/******************************************************************************
*
* (c) Copyright 2010-2013 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information of Xilinx, Inc.
* and is protected under U.S. and international copyright and other
* intellectual property laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any rights to the
* materials distributed herewith. Except as otherwise provided in a valid
* license issued to you by Xilinx, and to the maximum extent permitted by
* applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL
* FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
* IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
* MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE;
* and (2) Xilinx shall not be liable (whether in contract or tort, including
* negligence, or under any other theory of liability) for any loss or damage
* of any kind or nature related to, arising under or in connection with these
* materials, including for any direct, or any indirect, special, incidental,
* or consequential loss or damage (including loss of data, profits, goodwill,
* or any type of loss or damage suffered as a result of any action brought by
* a third party) even if such damage or loss was reasonably foreseeable or
* Xilinx had been advised of the possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-safe, or for use in
* any application requiring fail-safe performance, such as life-support or
* safety devices or systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any other applications
* that could lead to death, personal injury, or severe property or
* environmental damage (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and liability of any use of
* Xilinx products in Critical Applications, subject only to applicable laws
* and regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE
* AT ALL TIMES.
*
******************************************************************************/
/*****************************************************************************/
/**
 *
 * @file xaxidma_example_simple_intr.c
 *
 * This file demonstrates how to use the xaxidma driver on the Xilinx AXI
 * DMA core (AXIDMA) to transfer packets.in interrupt mode when the AXIDMA core
 * is configured in simple mode
 *
 * This code assumes a loopback hardware widget is connected to the AXI DMA
 * core for data packet loopback.
 *
 * To see the debug print, you need a Uart16550 or uartlite in your system,
 * and please set "-DDEBUG" in your compiler options. You need to rebuild your
 * software executable.
 *
 * Make sure that MEMORY_BASE is defined properly as per the HW system. The
 * h/w system built in Area mode has a maximum DDR memory limit of 64MB. In 
 * throughput mode, it is 512MB.  These limits are need to ensured for 
 * proper operation of this code. 
 * 
 *
 * <pre>
 * MODIFICATION HISTORY:
 *
 * Ver   Who  Date     Changes
 * ----- ---- -------- -------------------------------------------------------
 * 4.00a rkv  02/22/11 New example created for simple DMA, this example is for
 *       	       simple DMA,Added interrupt support for Zynq.
 * 4.00a srt  08/04/11 Changed a typo in the RxIntrHandler, changed
 *		       XAXIDMA_DMA_TO_DEVICE to XAXIDMA_DEVICE_TO_DMA
 * 5.00a srt  03/06/12 Added Flushing and Invalidation of Caches to fix CRs
 *		       648103, 648701.
 *		       Added V7 DDR Base Address to fix CR 649405.
 * 6.00a srt  03/27/12 Changed API calls to support MCDMA driver.
 * 7.00a srt  06/18/12 API calls are reverted back for backward compatibility.
 * 7.01a srt  11/02/12 Buffer sizes (Tx and Rx) are modified to meet maximum 
 *		       DDR memory limit of the h/w system built with Area mode
 * 7.02a srt  03/01/13 Updated DDR base address for IPI designs (CR 703656). 
 *
 * </pre>
 *
 * ***************************************************************************
 */

/***************************** Include Files *********************************/

#include "xaxidma.h"
#include "xparameters.h"
#include "xil_exception.h"
#include "xdebug.h"

#ifdef XPAR_UARTNS550_0_BASEADDR
#include "xuartns550_l.h"       /* to use uartns550 */
#endif


#ifdef XPAR_INTC_0_DEVICE_ID
 #include "xintc.h"
#else
 #include "xscugic.h"
#endif

/************************** Constant Definitions *****************************/

/*
 * Device hardware build related constants.
 */

#define DMA_DEV_ID		XPAR_AXIDMA_0_DEVICE_ID

#ifdef XPAR_V6DDR_0_S_AXI_BASEADDR
#define DDR_BASE_ADDR		XPAR_V6DDR_0_S_AXI_BASEADDR
#elif XPAR_S6DDR_0_S0_AXI_BASEADDR
#define DDR_BASE_ADDR		XPAR_S6DDR_0_S0_AXI_BASEADDR
#elif XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
#define DDR_BASE_ADDR		XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
#elif XPAR_MIG7SERIES_0_BASEADDR
#define DDR_BASE_ADDR		XPAR_MIG7SERIES_0_BASEADDR
#endif

