/****************************************************************************** * * Copyright (C) 2015 Xilinx, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * Use of the Software is limited solely to applications: * (a) running on a Xilinx device, or * (b) that interact with a Xilinx device through a bus or interconnect. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * XILINX BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Except as contained in this notice, the name of the Xilinx shall not be used * in advertising or otherwise to promote the sale, use or other dealings in * this Software without prior written authorization from Xilinx. * ******************************************************************************/ /****************************************************************************/ /** * * @file xcan_intr_example.c * * Contains an example of how to use the XCan driver directly. The example here * shows using the driver/device in interrupt mode. * * @note * * This code assumes that Xilinx interrupt controller (XIntc) is used in the * system to forward the CAN device interrupt output to the processor and no * operating system is being used. * * The Baud Rate Prescaler Register (BRPR) and Bit Timing Register (BTR) * are setup such that CAN baud rate equals 40Kbps, assuming that the * the CAN clock is 24MHz. The user needs to modify these values based on * the desired baud rate and the CAN clock frequency. For more information * see the CAN 2.0A, CAN 2.0B, ISO 11898-1 specifications. * *
* MODIFICATION HISTORY:
*
* Ver   Who	Date	 Changes
* ----- -----  -------- -----------------------------------------------
* 1.0   nsk    06/04/15 First release
*
* 
* ******************************************************************************/ /***************************** Include Files *********************************/ #include "xcanfd.h" #include "xparameters.h" #include "xstatus.h" #include "xil_exception.h" #ifdef XPAR_INTC_0_DEVICE_ID #include "xintc.h" #include #else /* SCU GIC */ #include "xscugic.h" #include "xil_printf.h" #endif /************************** Constant Definitions *****************************/ /* * The following constants map to the XPAR parameters created in the * xparameters.h file. They are defined here such that a user can easily * change all the needed parameters in one place. */ #define CANFD_DEVICE_ID XPAR_CANFD_0_DEVICE_ID #define CAN_INTR_VEC_ID XPAR_INTC_0_CANFD_0_VEC_ID #ifdef XPAR_INTC_0_DEVICE_ID #define INTC_DEVICE_ID XPAR_INTC_0_DEVICE_ID #else #define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID #endif /* XPAR_INTC_0_DEVICE_ID */ /* Maximum CAN frame length in Bytes */ #define XCANFD_MAX_FRAME_SIZE_IN_BYTES 72 /* Frame Data field length */ #define FRAME_DATA_LENGTH 64 /* Message Id Constant */ #define TEST_MESSAGE_ID 2650 /* Data length code */ #define TEST_CANFD_DLC 15 /* Mail Box Mask */ #define TEST_MAILBOX_MASK 0xFFFFFFFF /* * The Baud Rate Prescaler Register (BRPR) and Bit Timing Register (BTR) * are setup such that CANFD baud rate equals 40Kbps, assuming that the * the CAN clock is 24MHz. The user needs to modify these values based on * the desired baud rate and the CAN clock frequency. For more information * see the CAN 2.0A, CAN 2.0B, ISO 11898-1 specifications. */ #define TEST_BRPR_BAUD_PRESCALAR 29 #define TEST_BTR_SYNCJUMPWIDTH 3 #define TEST_BTR_SECOND_TIMESEGMENT 2 #define TEST_BTR_FIRST_TIMESEGMENT 15 #define TEST_FBRPR_BAUD_PRESCALAR 29 #define TEST_FBTR_SYNCJUMPWIDTH 3 #define TEST_FBTR_SECOND_TIMESEGMENT 2 #define TEST_FBTR_FIRST_TIMESEGMENT 15 #ifdef XPAR_INTC_0_DEVICE_ID #define INTC XIntc #define INTC_HANDLER XIntc_InterruptHandler #else #define INTC XScuGic #define INTC_HANDLER XScuGic_InterruptHandler #endif /* XPAR_INTC_0_DEVICE_ID */ /**************************** Type Definitions *******************************/ /***************** Macros (Inline Functions) Definitions *********************/ /************************** Function Prototypes ******************************/ static int XCanFdIntrExample(u16 DeviceId); static void Config(XCanFd *InstancePtr); void Create_CanFD_Frame(); static int SendFrame(XCanFd *InstancePtr); static void