description This function provides the ability to add a thread to the list of startup or static
threads that run on kernel start, via C code. This function must be used prior to
xilkernel_main() being invoked.

Includes xmk.h, sys/init.h
UG646 June 4, 2014 www.xilinx.com 14Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=14

Xilkernel API
int yield(void)

Semaphores

Xilkernel supports kernel-allocated POSIX semaphores that can be used for synchronization.
POSIX semaphores are counting semaphores that also count below zero (a negative value
indicates the number of processes blocked on the semaphore). Xilkernel also supports a few
interfaces for working with named semaphores. The number of semaphores allocated in the
kernel and the length of semaphore wait queues can be configured during system initialization.
Refer to “Configuring Semaphores,” page 46 for more details. The semaphore module is
optional and can be configured in or out during system initialization. The message queue
module, described later on in this document, uses semaphores. This module must be included
if you are to use message queues.

Semaphore Function Summary

The following list provides a linked summary of the semaphore functions in Xilkernel. You can
click on a function to go to the description.

Parameters None.

Returns None.

Description Yields the processor to the next process context that is ready to execute. The
current process is put back in the appropriate ready queue.

Note: This function is optional and included only if CONFIG_YIELD is defined.
This can be configured in with the enhanced features category of the kernel.

Includes xmk.h, sys/process.h

int sem_init(sem_t *sem, int pshared, unsigned value)
int sem_destroy(sem_t* sem)
int sem_getvalue(sem_t* sem, int* value)
int sem_wait(sem_t* sem)
int sem_trywait(sem_t* sem)
int sem_timedwait(sem_t* sem, unsigned_ms)
sem_t* sem_open(const char* name, int oflag,...)
int sem_close(sem_t* sem)
int sem_post(sem_t* sem)
int sem_unlink(const char* name)
UG646 June 4, 2014 www.xilinx.com 15Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=15

Xilkernel API
Semaphore Function Descriptions

The following are descriptions of the Xilkernel semaphore functions:

int sem_init(sem_t *sem, int pshared, unsigned value)

int sem_destroy(sem_t* sem)

Parameters sem is the location at which to store the created semaphore’s identifier.
pshared indicates sharing status of the semaphore, between processes.
value is the initial count of the semaphore.

Note: pshared is unused currently.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno is set to ENOSPC if no
more semaphore resources are available in the system.

Description The sem_init() function initializes the unnamed semaphore referred to by
sem. The value of the initialized semaphore is value. Following a successful
call to sem_init(), the semaphore can be used in subsequent calls to
sem_wait(), sem_trywait(), sem_post(), and
sem_destroy(). This semaphore remains usable until the semaphore is
destroyed. Only sem itself can be used for performing synchronization. The
result of referring to copies of sem in calls to sem_wait(),
sem_trywait(), sem_post(), and sem_destroy() is undefined.
Attempting to initialize an already initialized semaphore results in undefined
behavior.

Includes xmk.h, semaphore.h

Parameters sem is the semaphore to be destroyed.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to:
• EINVAL if the semaphore identifier does not refer to a valid semaphore.
• EBUSY if the semaphore is currently locked, and processes are blocked on it.

Description The sem_destroy() function destroys the unnamed semaphore indicated
by sem. Only a semaphore that was created using sem_init() can be destroyed
using sem_destroy(); the effect of calling sem_destroy() with a named
semaphore is undefined. The effect of subsequent use of the semaphore sem is
undefined until sem is re-initialized by another call to sem_init().

Includes xmk.h, semaphore.h
UG646 June 4, 2014 www.xilinx.com 16Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=16

Xilkernel API
int sem_getvalue(sem_t* sem, int* value)

int sem_wait(sem_t* sem)

int sem_trywait(sem_t* sem)

Parameters sem is the semaphore identifier.
value is the location where the semaphore value is stored.

Returns 0 on success and value appropriately filled in.
-1 on failure and sets errno appropriately.The errno can be set to EINVAL if
the semaphore identifier refers to an invalid semaphore.

Description The sem_getvalue() function updates the location referenced by the sval
argument to have the value of the semaphore referenced by sem without
affecting the state of the semaphore. The updated value represents an actual
semaphore value that occurred at some unspecified time during the call, but it
need not be the actual value of the semaphore when it is returned to the calling
process.
If sem is locked, then the object to which sval points is set to a negative number
whose absolute value represents the number of processes waiting for the
semaphore at some unspecified time during the call.

Includes xmk.h, semaphore.h

Parameters sem is the semaphore identifier.

Returns 0 on success and the semaphore in a locked state.
-1 on failure and errno is set appropriately. The errno can be set to:
• EINVAL if the semaphore identifier is invalid.
• EIDRM if the semaphore was forcibly removed.

Description The sem_wait() function locks the semaphore referenced by sem by
performing a semaphore lock operation on that semaphore. If the semaphore
value is currently zero, then the calling thread does not return from the call to
sem_wait() until it either locks the semaphore or the semaphore is forcibly
destroyed.
Upon successful return, the state of the semaphore is locked and remains locked
until the sem_post() function is executed and returns successfully.

Note: When a process is unblocked within the sem_wait call, where it blocked
due to unavailability of the semaphore, the semaphore might have been destroyed
forcibly. In such a case, -1 is returned. Semaphores might be forcibly destroyed due
to destroying message queues that use semaphores internally. No deadlock
detection is provided.

Includes xmk.h, semaphore.h

Parameters sem is the semaphore identifier.

Returns 0 on success.
-1 on failure and errno is set appropriately. The errno can be set to:
• EINVAL if the semaphore identifier is invalid.
• EAGAIN if the semaphore could not be locked immediately.

Description The sem_trywait() function locks the semaphore referenced by sem only if
the semaphore is currently not locked; that is, if the semaphore value is currently
positive. Otherwise, it does not lock the semaphore and returns -1.

Includes xmk.h, semaphore.h
UG646 June 4, 2014 www.xilinx.com 17Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=17

Xilkernel API
int sem_timedwait(sem_t* sem, unsigned_ms)
Parameters sem is the semaphore identifier.

Returns 0 on success and the semaphore in a locked state.
-1 on failure and errno is set appropriately. The errno can be set to:
• EINVAL - If the semaphore identifier does not refer to a valid semaphore.
• ETIMEDOUT - The semaphore could not be locked before the specified

timeout expired.
• EIDRM - If the semaphore was forcibly removed from the system.

Description The sem_timedwait() function locks the semaphore referenced by sem by
performing a semaphore lock operation on that semaphore. If the semaphore
value is currently zero, then the calling thread does not return from the call to
sem_timedwait() until one of the following conditions occurs:
• It locks the semaphore.
• The semaphore is forcibly destroyed.
• The timeout specified has elapsed.
Upon successful return, the state of the semaphore is locked and remains locked
until the sem_post() function is executed and returns successfully.

Note: When a process is unblocked within the sem_wait call, where it blocked
due to unavailability of the semaphore, the semaphore might have been destroyed
forcibly. In such a case, -1 is returned. Semaphores maybe forcibly destroyed due to
destroying message queues which internally use semaphores. No deadlock
detection is provided.

Note: This routine depends on software timers support being present in the kernel
and is defined only if CONFIG_TIME is true.

Note: This routine is slightly different from the POSIX equivalent. The POSIX
version specifies the timeout as absolute wall-clock time. Because there is no
concept of absolute time in Xilkernel, we use relative time specified in milliseconds.

Includes xmk.h, semaphore.h
UG646 June 4, 2014 www.xilinx.com 18Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=18

Xilkernel API
sem_t* sem_open(const char* name, int oflag,...)

int sem_close(sem_t* sem)

Parameters name points to a string naming a semaphore object.

oflag is the flag that controls the semaphore creation.

Returns A pointer to the created/existing semaphore identifier.
SEM_FAILED on failures and when errno is set appropriately. The errno can
be set to:
• ENOSPC - If the system is out of resources to create a new semaphore (or

mapping).
• EEXIST - if O_EXCL has been requested and the named semaphore already

exists.
• EINVAL - if the parameters are invalid.