#ifndef DDR_BASE_ADDR
#warning CHECK FOR THE VALID DDR ADDRESS IN XPARAMETERS.H, \
		DEFAULT SET TO 0x01000000
#define MEM_BASE_ADDR		0x01000000
#else
#define MEM_BASE_ADDR		(DDR_BASE_ADDR + 0x1000000)
#endif

#ifdef XPAR_INTC_0_DEVICE_ID
#define RX_INTR_ID		XPAR_INTC_0_AXIDMA_0_S2MM_INTROUT_VEC_ID
#define TX_INTR_ID		XPAR_INTC_0_AXIDMA_0_MM2S_INTROUT_VEC_ID
#else
#define RX_INTR_ID		XPAR_FABRIC_AXIDMA_0_S2MM_INTROUT_VEC_ID
#define TX_INTR_ID		XPAR_FABRIC_AXIDMA_0_MM2S_INTROUT_VEC_ID
#endif

#define TX_BUFFER_BASE		(MEM_BASE_ADDR + 0x00100000)
#define RX_BUFFER_BASE		(MEM_BASE_ADDR + 0x00300000)
#define RX_BUFFER_HIGH		(MEM_BASE_ADDR + 0x004FFFFF)

#ifdef XPAR_INTC_0_DEVICE_ID
#define INTC_DEVICE_ID          XPAR_INTC_0_DEVICE_ID
#else
#define INTC_DEVICE_ID          XPAR_SCUGIC_SINGLE_DEVICE_ID
#endif

#ifdef XPAR_INTC_0_DEVICE_ID
 #define INTC		XIntc
 #define INTC_HANDLER	XIntc_InterruptHandler
#else
 #define INTC		XScuGic
 #define INTC_HANDLER	XScuGic_InterruptHandler
#endif


/* Timeout loop counter for reset
 */
#define RESET_TIMEOUT_COUNTER	10000

#define TEST_START_VALUE	0xC
/*
 * Buffer and Buffer Descriptor related constant definition
 */
#define MAX_PKT_LEN		0x100

#define NUMBER_OF_TRANSFERS	10

/* The interrupt coalescing threshold and delay timer threshold
 * Valid range is 1 to 255
 *
 * We set the coalescing threshold to be the total number of packets.
 * The receive side will only get one completion interrupt for this example.
 */

/**************************** Type Definitions *******************************/


/***************** Macros (Inline Functions) Definitions *********************/


/************************** Function Prototypes ******************************/
#ifndef DEBUG
extern void xil_printf(const char *format, ...);
#endif

#ifdef XPAR_UARTNS550_0_BASEADDR
static void Uart550_Setup(void);
#endif

static int CheckData(int Length, u8 StartValue);
static void TxIntrHandler(void *Callback);
static void RxIntrHandler(void *Callback);




static int SetupIntrSystem(INTC * IntcInstancePtr,
			   XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId);
static void DisableIntrSystem(INTC * IntcInstancePtr,
					u16 TxIntrId, u16 RxIntrId);



/************************** Variable Definitions *****************************/
/*
 * Device instance definitions
 */


static XAxiDma AxiDma;		/* Instance of the XAxiDma */

static INTC Intc;	/* Instance of the Interrupt Controller */

/*
 * Flags interrupt handlers use to notify the application context the events.
 */
volatile int TxDone;
volatile int RxDone;
volatile int Error;

/*****************************************************************************/
/**
*
* Main function
*
* This function is the main entry of the interrupt test. It does the following:
*	Set up the output terminal if UART16550 is in the hardware build
*	Initialize the DMA engine
*	Set up Tx and Rx channels
*	Set up the interrupt system for the Tx and Rx interrupts
*	Submit a transfer
*	Wait for the transfer to finish
*	Check transfer status
*	Disable Tx and Rx interrupts
*	Print test status and exit
*
* @param	None
*
* @return
*		- XST_SUCCESS if example finishes successfully
*		- XST_FAILURE if example fails.
*
* @note		None.
*
******************************************************************************/
int main(void)
{
	int Status;
	XAxiDma_Config *Config;
	int Tries = NUMBER_OF_TRANSFERS;
	int Index;
	u8 *TxBufferPtr;
	u8 *RxBufferPtr;
	u8 Value;

	TxBufferPtr = (u8 *)TX_BUFFER_BASE ;
	RxBufferPtr = (u8 *)RX_BUFFER_BASE;
	/* Initial setup for Uart16550 */
#ifdef XPAR_UARTNS550_0_BASEADDR