SendHandler(void *CallBackRef); static void RecvHandler(void *CallBackRef); static void ErrorHandler(void *CallBackRef, u32 ErrorMask); static void EventHandler(void *CallBackRef, u32 Mask); static int SetupInterruptSystem(XCanFd *InstancePtr); /************************** Variable Definitions *****************************/ /* Allocate an instance of the XCan driver */ static XCanFd CanFd; /* * Buffers to hold frames to send and receive. These are declared as global so * that they are not on the stack. * These buffers need to be 32-bit aligned */ static u32 TxFrame[XCANFD_MAX_FRAME_SIZE_IN_BYTES]; static u32 RxFrame[XCANFD_MAX_FRAME_SIZE_IN_BYTES]; /* Asynchronous error occurred */ volatile static int LoopbackError; /* Received a frame */ volatile static int RecvDone; /* Frame was sent successfully */ volatile static int SendDone; /*****************************************************************************/ /** * * This function is the main function of the Can interrupt example. * * @param None. * * @return - XST_SUCCESS if the example has completed successfully. * - XST_FAILURE if the example has failed. * * @note None. * *****************************************************************************/ int main() { /* Run the Can interrupt example */ if (XCanFdIntrExample(CANFD_DEVICE_ID)) { xil_printf("XCanFd Interrupt Mode example Failed\n\r"); return XST_FAILURE; } xil_printf("XCanFd Interrupt Mode example Passed\n\r"); return XST_SUCCESS; } /*****************************************************************************/ /** * * The main entry point for showing the XCan driver in interrupt mode. * The example configures the device for internal loopback mode, then * sends a CAN frame and receives the same CAN frame. * * @param DeviceId contains the CAN device ID. * * @return XST_SUCCESS if successful, otherwise driver-specific error code. * * @note If the device is not working correctly, this function may enter * an infinite loop and will never return to the caller. * ******************************************************************************/ static int XCanFdIntrExample(u16 DeviceId) { int Status; XCanFd *CanFdInstPtr = &CanFd; XCanFd_Config *ConfigPtr; /* Initialize the XCan driver */ ConfigPtr = XCanFd_LookupConfig(DeviceId); if (CanFdInstPtr == NULL) { return XST_FAILURE; } Status = XCanFd_CfgInitialize(CanFdInstPtr, ConfigPtr,ConfigPtr->BaseAddress); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Run self-test on the device, which verifies basic sanity of the * device and the driver. */ Status = XCanFd_SelfTest(CanFdInstPtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* Configure the CAN device */ Config(CanFdInstPtr); XCanFd_SetHandler(CanFdInstPtr, XCANFD_HANDLER_SEND, (void *)SendHandler, (void *)CanFdInstPtr); XCanFd_SetHandler(CanFdInstPtr, XCANFD_HANDLER_RECV, (void *)RecvHandler, (void *)CanFdInstPtr); XCanFd_SetHandler(CanFdInstPtr, XCANFD_HANDLER_ERROR, (void *)ErrorHandler, (void *)CanFdInstPtr); XCanFd_SetHandler(CanFdInstPtr, XCANFD_HANDLER_EVENT, (void *)EventHandler, (void *)CanFdInstPtr); /* Initialize flags */ SendDone = FALSE; RecvDone = FALSE; LoopbackError = FALSE; /* Connect to the interrupt controller */ Status = SetupInterruptSystem(CanFdInstPtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* Enable all interrupts in CAN device */ XCanFd_InterruptEnable(CanFdInstPtr, XCANFD_IXR_ALL); /* Set the CAN Mode to LOOP Back */ XCanFd_EnterMode(CanFdInstPtr, XCANFD_MODE_LOOPBACK); while (XCanFd_GetMode(CanFdInstPtr) != XCANFD_MODE_LOOPBACK); Status = SendFrame(CanFdInstPtr); if (Status != XST_SUCCESS) return Status; while ((SendDone != TRUE) || (RecvDone != TRUE)); /* Check for errors found in the callbacks */ if (LoopbackError == TRUE) { return XST_LOOPBACK_ERROR; } return XST_SUCCESS; } /*****************************************************************************/ /** * * This function configures CAN device. * * @param InstancePtr is a pointer to the driver instance * * @return None. * * @note If the CAN device is not working correctly, this function may * enter an infinite loop and will never return to the caller. * basically this configures BRPR,BTR in both Arbitration and * Data