Description The sem_open() function establishes a connection between a named
semaphore and a process. Following a call to sem_open() with semaphore
name, the process can reference the semaphore associated with name using the
address returned from the call. This semaphore can be used in subsequent calls
to sem_wait(), sem_trywait(), sem_post(), and sem_close().
The semaphore remains usable by this process until the semaphore is closed by
a successful call to sem_close(). The oflag argument controls whether the
semaphore is created or merely accessed by the call to sem_open(). The bits
that can be set in oflag are:

♦ O_CREAT
Used to create a semaphore if it does not already exist. If O_CREAT is set
and the semaphore already exists, then O_CREAT has no effect, except as
noted under O_EXCL. Otherwise, sem_open() creates a named
semaphore. O_CREAT requires a third and a fourth argument: mode, which
is of type mode_t, and value, which is of type unsigned.

♦ O_EXCL
If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore
name exists. The check for the existence of the semaphore and the
creation of the semaphore if it does not exist are atomic with respect to
other processes executing sem_open() with O_EXCL and O_CREAT
set. If O_EXCL is set and O_CREAT is not set, the effect is undefined.

Note: The mode argument is unused currently. This interface is optional and is
defined only if CONFIG_NAMED_SEMA is set to TRUE.

Note: If flags other than O_CREAT and O_EXCL are specified in the oflag
parameter, an error is signalled.

The semaphore is created with an initial value of value.
After the name semaphore has been created by sem_open() with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open() with the same value of name.
If a process makes multiple successful calls to sem_open() with the same
value for name, the same semaphore address is returned for each such
successful call, assuming that there have been no calls to sem_unlink() for
this semaphore.

Includes xmk.h, semaphore.h

Parameters sem is the semaphore identifier.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to:
• EINVAL - If the semaphore identifier is invalid.
• ENOTSUP - If the semaphore is currently locked and/or processes are blocked

on the semaphore.
UG646 June 4, 2014 www.xilinx.com 19Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=19

Xilkernel API
int sem_post(sem_t* sem)

Description The sem_close() function indicates that the calling process is finished using
the named semaphore sem. The sem_close() function deallocates (that is,
make available for reuse by a subsequent sem_open() by this process) any
system resources allocated by the system for use by this process for this
semaphore. The effect of subsequent use of the semaphore indicated by sem by
this process is undefined. The name mapping for this named semaphore is also
destroyed. The call fails if the semaphore is currently locked.

Note: This interface is optional and is defined only if CONFIG_NAMED_SEMA is
true.

Includes xmk.h, semaphore.h

Parameters sem is the semaphore identifier.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to EINVAL if
the semaphore identifier is invalid.

Description The sem_post() function performs an unlock operation on the semaphore
referenced by the sem identifier.
If the semaphore value resulting from this operation is positive, then no threads
were blocked waiting for the semaphore to become unlocked and the semaphore
value is incremented.
If the value of the semaphore resulting from this operation is zero or negative,
then one of the threads blocked waiting for the semaphore is allowed to return
successfully from its call to sem_wait(). This is either the first thread on the
queue, if scheduling mode is SCHED_RR or, it is the highest priority thread in the
queue, if scheduling mode is SCHED_PRIO.

Note: If an unlink operation was requested on the semaphore, the post operation
performs an unlink when no more processes are waiting on the semaphore.

Includes xmk.h, semaphore.h
UG646 June 4, 2014 www.xilinx.com 20Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=20

Xilkernel API
int sem_unlink(const char* name)

Message Queues

Xilkernel supports kernel allocated X/Open System Interface (XSI) message queues. XSI is a
set of optional interfaces under POSIX. Message queues can be used as an IPC mechanism.
The message queues can take in arbitrary sized messages. However, buffer memory allocation
must be configured appropriately for the memory blocks required for the messages, as a part of
system buffer memory allocation initialization.The number of message queue structures
allocated in the kernel and the length of the message queues can be also be configured during
system initialization. The message queue module is optional and can be configured in/out.
Refer to “Configuring Message Queues,” page 46 for more details. This module depends on
the semaphore module and the dynamic buffer memory allocation module being present in the
system. There is also a larger, but more powerful message queue functionality that can be
configured if required. When the enhanced message queue interface is chosen, then malloc
and free are used to allocate and free space for the messages. Therefore, arbitrary sized
messages can be passed around without having to make sure that buffer memory allocation
APIs can handle requests for arbitrary size.

Note: When using the enhanced message queue feature, you must choose your global heap size
carefully, such that requests for heap memory from the message queue interfaces are satisfied without
errors. You must also be aware of thread-safety issues when using malloc(), free () in your own
code. You must disable interrupts and context switches before invoking the dynamic memory allocation
routines. You must follow the same rules when using any other library routines that may internally use
dynamic memory allocation.

Message Queue Function Summary

The following list provides a linked summary of the message queues in Xilkernel. You can click
on a function to go to the description.

Parameters name is the name that refers to the semaphore.

Returns 0 on success.
-1 on failure and errno is set appropriately. errno can be set to ENOENT - If an
entry for name cannot be located.

Description The sem_unlink() function removes the semaphore named by the string
name. If the semaphore named by name has processes blocked on it, then
sem_unlink() has no immediate effect on the state of the semaphore. The
destruction of the semaphore is postponed until all blocked and locking
processes relinquish the semaphore. Calls to sem_open() to recreate or
reconnect to the semaphore refer to a new semaphore after sem_unlink()
is called. The sem_unlink() call does not block until all references relinquish
the semaphore; it returns immediately.

Note: If an unlink operation had been requested on the semaphore, the unlink is
performed on a post operation that sees that no more processes waiting on the
semaphore. This interface is optional and is defined only if CONFIG_NAMED_SEMA
is true.

Includes xmk.h, semaphore.h

int msgget(key_t key, int msgflg)
int msgctl(int msqid, int cmd, struct msqid_ds* buf)
int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
ssize_t msgrcv(int msqid, void *msgp, size_t nbytes, long msgtyp, int msgflg)
UG646 June 4, 2014 www.xilinx.com 21Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=21

Xilkernel API
Message Queue Function Descriptions

The Xilkernel message queue function descriptions are as follows:

int msgget(key_t key, int msgflg)
Parameters key is a unique identifier for referring to the message queue.

msgflg specifies the message queue creation options.

Returns A unique non-negative integer message queue identifier.
-1 on failure and sets errno appropriately; errno can be set to:

♦ EEXIST - If a message queue identifier exists for the argument key but
((msgflg and IPC_CREAT) and msgflg & IPC_EXCL) is non-zero.

♦ ENOENT - A message queue identifier does not exist for the argument key
and (msgflg & IPC_CREAT) is 0.

♦ ENOSPC - If the message queue resources are exhausted.

Description The msgget() function returns the message queue identifier associated with
the argument key. A message queue identifier, associated message queue, and
data structure (see sys/kmsg.h), are created for the argument key if the
argument key does not already have a message queue identifier associated with
it, and (msgflg and IPC_CREAT) is non-zero.
Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

♦ msg_qnum, msg_lspid, msg_lrpid are set equal to 0.
♦ msg_qbytes is set equal to the system limit (MSGQ_MAX_BYTES).

The msgget() function fails if a message queue identifier exists for the
argument key but ((msgflg and IPC_CREAT) and (msgflg & IPC_EXCL)) is
non-zero.
IPC_PRIVATE is not supported. Also, messages in the message queue are not
required to be of the form shown below. There is no support for message type
based message receives and sends in this implementation.
The following is an example code snippet:

struct mymsg {

..long mtype; /* Message type. */

..char mtext[some_size]; /* Message text. */

..}

Includes xmk.h, sys/msg.h, sys/ipc.h
UG646 June 4, 2014 www.xilinx.com 22Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=22

Xilkernel API
int msgctl(int msqid, int cmd, struct msqid_ds* buf)
Parameters msqid is the message queue identifier.

cmd is the command.
buf is the data buffer

Returns 0 on success. Status is returned in buf for IPC_STAT.
-1 on failure and sets errno appropriately. The errno can be set to
EINVAL if any of the following conditions occur:
• msgid parameter refers to an invalid message queue.
• cmd is invalid.
• buf contains invalid parameters.

Description The msgctl() function provides message control operations as
specified by cmd. The values for cmd, and the message control
operations they specify, are:
• IPC_STAT - Places the current value of each member of the

msqid_ds data structure associated with msqid into the structure
pointed to by buf. The contents of this structure are defined in
sys/msg.h.