	Uart550_Setup();

#endif

	xil_printf("\r\n--- Entering main() --- \r\n");

	Config = XAxiDma_LookupConfig(DMA_DEV_ID);
	if (!Config) {
		xil_printf("No config found for %d\r\n", DMA_DEV_ID);

		return XST_FAILURE;
	}

	/* Initialize DMA engine */
	Status = XAxiDma_CfgInitialize(&AxiDma, Config);

	if (Status != XST_SUCCESS) {
		xil_printf("Initialization failed %d\r\n", Status);
		return XST_FAILURE;
	}

	if(XAxiDma_HasSg(&AxiDma)){
		xil_printf("Device configured as SG mode \r\n");
		return XST_FAILURE;
	}

	/* Set up Interrupt system  */
	Status = SetupIntrSystem(&Intc, &AxiDma, TX_INTR_ID, RX_INTR_ID);
	if (Status != XST_SUCCESS) {

		xil_printf("Failed intr setup\r\n");
		return XST_FAILURE;
	}

	/* Disable all interrupts before setup */

	XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
						XAXIDMA_DMA_TO_DEVICE);

	XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
				XAXIDMA_DEVICE_TO_DMA);

	/* Enable all interrupts */
	XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
							XAXIDMA_DMA_TO_DEVICE);


	XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
							XAXIDMA_DEVICE_TO_DMA);

	/* Initialize flags before start transfer test  */
	TxDone = 0;
	RxDone = 0;
	Error = 0;

	Value = TEST_START_VALUE;

	for(Index = 0; Index < MAX_PKT_LEN; Index ++) {
			TxBufferPtr[Index] = Value;

			Value = (Value + 1) & 0xFF;
	}

	/* Flush the SrcBuffer before the DMA transfer, in case the Data Cache
	 * is enabled
	 */
	Xil_DCacheFlushRange((u32)TxBufferPtr, MAX_PKT_LEN);

	/* Send a packet */
	for(Index = 0; Index < Tries; Index ++) {

		Status = XAxiDma_SimpleTransfer(&AxiDma,(u32) RxBufferPtr,
					MAX_PKT_LEN, XAXIDMA_DEVICE_TO_DMA);

		if (Status != XST_SUCCESS) {
			return XST_FAILURE;
		}

		Status = XAxiDma_SimpleTransfer(&AxiDma,(u32) TxBufferPtr,
					MAX_PKT_LEN, XAXIDMA_DMA_TO_DEVICE);

		if (Status != XST_SUCCESS) {
			return XST_FAILURE;
		}


		/*
		 * Wait TX done and RX done
	 	 */
		while (!TxDone && !RxDone && !Error) {
				/* NOP */
		}

		if (Error) {
			xil_printf("Failed test transmit%s done, "
			"receive%s done\r\n", TxDone? "":" not",
							RxDone? "":" not");

			goto Done;

		}

		/*
		 * Test finished, check data
		 */
		Status = CheckData(MAX_PKT_LEN, 0xC);
		if (Status != XST_SUCCESS) {
			xil_printf("Data check failed\r\n");
			goto Done;
		}
	}


	xil_printf("AXI DMA interrupt example test passed\r\n");


	/* Disable TX and RX Ring interrupts and return success */

	DisableIntrSystem(&Intc, TX_INTR_ID, RX_INTR_ID);

Done:
	xil_printf("--- Exiting main() --- \r\n");

	return XST_SUCCESS;
}

#ifdef XPAR_UARTNS550_0_BASEADDR
/*****************************************************************************/
/*
*
* Uart16550 setup routine, need to set baudrate to 9600 and data bits to 8
*
* @param	None
*
* @return	None
*
* @note		None.
*
******************************************************************************/
static void Uart550_Setup(void)
{

	XUartNs550_SetBaud(XPAR_UARTNS550_0_BASEADDR,
			XPAR_XUARTNS550_CLOCK_HZ, 9600);

	XUartNs550_SetLineControlReg(XPAR_UARTNS550_0_BASEADDR,
			XUN_LCR_8_DATA_BITS);
}
#endif