phase. also configures Acceptance filters(in SequentialMode) * or RxBuffers(in Mailbox). * ******************************************************************************/ static void Config(XCanFd *InstancePtr) { u32 RxBuffer; u32 IdValue; u8 RxBuffers; XCanFd_EnterMode(InstancePtr, XCANFD_MODE_CONFIG); while (XCanFd_GetMode(InstancePtr) != XCANFD_MODE_CONFIG); /* Configure the Baud Rate Prescalar in Arbitration Phase */ XCanFd_SetBaudRatePrescaler(InstancePtr, TEST_BRPR_BAUD_PRESCALAR); /* Configure the Bit Timing Values in Arbitration Phase */ XCanFd_SetBitTiming(InstancePtr, TEST_BTR_SYNCJUMPWIDTH,\ TEST_BTR_SECOND_TIMESEGMENT,TEST_BTR_FIRST_TIMESEGMENT); /* Configure the Baud Rate Prescalar in Data Phase */ XCanFd_SetFBaudRatePrescaler(InstancePtr, TEST_FBRPR_BAUD_PRESCALAR); /* Configure the Bit Timing Values in Data Phase */ XCanFd_SetFBitTiming(InstancePtr,TEST_FBTR_SYNCJUMPWIDTH,\ TEST_FBTR_SECOND_TIMESEGMENT,TEST_FBTR_FIRST_TIMESEGMENT); /* * Disable the Global BRS Disable so that at the time of sending the can * frame we will choose whether we need Bit Rate Switch or not. */ XCanFd_SetBitRateSwitch_DisableNominal(InstancePtr); /* Configure Acceptance Filter/Mail box depends on design */ if (XCANFD_GET_RX_MODE(InstancePtr) == 0) { XCanFd_AcceptFilterDisable(InstancePtr,XCANFD_AFR_UAF_ALL_MASK); XCanFd_AcceptFilterEnable(InstancePtr,XCANFD_AFR_UAF_ALL_MASK); } else { RxBuffers = XCanFd_Get_RxBuffers(InstancePtr); IdValue = XCanFd_CreateIdValue(TEST_MESSAGE_ID, 0, 0, 0, 0); for (RxBuffer = 0;RxBuffer < RxBuffers;RxBuffer++) { XCanFd_RxBuff_MailBox_DeActive(InstancePtr,RxBuffer); XCanFd_Set_MailBox_IdMask(InstancePtr,RxBuffer,\ TEST_MAILBOX_MASK,IdValue); XCanFd_RxBuff_MailBox_Active(InstancePtr,RxBuffer); } } /* Configure the CAN Device to Enter Loop Back Mode */ XCanFd_EnterMode(InstancePtr, XCANFD_MODE_LOOPBACK); while (XCanFd_GetMode(InstancePtr) != XCANFD_MODE_LOOPBACK); } /*****************************************************************************/ /** * * Send a CAN frame. * * @param InstancePtr is a pointer to the driver instance. * * @return None. * * @note None. * ******************************************************************************/ static int SendFrame(XCanFd *InstancePtr) { int Status; u32 TxBufferNumber; u8 *FramePtr; u32 Index; int NofBytes; /* * Create correct values for Identifier and Data Length Code Register. * Here Data Length Code value is 8 * but CAN FD Can support upto DLC 15(64Bytes). */ TxFrame[0] = XCanFd_CreateIdValue(TEST_MESSAGE_ID, 0, 0, 0, 0); TxFrame[1] = XCanFd_Create_CanFD_Dlc_BrsValue(TEST_CANFD_DLC); NofBytes = XCanFd_GetDlc2len(TxFrame[1] & XCANFD_DLCR_DLC_MASK); /* * Now fill in the data field with known values so we can verify them * on receive. */ FramePtr = (u8 *)(&TxFrame[2]); for (Index = 0; Index < NofBytes; Index++) { *FramePtr++ = (u8)Index; } /* Now send the frame */ Status = XCanFd_Send(InstancePtr, TxFrame,&TxBufferNumber); if (Status == XST_FIFO_NO_ROOM) return Status; if (Status != XST_SUCCESS) { /* The frame could not be sent successfully */ LoopbackError = TRUE; SendDone = TRUE; RecvDone = TRUE; } return Status; } /*****************************************************************************/ /** * * Callback function (called from interrupt handler) to handle confirmation of * transmit events when in interrupt mode. * * @param CallBackRef is the callback reference passed from the interrupt * handler, which in our case is a pointer to the driver instance. * * @return None. * * @note This function is called by the driver within interrupt context. * ******************************************************************************/ static void SendHandler(void *CallBackRef) { /* The frame was sent successfully. Notify the task context */ SendDone = TRUE; } /*****************************************************************************/ /** * * Callback function (called from interrupt handler) to handle frames received in * interrupt mode. This function is called once per frame received. * The driver's receive function is called to read the frame from RX FIFO. * * @param CallBackRef is the callback reference passed from the interrupt * handler, which in our