• IPC_SET - Unsupported.
• IPC_RMID - Removes the message queue identifier specified by

msqid from the system and destroys the message queue and
associated msqid_ds data structure. The remove operation forcibly
destroys the semaphores used internally and unblocks processes
that are blocked on the semaphore. It also deallocates memory
allocated for the messages in the queue.

Includes xmk.h, sys/msg.h, sys/ipc.h
UG646 June 4, 2014 www.xilinx.com 23Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=23

Xilkernel API
int msgsnd(int msqid, const void *msgp, size_t msgsz, int
msgflg)

Parameters msqid is the message queue identifier.
msgp is a pointer to the message buffer.
msgsz is the size of the message.
msgflg is used to specify message send options.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to:
• EINVAL - The value of msgid is not a valid message queue

identifier.
• ENOSPC - The system could not allocate space for the message.
• EIDRM - The message queue was removed from the system

during the send operation.

Description The msgsnd() function sends a message to the queue associated
with the message queue identifier specified by msqid.
The argument msgflg specifies the action to be taken if the message
queue is full:
If (msgflg and IPC_NOWAIT) is non-zero, the message is not sent
and the calling thread returns immediately.
If (msgflg and IPC_NOWAIT) is 0, the calling thread suspends
execution until one of the following occurs:
• The condition responsible for the suspension no longer exists, in

which case the message is sent.
• The message queue identifier msqid is removed from the system;

when this occurs a -1 is returned.
The send fails if it is unable to allocate memory to store the message
inside the kernel. On a successful send operation, the msg_lspid
and msg_qnum members of the message queues are appropriately
set.

Includes xmk.h, sys/msg.h, sys/ipc.h
UG646 June 4, 2014 www.xilinx.com 24Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=24

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=25

Xilkernel API
Shared Memory

Xilkernel supports kernel-allocated XSI shared memory. XSI is the X/Open System Interface
which is a set of optional interfaces under POSIX. Shared memory is a common, low-latency
IPC mechanism. Shared memory blocks required during run-time must be identified and
specified during the system configuration. From this specification, buffer memory is allocated to
each shared memory region. Shared memory is currently not allocated dynamically at run-time.
This module is optional and can be configured in or out during system specification. Refer to
“Configuring Shared Memory,” page 47 for more details.

Shared Memory Function Summary

The following list provides a linked summary of the shared memory functions in Xilkernel. You
can click on a function to go to the description.

Shared Memory Function Descriptions

The Xilkernel shared memory interface is described below.

Caution! The memory buffers allocated by the shared memory API might not be aligned at word
boundaries. Therefore, structures should not be arbitrarily mapped to shared memory segments,
without checking if alignment requirements are met.

int shmget(key_t key, size_t size, int shmflg)
int shmctl(int shmid, int cmd, struct shmid_ds *buf)
void* shmat(int shmid, const void *shmaddr, int flag)
int shm_dt(void *shmaddr)
UG646 June 4, 2014 www.xilinx.com 26Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=26

Xilkernel API
int shmget(key_t key, size_t size, int shmflg)

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

Parameters key is used to uniquely identify the shared memory region.
size is the requested size of the shared memory segment.
shmflg specifies segment creation options.

Returns Unique non-negative shared memory identifier on success.
-1 on failure and sets errno appropriately: errno can be set to:

♦ EEXIST - A shared memory identifier exists for the argument key but
(shmflg and IPC_CREAT) and (shmflg and IPC_EXCL) is non-
zero.

♦ ENOTSUP - Unsupported shmflg.
♦ ENOENT - A shared memory identifier does not exist for the argument

key and (shmflg and IPC_CREAT) is 0.

Description The shmget() function returns the shared memory identifier associated
with key. A shared memory identifier, associated data structure, and
shared memory segment of at least size bytes (see sys/shm.h) are
created for key if one of the following is true:

♦ key is equal to IPC_PRIVATE.
♦ key does not already have a shared memory identifier associated

with it and (shmflg and IPC_CREAT) is non-zero.
Upon creation, the data structure associated with the new shared memory
identifier shall be initialized.The value of shm_segsz is set equal to the
value of size. The values of shm_lpid, shm_nattch, shm_cpid are all
initialized appropriately. When the shared memory segment is created, it
is initialized with all zero values. At least one of the shared memory
segments available in the system must match exactly the requested size
for the call to succeed. Key IPC_PRIVATE is not supported.

Includes xmk.h, sys/shm.h, sys/ipc.h

Parameters shmid is the shared memory segment identifier.
cmd is the command to the control function.
buf is the buffer where the status is returned.

Returns 0 on success. Status is returned in buffer for IPC_STAT.
-1 on failure and sets errno appropriately: errno can be set to EINVAL
on the following conditions:
• if shmid refers to an invalid shared memory segment.
• if cmd or other params are invalid.

Description The shmctl() function provides a variety of shared memory control
operations as specified by cmd. The following values for cmd are available:
• IPC_STAT: places the current value of each member of the shmid_ds

data structure associated with shmid into the structure pointed to by buf.
The contents of the structure are defined in sys/shm.h.

• IPC_SET is not supported.
• IPC_RMID: removes the shared memory identifier specified by shmid

from the system and destroys the shared memory segment and
shmid_ds data structure associated with it. No notification is sent to
processes still attached to the segment.

Includes xmk.h, sys/shm.h, sys/ipc.h
UG646 June 4, 2014 www.xilinx.com 27Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=27

Xilkernel API
void* shmat(int shmid, const void *shmaddr, int flag)

int shm_dt(void *shmaddr)

Mutex Locks

Xilkernel provides support for kernel allocated POSIX thread mutex locks. This synchronization
mechanism can be used alongside of the pthread_ API. The number of mutex locks and the
length of the mutex lock wait queue can be configured during system specification.
PTHREAD_MUTEX_DEFAULT and PTHREAD_MUTEX_RECURSIVE type mutex locks are
supported. This module is also optional and can be configured in or out during system
specification. Refer to “Configuring Shared Memory,” page 47 for more details.

Mutex Lock Function Summary

The following list provides a linked summary of the Mutex locks in Xilkernel. You can click on a
function to go to the description.

Parameters shmid is the shared memory segment identifier.
shmaddr is used to specify the location, to attach shared memory
segment. This is currently unused.
flag is used to specify shared memory (SHM) attach options.

Returns The start address of the shared memory segment on success.
NULL on failure and sets errno appropriately. errno can be set to
EINVAL if shmid refers to an invalid shared memory segment

Description shmat() increments the value of shm_nattch in the data structure
associated with the shared memory ID of the attached shared memory
segment and returns the start address of the segment. shm_lpid is also
appropriately set.

Note: shmaddr and flag arguments are not used.

Includes xmk.h, sys/shm.h, sys/ipc.h

Parameters shmaddr is the shared memory segment address that is to be detached.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to
EINVAL if shmaddr is not within any of the available shared memory
segments.

Description The shmdt() function detaches the shared memory segment located at
the address specified by shmaddr from the address space of the calling
process. The value of shm_nattch is also decremented. The memory
segment is not removed from the system and can be attached to again.

Includes xmk.h, sys/shm.h, sys/ipc.h

int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr)
int pthread_mutex_destroy(pthread_mutex_t* mutex)
int pthread_mutex_lock(pthread_mutex_t* mutex)
int pthread_mutex_trylock(pthread_mutex_t* mutex)
int pthread_mutex_unlock(pthread_mutex_t* mutex)
int pthread_mutexattr_init(pthread_mutexattr_t* attr)
int pthread_mutexattr_destroy(pthread_mutexattr_t* attr)
int pthread_mutexattr_settype(pthread_mutexattr_t* attr, int type)
int pthread_mutexattr_gettype(pthread_mutexattr_t* attr, int *type)
UG646 June 4, 2014 www.xilinx.com 28Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=28

Xilkernel API
Mutex Lock Function Descriptions

The Mutex lock function descriptions are as follows:

int pthread_mutex_init(pthread_mutex_t* mutex, const
pthread_mutexattr_t* attr)

Note: The mutex locks allocated by Xilkernel follow the semantics of PTHREAD_MUTEX_DEFAULT mutex
locks by default. The following actions will result in undefined behavior:

- Attempting to recursively lock the mutex.

- Attempting to unlock the mutex if it was not locked by the calling thread.

- Attempting to unlock the mutex if it is not locked.

Parameters mutex is the location where the newly created mutex lock’s identifier is
to be stored.
attr is the mutex creation attributes structure.

Returns 0 on success and mutex identifier in *mutex.
EAGAIN if system is out of resources.

Description The pthread_mutex_init() function initializes the mutex
referenced by mutex with attributes specified by attr. If attr is NULL,
the default mutex attributes are used; the effect is the same as passing the
address of a default mutex attributes object.
Refer to the pthread_mutexattr_ routines, which are documented
starting on page 32 to determine what kind of mutex creation attributes
can be changed. Upon successful initialization, the state of the mutex
becomes initialized and unlocked. Only the mutex itself can be used for
performing synchronization. The result of referring to copies of mutex in
calls to pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), and
pthread_mutex_destroy() is undefined.
Attempting to initialize an already initialized mutex results in undefined
behavior. In cases where default mutex attributes are appropriate, the
macro PTHREAD_MUTEX_INITIALIZER can be used to initialize
mutexes that are statically allocated. The effect is equivalent to dynamic
initialization by a call to pthread_mutex_init() with parameter
attr specified as NULL, with the exception that no error checks are
performed.
For example:

static pthread_mutex_t foo_mutex =
PTHREAD_MUTEX_INITIALIZER;

Includes xmk.h, pthread.h
UG646 June 4, 2014 www.xilinx.com 29Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=29

Xilkernel API
int pthread_mutex_destroy(pthread_mutex_t* mutex)

int pthread_mutex_lock(pthread_mutex_t* mutex)

Parameters mutex is the mutex identifier.

Returns 0 on success.
EINVAL if mutex refers to an invalid identifier.

Description The pthread_mutex_destroy() function destroys the mutex
object referenced by mutex; the mutex object becomes, in effect,
uninitialized. A destroyed mutex object can be reinitialized using
pthread_mutex_init(); the results of otherwise referencing the
object after it has been destroyed are undefined.

Note: Mutex lock/unlock state disregarded during destroy. No
consideration is given for waiting processes.

Includes xmk.h, pthread.h

Parameters mutex is the mutex identifier.

Returns 0 on success and mutex in a locked state.
EINVAL on invalid mutex reference.
-1 on unhandled errors.

Description The mutex object referenced by mutex is locked by the thread calling
pthread_mutex_lock(). If the mutex is already locked, the
calling thread blocks until the mutex becomes available.
If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex
maintains the concept of a lock count. When a thread successfully
acquires a mutex for the first time, the lock count is set to one. Every
time a thread relocks this mutex, the lock count is incremented by one.
Each time the thread unlocks the mutex, the lock count is
decremented by one.
If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to
recursively lock the mutex results in undefined behavior. If successful,
this operation returns with the mutex object referenced by mutex in the
locked state.

Includes xmk.h, pthread.h
UG646 June 4, 2014 www.xilinx.com 30Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=30

Xilkernel API
int pthread_mutex_trylock(pthread_mutex_t* mutex)

int pthread_mutex_unlock(pthread_mutex_t* mutex)

Parameters mutex is the mutex identifier.

Returns 0 on success.
mutex in a locked state.
EINVAL on invalid mutex reference,
EBUSY if mutex is already locked.
-1 on unhandled errors.

Description The mutex object referenced by mutex is locked by the thread calling
pthread_mutex_trlock(). If the mutex is already locked, the calling
thread returns immediately with EBUSY.
If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains
the concept of a lock count.
When a thread successfully acquires a mutex for the first time, the lock count is
set to one.
Every time a thread relocks this mutex, the lock count is incremented by one.
Each time the thread unlocks the mutex, the lock count is decremented by one.
If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock
the mutex results in undefined behavior. If successful, this operation returns with
the mutex object referenced by mutex in the locked state.

Includes xmk.h, pthread.h

Parameters mutex is the mutex identifier.

Returns 0 on success, EINVAL on invalid mutex reference.
-1 on undefined errors.

Description The pthread_mutex_unlock() function releases the mutex object
referenced by mutex. If there are threads blocked on the mutex object
referenced by mutex when pthread_mutex_unlock() is called,
resulting in the mutex becoming available, the scheduling policy
determines which thread will acquire the mutex. If it is SCHED_RR, then
the thread that is at the head of the mutex wait queue is unblocked and
allowed to lock the mutex.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, the mutex
maintains the concept of a lock count. When the lock count reaches
zero, the mutex becomes available for other threads to acquire. If a
thread attempts to unlock a mutex that it has not locked or a mutex
which is unlocked, an error is returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT the following actions
result in undefined behavior:

• Attempting to unlock the mutex if it was not locked by the calling
thread.

• Attempting to unlock the mutex if it is not locked.

If successful, this operation returns with the mutex object referenced by
mutex in the unlocked state.

Includes xmk.h, pthread.h
UG646 June 4, 2014 www.xilinx.com 31Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=31

Xilkernel API
int pthread_mutexattr_init(pthread_mutexattr_t* attr)

int pthread_mutexattr_destroy(pthread_mutexattr_t* attr)

int pthread_mutexattr_settype(pthread_mutexattr_t* attr,
int type)

Parameters attr is the location of the attributes structure.

Returns 0 on success.
EINVAL if attr refers to an invalid location.

Description The pthread_mutexattr_init() function initializes a mutex
attributes object attr with the default value for all of the attributes defined
by the implementation.
Refer to sys/types.h for the contents of the pthread_mutexattr
structure.

Note: This routine does not involve a call into the kernel.

Includes xmk.h, pthread.h

Parameters attr is the location of the attributes structure.

Returns 0 on success.
EINVAL if attr refers to an invalid location.

Description The pthread_mutexattr_destroy() function destroys a mutex
attributes object; the object becomes, in effect, uninitialized.

Note: This routine does not involve a call into the kernel.

Includes xmk.h, pthread.h

Parameters attr is the location of the attributes structure.
type is the type to which to set the mutex.

Returns 0 on success.
EINVAL if attr refers to an invalid location or if type is an unsupported
type.

Description The pthread_mutexattr_settype() function sets the type of a
mutex in a mutex attributes structure to the specified type. Only
PTHREAD_MUTEX_DEFAULT and PTHREAD_MUTEX_RECURSIVE are
supported.

Note: This routine does not involve a call into the kernel.

Includes xmk.h, pthread.h
UG646 June 4, 2014 www.xilinx.com 32Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=32

Xilkernel API
int pthread_mutexattr_gettype(pthread_mutexattr_t* attr,
int *type)

Dynamic Buffer Memory Management

The kernel provides a buffer memory allocation scheme, which can be used by applications
that need dynamic memory allocation. These interfaces are alternatives to the standard C
memory allocation routines - malloc(), free() which are much slower and bigger,
though more powerful. The allocation routines hand off pieces of memory from a pool of
memory that the user passes to the buffer memory manager.

The buffer memory manager manages the pool of memory. You can dynamically create new
pools of memory. You can also statically specify the different memory blocks sizes and number
of such memory blocks required for your applications. Refer to “Configuring Buffer Memory
Allocation,” page 47 for more details. This method of buffer management is relatively simple,
small and a fast way of allocating memory. The following are the buffer memory allocation
interfaces. This module is optional and can be included during system initialization.

Dynamic Buffer Memory Management Function Summary

The following list provides a linked summary of the dynamic buffer memory management
functions in Xilkernel. You can click on a function to go to the description.

Caution! The buffer memory allocation API internally uses the memory pool handed down the by
the user to store a free-list in-place within the memory pool. As a result, only memory sizes greater
than or equal to 4 bytes long are supported by the buffer memory allocation APIs. Also, because there
is a free-list being built in-place within the memory pool, requests in which memory block sizes are not
multiples of 4 bytes cause unalignment at run time. If your software platform can handle unalignment
natively or through exceptions then this does not present an issue. The memory buffers allocated and
returned by the buffer memory allocation API might also not be aligned at word boundaries.
Therefore, your application should not arbitrarily map structures to memory allocated in this way
without first checking if alignment and padding requirements are met.

Parameters attr is the location of the attributes structure.
type is a pointer to the location at which to store the mutex.

Returns 0 on success.
EINVAL if attr refers to an invalid location.