case is a pointer to the device instance. * * @return None. * * @note This function is called by the driver within interrupt context. * ******************************************************************************/ static void RecvHandler(void *CallBackRef) { XCanFd *CanPtr = (XCanFd *)CallBackRef; int Status; int Index; u8 *FramePtr; u32 Dlc; /* Check for the design 1 - MailBox 0 - Sequential */ if (XCANFD_GET_RX_MODE(CanPtr) == 1) { Status = XCanFd_Recv_Mailbox(CanPtr, RxFrame); } else { Status = XCanFd_Recv_Sequential(CanPtr, RxFrame); } /* Get the Dlc inthe form of bytes */ Dlc = XCanFd_GetDlc2len(RxFrame[1] & XCANFD_DLCR_DLC_MASK); if (Status != XST_SUCCESS) { LoopbackError = TRUE; RecvDone = TRUE; return; } /* Verify Identifier and Data Length Code */ if (RxFrame[0] != XCanFd_CreateIdValue(TEST_MESSAGE_ID, 0, 0, 0, 0)) { LoopbackError = TRUE; RecvDone = TRUE; return; } if (TEST_CANFD_DLC != XCanFd_GetLen2Dlc(Dlc)) { LoopbackError = TRUE; RecvDone = TRUE; return; } /* Verify Data field contents */ FramePtr = (u8 *)(&RxFrame[2]); for (Index = 0; Index < Dlc; Index++) { if (*FramePtr++ != (u8)Index) { LoopbackError = TRUE; break; } } RecvDone = TRUE; } /*****************************************************************************/ /** * * Callback function (called from interrupt handler) to handle error interrupt. * Error code read from Error Status register is passed into this function * * @param CallBackRef is the callback reference passed from the interrupt * handler, which in our case is a pointer to the driver instance. * @param ErrorMask is a bit mask indicating the cause of the error. Its * value equals 'OR'ing one or more XCANFD_ESR_* defined in * xcanfd_l.h * * @return None. * * @note This function is called by the driver within interrupt context. * ******************************************************************************/ static void ErrorHandler(void *CallBackRef, u32 ErrorMask) { XCanFd *CanPtr = (XCanFd *)CallBackRef; if (ErrorMask & XCANFD_ESR_ACKER_MASK) { /* ACK Error handling code should be put here */ } if (ErrorMask & XCANFD_ESR_BERR_MASK) { /* Bit Error handling code should be put here */ } if (ErrorMask & XCANFD_ESR_STER_MASK) { /* Stuff Error handling code should be put here */ } if (ErrorMask & XCANFD_ESR_FMER_MASK) { /* Form Error handling code should be put here */ } if (ErrorMask & XCANFD_ESR_CRCER_MASK) { /* CRC Error handling code should be put here */ } if (ErrorMask & XCANFD_ESR_F_BERR_MASK) { /* Bit Error handling code should be put here */ } if (ErrorMask & XCANFD_ESR_F_STER_MASK) { /* Stuff Error handling code should be put here */ } if (ErrorMask & XCANFD_ESR_F_FMER_MASK) { /* Form Error handling code should be put here */ } if (ErrorMask & XCANFD_ESR_CRCER_MASK) { /* CRC Error handling code should be put here */ } /* Set the shared variables */ LoopbackError = TRUE; RecvDone = TRUE; SendDone = TRUE; } /*****************************************************************************/ /** * * Callback function (called from interrupt handler) to handle the following * interrupts: * - XCANFD_IXR_BSOFF_MASK: Bus Off Interrupt * - XCANFD_IXR_RXOFLW_MASK: RX FIFO Overflow Interrupt * - XCANFD_IXR_RXUFLW_MASK: RX FIFO Underflow Interrupt * - XCANFD_IXR_TXBFLL_MASK: TX High Priority Buffer Full Interrupt * - XCANFD_IXR_TXFLL_MASK: TX FIFO Full Interrupt * - XCANFD_IXR_WKUP_MASK: Wake up Interrupt * - XCANFD_IXR_SLP_MASK: Sleep Interrupt * - XCANFD_IXR_ARBLST_MASK: Arbitration Lost Interrupt * * Please feel free to change this function to meet specific application needs. * * @param CallBackRef is the callback reference passed from the interrupt * handler, which in our case is a pointer to the driver instance. * @param IntrMask is a bit mask indicating pending interrupts. Its value * equals 'OR'ing one or more of the XCANFD_IXR_*_MASK value(s) * mentioned above. * * @return None. * * @note This function is called by the driver within interrupt context. * ******************************************************************************/ static void EventHandler(void *CallBackRef, u32 IntrMask) { XCanFd *CanPtr = (XCanFd *)CallBackRef; if (IntrMask & XCANFD_IXR_BSOFF_MASK) { /* * Entering Bus off