Description The pthread_mutexattr_gettype() function gets the type of a
mutex in a mutex attributes structure and stores it in the location pointed to
by type.

Includes xmk.h, pthread.h

int bufcreate(membuf_t *mbuf, void *memptr, int nblks, size_t blksiz)
int bufdestroy(membuf_t mbuf)
void* bufmalloc(membuf_t mbuf, size_t siz)
void buffree(membuf_t mbuf, void* mem)
UG646 June 4, 2014 www.xilinx.com 33Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=33

Xilkernel API
Dynamic Buffer Memory Management Function Descriptions

The dynamic buffer memory management function descriptions are as follows:

int bufcreate(membuf_t *mbuf, void *memptr, int nblks,
size_t blksiz)

int bufdestroy(membuf_t mbuf)

void* bufmalloc(membuf_t mbuf, size_t siz)

Parameters mbuf is location at which to store the identifier of the memory pool created.
memptr is the pool of memory to use.
nblks is the number of memory blocks that this pool should support.
blksiz is the size of each memory block in bytes.

Returns 0 on success and stores the identifier of the created memory pool in the
location pointed to by mbuf.
-1 on errors.

Description Creates a memory pool out of the memory block specified in memptr.
nblks number of chunks of memory are defined within the pool, each of
size blksiz. Therefore, memptr must point to at least (nblks *
blksiz) bytes of memory. blksiz must be greater than or equal to 4.

Includes xmk.h, sys/bufmalloc.h

Parameters mbuf is the identifier of the memory pool to destroy.

Returns 0 on success.
-1 on errors.

Description This routine destroys the memory pool identified by mbuf.

Includes xmk.h, sys/bufmalloc.h

Parameters mbuf is the identifier of the memory pool from which to allocate memory.
size is the size of memory block requested.

Returns The start address of the memory block on success.
NULL on failure and sets errno appropriately: errno is set to:
• EINVAL if mbuf refers to an invalid memory buffer.
• EAGAIN if the request cannot be satisfied.

Description Allocate a chunk of memory from the memory pool specified by mbuf. If
mbuf is MEMBUF_ANY, then all available memory pools are searched for
the request and the first pool that has a free block of size siz, is used and
allocated from.

Includes xmk.h, sys/bufmalloc.h
UG646 June 4, 2014 www.xilinx.com 34Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=34

Xilkernel API
void buffree(membuf_t mbuf, void* mem)

Software Timers

Xilkernel provides software timer functionality, for time relating processing. This module is
optional and can be configured in or out. Refer to “Configuring Software Timers,” page 48 for
more information on customizing this module.

The following list provides a linked summary of the interfaces are available with the software
timers module. You can click on a function to go to the description.

unsigned int xget_clock_ticks()

time_t time(time_t *timer)

Parameters mbuf is the identifier of the memory pool.
mem is the address of the memory block.

Returns None.

Description Frees the memory allocated by a corresponding call to bufmalloc.
If mbuf is MEMBUF_ANY, returns the memory to the pool that satisfied this
request.
If not, returns the memory to specified pool.
Behavior is undefined if arbitrary values are specified for mem.

Includes xmk.h, sys/bufmalloc.h

unsigned int xget_clock_ticks()

Parameters None.

Returns Number of kernel ticks elapsed since the kernel was started.

Description A single tick is counted, every time the kernel timer delivers an interrupt.
This is stored in a 32-bit integer and eventually overflows. The call to
xget_clock_ticks() returns this tick information, without conveying
the overflows that have occurred.

Includes xmk.h, sys/timer.h

Parameters timer points to the memory location in which to store the requested time
information.

Returns Number of seconds elapsed since the kernel was started.

Description The routine time elapsed since kernel start in units of seconds. This is also
subject to overflow.

Includes xmk.h, sys/timer.h
UG646 June 4, 2014 www.xilinx.com 35Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=35

Interrupt Handling
unsigned sleep(unsigned int ms)

Interrupt
Handling

Xilkernel abstracts away primary interrupt handling requirements from the user application.
Even though the kernel is functional without any interrupts, the system only makes sense when
it is driven by at least one timer interrupt for scheduling. The kernel handles the main timer
interrupt, using it as the kernel tick to perform scheduling. The timer interrupt is initialized and
tied to the vectoring code during system initialization. This kernel pulse provides software timer
facilities and time-related routines also. Additionally, Xilkernel can handle multiple interrupts
when connected through an interrupt controller, and works with the axi_intc interrupt
controller core. The following figure shows a basic interrupt service in Xilkernel.

The interrupt handling scenario is illustrated in this diagram. Upon an interrupt:

• The context of the currently executing process is saved into the context save area.

• Interrupts are disabled from this point in time onwards, until they are enabled at the end of
interrupt handling.

• This alleviates the stack burden of the process, as the execution within interrupt, does not
use the user application stack.

• This interrupt context can be thought of as a special kernel thread that executes interrupt
handlers in order. This thread starts to use its own separate execution stack space.

• The separate kernel execution stack is at-least 1 KB in size to enable it to handle deep
levels of nesting within interrupt handlers. This kernel stack is also automatically
configured to use the pthread stack size chosen by the user, if it is larger than 1 KB. If you
foresee a large stack usage within your interrupt handlers, you will need to specify a large
value for pthread_stack_size.

This ends the first level of interrupt handling by the kernel. At this point, the kernel transfers
control to the second level interrupt handler. This is the main interrupt handler routine of the

Parameters ms is the number of milliseconds to sleep.

Returns Number of seconds between sleeps.
0 on complete success.

Description This routine causes the invoking process to enter a sleep state for the
specified number of milliseconds.

Includes xmk.h, sys/timer.h

X-Ref Target - Figure 5

Figure 5: Basic Interrupt Service in Xilkernel

IE = 1

IE = 1

IE = 0 -Save complete context;
-Switch to kernel IRQ stack;
-Execute next level of
 interrupt handling.
-If rescheduling is required,
 invoke the scheduler.
-Restore context of the
 currently selected process.

Executing process
gets interrupted

X10229

IE = 1

Resumed process
proceeds

Execute user level
interrupts if any
UG646 June 4, 2014 www.xilinx.com 36Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=36

Interrupt Handling
interrupt controller. From this point, the handler for the interrupt controller invokes the user-
specified interrupt handlers for the various interrupting peripherals.

In MicroBlaze processor kernels, if the system timer is connected through the interrupt
controller, then the kernel invisibly handles the main timer interrupt (kernel tick), by registering
itself as the handler for that interrupt.

Interrupt handlers can perform any kind of required interrupt handling action, including making
system calls. However, the handlers must never invoke blocking system calls, or the entire
kernel is blocked and the system comes to a suspended state. Use handlers wisely to do
minimum processing upon interrupts.

Caution! User level interrupt handlers must not make blocking system calls. System calls made, if
any, should be non-blocking.

After the user-level interrupt handlers are serviced, the first-level interrupt handler in the kernel
gets control again. It determines if the preceding interrupt handling caused a rescheduling
requirement in the kernel.

If there is such a requirement, it invokes the kernel scheduler and performs the appropriate
rescheduling. After the scheduler has determined the next process to execute, the context of
the new process is restored and interrupts are enabled again.

When Xilkernel is used with multiple-interrupts in the system, the Xilkernel user-level interrupt
handling API becomes available. The following subsection lists user-level interrupt handling
APIs.
UG646 June 4, 2014 www.xilinx.com 37Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=37

Interrupt Handling
User-Level Interrupt Handling APIs

User-Level Interrupt Handling APIs Function Summary

The following list provides a linked summary of the user-level interrupt handling APIs in
Xilkernel. You can click on a function to go to the description.

User-Level Interrupt Handling APIs Function Descriptions

The interrupt handlings API descriptions are as follows:

unsigned int register_int_handler(int_id_t id, void
handler)(void), void *callback)

void unregister_int_handler(int_id_t id)

unsigned int register_int_handler(int_id_t id, void *handler)(void*), void *callback)
void unregister_int_handler(int_id_t id)
void enable_interrupt(int_id_t id)
void disable_interrupt(int_id_t id)
void acknowledge_interrupt(int_id_t id)

Parameters id is the zero-based numeric id of the interrupt.
handler is the user-level handler.
callback is a callback value that can be delivered to the user-level
handler.

Returns XST_SUCCESS on success.
error codes defined in xstatus.h.

Description The register_int_handler() function registers the specified user
level interrupt handler as the handler for a specified interrupt. The user
level routine is invoked asynchronously upon being serviced by an interrupt
controller in the system. The routine returns an error on MicroBlaze
processor systems if id is the identifier for the system timer interrupt.
PowerPC processor systems have a dedicated hardware timer interrupt
that exists separately from the other interrupts in the system. Therefore,
this check is not performed for a PowerPC processor system.

Includes xmk.h, sys/intr.h

Parameters id is the zero-based numeric id of the interrupt.

Returns None.

Description The unregister_int_handler() function unregisters the
registered user-level interrupt handler as the handler for the specified
interrupt. The routine does nothing and fails silently on MicroBlaze
processor systems if id is the identifier for the system timer interrupt.

Includes xmk.h, sys/intr.h
UG646 June 4, 2014 www.xilinx.com 38Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=38

Exception Handling

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=39

Memory Protection
Memory Protection Overview

When the MicroBlaze parameter C_USE_MMU is set to >=2, the kernel configures in memory
protection during startup automatically.

Note: To disable the memory protection in the kernel, add the compiler flag
-D XILKERNEL_MB_MPU_DISABLE, to your library and application build.

The kernel identifies three types of protection violations:

1. Code violation — occurs when a thread tries to execute from memory that is not defined
to contain program instructions.

Note: Because Xilkernel is a single executable, all threads have access to all program instructions
and the kernel cannot trap violations where a thread starts executing the kernel code directly.

2. Data access violation — Occurs when a thread tries to read or write data to or from
memory that is not defined to be a part of the program data space. Similarly, read-only data
segments can be protected by write access by all threads.

Note: Because Xilkernel is a single executable, all threads have equal access to all data as well as
the kernel data structures. The kernel cannot trap violations where a thread accesses data that it is
not designated to handle.

3. I / O violation — occurs when a thread tries to read or write from memory-mapped
peripheral I / O space that is not present in the system.

Xilkernel attempts to determine these three conceptual protection areas in your program and
system during system build and kernel boot time automatically. The kernel attempts to identify
code and data labels that demarcate code and data sections in your executable ELF file. These
labels are typically provided by linker scripts.

For example, MicroBlaze linker scripts use the labels _ftext and _etext to indicate the
beginning and the end of the .text section respectively.

The following table summarizes the logical sections that must be present in the linker script, the
requirements on the alignment of each section, and the demarcating labels.

Each section must be aligned at 1 KB boundary and clearly demarcated by the specified labels.
Otherwise, Xilkernel will ignore the missing logical sections with no error or warning message.

Caution! This behavior could manifest itself in your software not working as expected, because
MPU translation entries will be missing for important ELF sections and the processor will treat valid
requests as invalid.

Table 1: Linker Script Logical Sections

Section Start Label End Label Description

.text _ftext _etext Executable instruction
sections

.data _fdata _edata Read-write data
sections including
small data sections

.rodata _frodata _erodata Read only data
sections including
small data sections

.stack _stack_end _stack Kernel stack with 1 KB
guard page above and
below

stack guard
page (top)

_fstack_guard_top _estack_guard_top Top kernel stack guard
page (1 KB)

stack guard
page (bottom)

_fstack_guard_botto
m

_estack_guard_bottom

Bottom kernel stack
guard page (1 KB)
UG646 June 4, 2014 www.xilinx.com 40Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=40

Memory Protection
Note: Each section typically has a specific type of data that is expected to be present. If the logic of the
data inserted into the sections by your linker script is inappropriate, then the protection offered by the
kernel could be incorrect or the level of protection could be diluted.

I/O ranges are automatically enumerated by the library generation tools and provided as a data
structure to the kernel. These peripheral I/O ranges will not include read/write memory areas
because the access controls for memory are determined automatically from the ELF file.
During kernel boot, the enumerated I/O ranges are marked as readable and writable by the
threads. Accesses outside of the defined I/O ranges causes a protection fault.

User-specified Protection

In addition to the automatic inference and protection region setup done by the kernel, you can
provide your own protection regions by providing the data structures as shown in the following
example. If this feature is not required, these data structures can be removed from the
application code.

#include <mpu.h>

int user_io_nranges = 2;
xilkernel_io_range_t user_io_range[1] = {{0x25004000, 0x25004fff,
MPU_PROT_READWRITE},

 {0x44000000, 0x44001fff, MPU_PROT_NONE}};

The xilkernel_io_ranges_t type is defined as follows:

typedef struct xilkernel_io_range_s {
 unsigned int baseaddr;
 unsigned int highaddr;
 unsigned int flags;
} xilkernel_io_range_t;

The following table lists the valid field flags that identify the user-specified access protection
options:

Fixed Unified Translation Look-aside Buffer (TLB) Support on the
MicroBlaze Processor

The MicroBlaze processor has a fixed 64-entry Unified Translation Look-aside Buffer (TLB).
Xilkernel can support up to this maximum number of TLBs only. If the maximum TLBs to enable
protection for a given region are exceeded, Xilkernel will report an error during Microprocessor
Unit (MPU) initialization and proceed to boot the kernel without memory protection. There is no
support for dynamically swapping TLB management to provide an arbitrary number of
protection regions.

Table 2: Access Protection Field Flags

Field Flag Description

MPU_PROT_EXEC Executable program instructions
(no read or write permissions)

MPU_PROT_READWRITE Readable and writable data sections
(no execute permissions)

MPU_PROT_READ Read-only data sections
(no write/execute permissions)

MPU_PROT_NONE (Currently no page can be protected from all three accesses
at the same time. This field flag is equivalent to
MPU_PROT_READ)
UG646 June 4, 2014 www.xilinx.com 41Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=41

Other Interfaces
Other Interfaces Internally, Xilkernel, depends on the Standalone platform; consequently, the interfaces that the
Standalone presents are inherited by Xilkernel. Refer to the “Standalone” document for
information on available interfaces.

Hardware
Requirements

Xilkernel is completely integrated with the software platform configuration and automatic library
generation mechanism. As a result, a software platform based on Xilkernel can be configured
and built in a matter of minutes. However, some services in the kernel require support from the
hardware. Scheduling and all the dependent features require a periodic kernel tick and typically
some kind of timer is used. Xilkernel has been designed to work with the axi_timer IP core.
By specifying the instance name of the timer device in the software platform configuration,
Xilkernel is able to initialize and use the timer cores and timer related services automatically.
Refer to “Configuring System Timer,” page 48 for more information on how to specify the timer
device.

Xilkernel has also been designed to work in scenarios involving multiple-interrupting
peripherals. The axi_intc IP core handles the hardware interrupts and feeds a single IRQ
line from the controller to the processor. By specifying the name of the interrupt controller
peripheral in the software platform configuration, you would be getting kernel awareness of
multiple interrupts. Xilkernel would automatically initialize the hardware cores, interrupt system,
and the second level of software handlers as a part of its startup. You do not have to do this
manually. Xilkernel handles non-cascaded interrupt controllers; cascaded interrupt controllers
are not supported.

System
Initialization

The entry point for the kernel is the xilkernel_main() routine defined in main.c. Any
user initialization that must be performed can be done before the call to
xilkernel_main(). This includes any system-wide features that might need to be enabled
before invoking xilkernel_main(). These are typically machine-state features such as
cache enablement or hardware exception enablement that must be "always ON" even when
context switching between applications. Make sure to set up such system states before
invoking xilkernel_main(). Conceptually, the xilkernel_main() routine does two
things: it initializes the kernel via xilkernel_init() and then starts the kernel with
xilkernel_start(). The first action performed within xilkernel_init() is kernel-
specific hardware initialization. This includes registering the interrupt handlers and configuring
the system timer, as well as memory protection initialization. Interrupts/exceptions are not
enabled after completing hw_init(). The sys_init() routine is entered next.
UG646 June 4, 2014 www.xilinx.com 42Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=42

Thread Safety and Re-Entrancy
The sys_init() routine performs initialization of each module, such as processes and
threads, initializing in the following order:

1. Internal process context structures

2. Ready queues

3. pthread module

4. Semaphore module

5. Message queue module

6. Shared memory module

7. Memory allocation module

8. Software timers module

9. Idle task creation

10. Static pthread creation

After these steps, xilkernel_start() is invoked where interrupts and exceptions are
enabled. The kernel loops infinitely in the idle task, enabling the scheduler to start scheduling
processes.