status interrupt requires the CAN device be * reset and re-configurated. */ XCanFd_Reset(CanPtr); Config(CanPtr); return; } if (IntrMask & XCANFD_IXR_RXFOFLW_MASK) { /* * Code to handle RX FIFO Overflow Interrupt should be put here */ } if (IntrMask & XCANFD_IXR_RXMNF_MASK) { /* * Code to handle RX Match Not Finished Interrupt should be put * here */ } if (IntrMask & XCANFD_IXR_RXBOFLW_MASK) { /* * Code to handle RX Buffer Overflow Interrupt should be put * here */ } if (IntrMask & XCANFD_IXR_RXRBF_MASK) { /* * Code to handle RX Buffer Full Interrupt should be put here */ } if (IntrMask & XCANFD_IXR_TXCRS_MASK) { /* * Code to handle Tx Cancelation Request Served Interrupt * should be put here. */ } if (IntrMask & XCANFD_IXR_TXRRS_MASK) { /* * Code to handle Tx Ready Request Served Interrupt should be * put here */ } if (IntrMask & XCANFD_IXR_WKUP_MASK) { /* * Code to handle Wake up from sleep mode Interrupt should be * put here. */ } if (IntrMask & XCANFD_IXR_SLP_MASK) { /* * Code to handle Enter sleep mode Interrupt should be put here */ } if (IntrMask & XCANFD_IXR_ARBLST_MASK) { /* * Code to handle Lost bus arbitration Interrupt should be put * here. */ } } /*****************************************************************************/ /** * * This function sets up the interrupt system so interrupts can occur for the * CAN. This function is application-specific since the actual system may or * may not have an interrupt controller. The CAN could be directly connected * to a processor without an interrupt controller. The user should modify this * function to fit the application. * * @para InstancePtr is a pointer to the instance of the CAN * which is going to be connected to the interrupt controller. * * @return XST_SUCCESS if successful, otherwise XST_FAILURE. * * @note None. * ****************************************************************************/ static int SetupInterruptSystem(XCanFd *InstancePtr) { static INTC InterruptController; int Status; #ifdef XPAR_INTC_0_DEVICE_ID /* * Initialize the interrupt controller driver so that it's ready to use. * INTC_DEVICE_ID specifies the XINTC device ID that is generated in * xparameters.h. */ Status = XIntc_Initialize(&InterruptController, INTC_DEVICE_ID); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Connect the device driver handler that will be called when an * interrupt for the device occurs, the device driver handler performs * the specific interrupt processing for the device. */ Status = XIntc_Connect(&InterruptController, CAN_INTR_VEC_ID, (XInterruptHandler)XCanFd_IntrHandler, InstancePtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Start the interrupt controller so interrupts are enabled for all * devices that cause interrupts. Specify real mode so that the CAN * can cause interrupts through the interrupt controller. */ Status = XIntc_Start(&InterruptController, XIN_REAL_MODE); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* Enable the interrupt for the CAN. */ XIntc_Enable(&InterruptController, CAN_INTR_VEC_ID); #else /* SCUGIC */ XScuGic_Config *IntcConfig; /* * Initialize the interrupt controller driver so that it is ready to * use. */ IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID); if (NULL == IntcConfig) { return XST_FAILURE; } Status = XScuGic_CfgInitialize(&InterruptController, IntcConfig, IntcConfig->CpuBaseAddress); if (Status != XST_SUCCESS) { return XST_FAILURE; } XScuGic_SetPriorityTriggerType(&InterruptController, CAN_INTR_VEC_ID, 0xA0, 0x3); /* * Connect the interrupt handler that will be called when an * interrupt occurs for the device. */ Status = XScuGic_Connect(&InterruptController, CAN_INTR_VEC_ID, (Xil_ExceptionHandler)XCanFd_IntrHandler, InstancePtr); if (Status != XST_SUCCESS) { return Status; } /* Enable the interrupt for the Can device */ XScuGic_Enable(&InterruptController, CAN_INTR_VEC_ID); #endif /* Initialize the exception table */ Xil_ExceptionInit(); /* * Register the interrupt controller handler with the exception table. */ Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT, (Xil_ExceptionHandler)INTC_HANDLER, &InterruptController); /* Enable exceptions */ Xil_ExceptionEnable(); return XST_SUCCESS; }