Thread Safety
and Re-
Entrancy

Xilkernel, by definition, creates a multi-threaded environment. Many library and driver routines
might not be written in a thread-safe or re-entrant manner. Examples include the C library
routines such as printf(), sprintf(), malloc(), free(). When using any library
or driver API that is not a part of Xilkernel, you must make sure to review thread-safety and re-
entrancy features of the routine. One common way to prevent incorrect behavior with unsafe
routines is to protect entry into the routine with locks or semaphores.

Restrictions The MicroBlaze processor compiler supports a -mxl-stack-check switch, which can be
used to catch stack overflows. However, this switch is meant to work only with single-threaded
applications, so it cannot be used in Xilkernel.

Kernel
Customization

Xilkernel is highly customizable. As described in previous sections, you can change the
modules and individual parameters to suit your application. The SDK Board Support Package
Settings dialog box provides an easy configuration method for Xilkernel parameters. Refer to
the “Embedded System and Tools Architecture Overview” chapter in the Embedded Systems
Tools Reference Manual (UG111) for more details. To customize a module in the kernel, a
parameter with the name of the category set to TRUE must be defined in the Microprocessor
Software Specification (MSS) file. An example for customizing the pthread is shown as follows:

parameter config_pthread_support = true

If you do not define a configurable config_ parameter for the module, that module is not
implemented. You do not have to manually key in these parameters and values. When you input
information in the Board Support Package Settings dialog box, SDK generates the
corresponding Microprocessor Software Specification (MSS) file entries automatically.
UG646 June 4, 2014 www.xilinx.com 43Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=43

Kernel Customization
The following is an MSS file snippet for configuring OS Xilkernel for a PowerPC processor
system. The values in the snippet are sample values that target a hypothetical board:

BEGIN OS
PARAMETER OS_NAME = xilkernel
PARAMETER OS_VER = 5.02.a
PARAMETER STDIN = RS232
PARAMETER STDOUT = RS232
PARAMETER proc_instance = microblaze0
PARAMETER config_debug_support = true
PARAMETER verbose = true
PARAMETER systmr_spec = true
PARAMETER systmr_freq = 100000000
PARAMETER systmr_interval = 80
PARAMETER sysintc_spec = system_intc
PARAMETER config_sched = true
PARAMETER sched_type = SCHED_PRIO
PARAMETER n_prio = 6
PARAMETER max_readyq = 10
PARAMETER config_pthread_support = true
PARAMETER max_pthreads = 10
PARAMETER config_sema = true
PARAMETER max_sem = 4
PARAMETER max_sem_waitq = 10
PARAMETER config_msgq = true
PARAMETER num_msgqs = 1
PARAMETER msgq_capacity = 10
PARAMETER config_bufmalloc = true
PARAMETER config_pthread_mutex = true
PARAMETER config_time = true
PARAMETER max_tmrs = 10
PARAMETER enhanced_features = true
PARAMETER config_kill = true
PARAMETER mem_table = ((4,30),(8,20))
PARAMETER static_pthread_table = ((shell_main,1))
END

The configuration parameters in the MSS specification impact the memory and code size of the
Xilkernel image. Kernel-allocated structures whose count can be configured through the MSS
must be reviewed to ensure that your memory and code size is appropriate to your design.

For example, the maximum number of process context structures allocated in the kernel is
determined by the sum of two parameters; max_procs and max_pthreads. If a process
context structures occupies x bytes of bss memory, then the total bss memory requirement for
process contexts is (max_pthreads*x) bytes. Consequently, such parameters must be
tuned carefully, and you need to examine the final kernel image with the GNU size utility to
ensure that your memory requirements are met. To get an idea the contribution each kernel-
allocated structure makes to memory requirements, review the corresponding header file. The
specification in the MSS is translated by Libgen and Xilkernel Tcl files into C-language
configuration directives in two header files: os_config.h and config_init.h. Review
these two files, which are generated in the main processor include directory, to understand how
the specification gets translated.
UG646 June 4, 2014 www.xilinx.com 44Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=44

Kernel Customization
Configuring STDIN and STDOUT

The standard input and output peripherals can be configured for Xilkernel. Xilkernel can work
without a standard input and output also. These peripherals are the targets of input-output APIs
like print, outbyte, and inbyte. The following table provides the attribute descriptions,
data types, and defaults.

Configuring Scheduling

You can configure the kernel scheduling policy by configuring the parameters shown in the
following table.

Configuring Thread Management

Threads are the primary mechanism for creating process contexts. The configurable
parameters of the thread module are listed in the following table.

Table 3: STDIN/STDOUT Configuration Parameters

Attribute Description Type Defaults

stdin Instance name of stdin peripheral. string none

stdout Instance name of stdout peripheral. string none

Table 4: Scheduling Parameters

Attribute Description Type Defaults

config_sched Configure scheduler module. boolean true

sched_type Type of Scheduler to be used.
Allowed values:
2 - SCHED_RR
3 - SCHED_PRIO

enum SCHED_RR

n_prio Number of priority levels if scheduling
is SCHED_PRIO.

numeric 32

max_readyq Length of each ready queue. This is
the maximum number of processes
that can be active in a ready queue at
any instant in time.

numeric 10

Table 5: Thread Module Parameters

Attribute Description Type Defaults

config_pthread_support Need pthread module. boolean true

max_pthreads Maximum number of threads that
can be allocated at any point in
time.

numeric 10

pthread_stack_size Stack size for dynamically created
threads (in bytes).

numeric 1000
UG646 June 4, 2014 www.xilinx.com 45Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=45

Kernel Customization
Configuring Semaphores

You can configure the semaphores module, the maximum number of semaphores, and
semaphore queue length. The following table shows the parameters used for configuration.

Configuring Message Queues

Optionally, you can configure the message queue module, number of message queues, and
the size of each message queue. The message queue module depends on both the
semaphore module and the buffer memory allocation module. The following table shows the
parameter definitions used for configuration. Memory for messages must be explicitly specified
in the malloc customization or created at run-time.

static_pthread_table Statically configure the threads
that startup when the kernel is
started. This is defined to be an
array with each element
containing the parameters
pthread_start_addr and
pthread_prio.

Note: If you are specifying
function names for
pthread_start_addr, they
must be functions in your source
code that are compiled with the C
dialect. They cannot be functions
compiled with the C++ dialect.

array of 2-
tuples

none

pthread_start_addr Thread start address. Function
name (string)

none

pthread_prio Thread priority. numeric none

Table 6: Semaphore Module Parameters

Attribute Description Type Defaults

config_sema Need Semaphore module. boolean false

max_sem Maximum number of
Semaphores.

numeric 10

max_sem_waitq Semaphore Wait Queue Length. numeric 10

config_named_sema Configure named semaphore
support in the kernel.

boolean false

Table 7: Message Queue Module Parameters

Attribute Description Type Defaults

config_msgq Need Message Queue module. boolean false

num_msgqs Number of message queues in the system. numeric 10

msgq_capacity Maximum number of messages in the queue. numeric 10

use_malloc Provide for more powerful message queues
which use malloc and free to allocate
memory for messages.

boolean false

Table 5: Thread Module Parameters (Cont’d)

Attribute Description Type Defaults
UG646 June 4, 2014 www.xilinx.com 46Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=46

Kernel Customization
Configuring Shared Memory

Optionally, you can configure the shared memory module and the size of each shared memory
segment. All the shared memory segments that are needed must be specified in these
parameters.The following table shows the parameters used for configuration.

Configuring Pthread Mutex Locks

Optionally, you can choose to include the pthread mutex module, number of mutex locks, and
the size of the wait queue for the mutex locks. The following table shows the parameters used
for configuration.

Configuring Buffer Memory Allocation

Optionally, you can configure the dynamic buffer memory management module, size of
memory blocks, and number of memory blocks. The following table shows the parameters used
for configuration.

Table 8: Shared Memory Module Parameters

Attribute Description Type Defaults

config_shm Need shared memory module. boolean false

shm_table Shared memory table. Defined as an array
with each element having shm_size
parameter.

array of 1-tuples none

shm_size Shared memory size. numeric none

num_shm Number of shared memories expressed as
the shm_table array size.

numeric none

Table 9: Pthread Mutex Module Parameters

Attribute Description Type Defaults

config_pthread_mutex Need pthread mutex module. boolean false

max_pthread_mutex Maximum number of pthread
mutex locks available in the
system.

numeric 10

max_pthread_mutex_ waitq Length of each the mutex lock wait
queue.

numeric 10

Table 10: Memory Management Module Parameters

Attribute Description Type Defaults

config_bufmalloc Need buffer memory management. boolean false

max_bufs Maximum number of buffer pools that
can be managed at any time by the
kernel.

numeric 10

mem_table Memory block table. This is defined as
an array with each element having
mem_bsize, mem_nblks
parameters.

array of 2-tuples none

mem_bsize Memory block size in bytes. numeric none

mem_nblks Number of memory blocks of a size. numeric none
UG646 June 4, 2014 www.xilinx.com 47Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=47

Kernel Customization
Configuring Software Timers

Optionally, you can configure the software timers module and the maximum number of timers
supported. The following table shows the parameters used for configuration.

Configuring Enhanced Interfaces

Optionally, you can configure some enhanced features/interfaces using the following
parameters shown in the following table.

Configuring System Timer

You can configure the timer device in the system for MicroBlaze processor kernels. Additionally,
you can configure the timer interval for PowerPC and PIT timer based MicroBlaze processor
systems. The following table shows the available parameters .

Table 11: Software Timers Module Parameters

Attribute Description Type Defaults

config_time Need software timers and time management
module.

boolean false

max_tmrs Maximum number of software timers in the kernel. numeric 10

Table 12: Enhanced Features

Attribute Description Type Defaults

config_kill Include the ability to kill a process
with the kill() function.

boolean false

config_yield Include the yield() interface. boolean false

Table 13: Attributes for Copying Kernel Source Files

Attribute Description Type Defaults

systmr_dev1

1. MicroBlaze only.

Instance name of the system timer
peripheral.

string none

systmr_freq Specify the clock frequency of the
system timer device.
For the axi_timer, it is the frequency
of the AXI bus to which the axi_timer is
connected.

numeric 100000000

systmr_interval Time interval per system timer interrupt. numeric
(milliseconds)

10
UG646 June 4, 2014 www.xilinx.com 48Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=48

Debugging Xilkernel
Configuring Interrupt Handling

You can configure the interrupt controller device in the system kernels. Adding this parameter
automatically configures multiple interrupt support and the user-level interrupt handling API in
the kernel. This also causes the kernel to automatically initialize the interrupt controller. The
following table shows the implemented parameters.

Configuring Debug Messages

You can configure that the kernel outputs debug/diagnostic messages through its execution
flow. Enabling the parameter in the following table makes the DBG_PRINT macro available,
and subsequently its output to the standard output device:

Coping Kernel Source Files

You can copy the configured kernel source files to your repository for further editing and use
them for building the kernel. The following table shows the implemented parameters:

Debugging
Xilkernel

The entire kernel image is a single file that can serve as the target for debugging with the SDK
GNU Debugger (GDB) mechanism. User applications and the library must be compiled with a
-g. Refer to the Embedded System Tools Reference Manual (UG111) for documentation on
how to debug applications with GDB.

Note: This method of debugging involves great visibility into the kernel and is intrusive. Also, this
debugging scheme is not kernel-user application aware.

Table 14: Attributes for Copying Kernel Source Files

Attribute Description Type Defaults

sysintc_spec Specify the instance name of the interrupt
controller device connected to the external
interrupt port.

string null

Table 15: Attribute for Debug Messages

Attribute Description Type Defaults

debug_mode Turn on kernel debug messages. boolean false

Table 16: Attributes for Copying Kernel Source Files

Attribute Description Type Defaults

copyoutfiles Need to copy source files. boolean false

copytodir User repository directory. The path is
relative to project_directory
/system_name/libsrc/
xilkernel_v6_1/
src_dir.

path string "../copyoflib”
UG646 June 4, 2014 www.xilinx.com 49Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=49

Memory Footprint
Memory
Footprint

The size of Xilkernel depends on the user configuration. It is small in size and can fit in different
configurations. The following table shows the memory size output from GNU size utility for the
kernel. Xilkernel has been tested with the GNU Compiler Collection (GCC) optimization flag of
-O2; the numbers in the table are from the same optimization level.

Xilkernel File
Organization

Xilkernel sources are organized as shown in the table below:

Modifying Xilkernel

You can further customize Xilkernel by changing the actual code base. To work with a custom
copy of Xilkernel, you must first copy the Xilkernel source folder xilkernel_v6_1 from the
SDK installation and place it in a software repository; for example,
<..../mylibraries/bsp/xilkernel_v6_1>. If the repository path is added to the tools,
Libgen picks up the source folder of Xilkernel for compilation.

Refer to “Xilkernel File Organization,” page 50 for more information on the organization of the
Xilkernel sources. Xilkernel sources have been written in an elementary and intuitive style and
include comment blocks above each significant function. Each source file also carries a
comment block indicating its role.

Table 17: User Configuration and Xilkernel Size

Configuration MicroBlaze (in
kb)

PowerPC
(in kb)

Basic kernel functionality with multi-threading only. 7 16

Full kernel functionality with round-robin scheduling (no
multiple interrupt support and no enhanced features).

16 26

Full kernel functionality with priority scheduling (no multiple
interrupt support and no enhanced features).

16.5 26.5

Full kernel functionality with all modules (threads, support for
both ELF processes, priority scheduling, IPC, synchronization
constructs, buffer malloc, multiple and user level interrupt
handling, drivers for interrupt controller and timer, enhanced
features).

22 32

Table 18: Organization of Xilkernel Sources

root/ Contains the /data and the /src folders.

data/ Contains Microprocessor Library Definition (MLD)
and Tcl files that determine XilKernel
configuration.

src/ Contains all the source.

include/ Contains header files organized similar to /src.

src/ Non-header source files.

arch/ Architecture-specific sources.

sys/ System-level sources.

ipc/ Sources that implement the IPC functionality.
UG646 June 4, 2014 www.xilinx.com 50Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=50

Deprecated Features

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=51

Deprecated Features

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=52

	Xilkernel (v6.1)
	Overview
	Why Use a Kernel?
	Key Features
	Xilkernel Organization
	Building Xilkernel Applications
	Xilkernel Process Model
	Xilkernel Scheduling Model
	POSIX Interface
	Xilkernel Functions
	Xilkernel API
	Thread Management
	Thread Management Function Summary
	Thread Management Function Descriptions

	Semaphores
	Semaphore Function Summary
	Semaphore Function Descriptions

	Message Queues
	Message Queue Function Summary
	Message Queue Function Descriptions

	Shared Memory
	Shared Memory Function Summary
	Shared Memory Function Descriptions

	Mutex Locks
	Mutex Lock Function Summary
	Mutex Lock Function Descriptions

	Dynamic Buffer Memory Management
	Dynamic Buffer Memory Management Function Summary
	Dynamic Buffer Memory Management Function Descriptions

	Software Timers

	Interrupt Handling
	User-Level Interrupt Handling APIs Function Summary
	User-Level Interrupt Handling APIs Function Descriptions

	Exception Handling
	Memory Protection
	Memory Protection Overview
	User-specified Protection
	Fixed Unified Translation Look-aside Buffer (TLB) Support on the MicroBlaze Processor

	Other Interfaces
	Hardware Requirements
	System Initialization
	Thread Safety and Re- Entrancy
	Restrictions
	Kernel Customization
	Configuring STDIN and STDOUT
	Configuring Scheduling
	Configuring Thread Management
	Configuring Semaphores
	Configuring Message Queues
	Configuring Shared Memory
	Configuring Pthread Mutex Locks
	Configuring Buffer Memory Allocation
	Configuring Software Timers
	Configuring Enhanced Interfaces
	Configuring System Timer
	Configuring Interrupt Handling
	Configuring Debug Messages
	Coping Kernel Source Files

	Debugging Xilkernel
	Memory Footprint
	Xilkernel File Organization
	Modifying Xilkernel

	Deprecated Features
	Configuring ELF Process Management (Deprecated)