/*****************************************************************************/
/*
*
* This function checks data buffer after the DMA transfer is finished.
*
* We use the static tx/rx buffers.
*
* @param	Length is the length to check
* @param	StartValue is the starting value of the first byte
*
* @return
*		- XST_SUCCESS if validation is successful
*		- XST_FAILURE if validation is failure.
*
* @note		None.
*
******************************************************************************/
static int CheckData(int Length, u8 StartValue)
{
	u8 *RxPacket;
	int Index = 0;
	u8 Value;

	RxPacket = (u8 *) RX_BUFFER_BASE;
	Value = StartValue;

	/* Invalidate the DestBuffer before receiving the data, in case the
	 * Data Cache is enabled
	 */
	Xil_DCacheInvalidateRange((u32)RxPacket, Length);

	for(Index = 0; Index < Length; Index++) {
		if (RxPacket[Index] != Value) {
			xil_printf("Data error %d: %x/%x\r\n",
			    Index, RxPacket[Index], Value);

			return XST_FAILURE;
		}
		Value = (Value + 1) & 0xFF;
	}

	return XST_SUCCESS;
}

/*****************************************************************************/
/*
*
* This is the DMA TX Interrupt handler function.
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* is present, then sets the TxDone.flag
*
* @param	Callback is a pointer to TX channel of the DMA engine.
*
* @return	None.
*
* @note		None.
*
******************************************************************************/
static void TxIntrHandler(void *Callback)
{

	u32 IrqStatus;
	int TimeOut;
	XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

	/* Read pending interrupts */
	IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DMA_TO_DEVICE);

	/* Acknowledge pending interrupts */


	XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DMA_TO_DEVICE);

	/*
	 * If no interrupt is asserted, we do not do anything
	 */
	if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {

		return;
	}

	/*
	 * If error interrupt is asserted, raise error flag, reset the
	 * hardware to recover from the error, and return with no further
	 * processing.
	 */
	if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

		Error = 1;

		/*
		 * Reset should never fail for transmit channel
		 */
		XAxiDma_Reset(AxiDmaInst);

		TimeOut = RESET_TIMEOUT_COUNTER;

		while (TimeOut) {
			if (XAxiDma_ResetIsDone(AxiDmaInst)) {
				break;
			}

			TimeOut -= 1;
		}

		return;
	}

	/*
	 * If Completion interrupt is asserted, then set the TxDone flag
	 */
	if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

		TxDone = 1;
	}
}

/*****************************************************************************/
/*
*
* This is the DMA RX interrupt handler function
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* is present, then it sets the RxDone flag.
*
* @param	Callback is a pointer to RX channel of the DMA engine.
*
* @return	None.
*
* @note		None.
*
******************************************************************************/
static void RxIntrHandler(void *Callback)
{
	u32 IrqStatus;
	int TimeOut;
	XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

	/* Read pending interrupts */
	IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DEVICE_TO_DMA);

	/* Acknowledge pending interrupts */
	XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DEVICE_TO_DMA);

	/*
	 * If no interrupt is asserted, we do not do anything
	 */
	if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
		return;
	}

	/*
	 * If error interrupt is asserted, raise error flag, reset the
	 * hardware to recover from the error, and return with no further
	 * processing.
	 */
	if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

		Error = 1;

		/* Reset could fail and hang
		 * NEED a way to handle this or do not call it??
		 */
		XAxiDma_Reset(AxiDmaInst);

		TimeOut = RESET_TIMEOUT_COUNTER;

		while (TimeOut) {
			if(XAxiDma_ResetIsDone(AxiDmaInst)) {
				break;
			}

			TimeOut -= 1;
		}

		return;
	}

	/*
	 * If completion interrupt is asserted, then set RxDone flag
	 */
	if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

		RxDone = 1;
	}
}

/*****************************************************************************/
/*
*
* This function setups the interrupt system so interrupts can occur for the
* DMA, it assumes INTC component exists in the hardware system.
*
* @param	IntcInstancePtr is a pointer to the instance of the INTC.
* @param	AxiDmaPtr is a pointer to the instance of the DMA engine
* @param	TxIntrId is the TX channel Interrupt ID.
* @param	RxIntrId is the RX channel Interrupt ID.
*
* @return
*		- XST_SUCCESS if successful,
*		- XST_FAILURE.if not succesful
*
* @note		None.
*
******************************************************************************/
static int SetupIntrSystem(INTC * IntcInstancePtr,
			   XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId)
{
	int Status;

#ifdef XPAR_INTC_0_DEVICE_ID

	/* Initialize the interrupt controller and connect the ISRs */
	Status = XIntc_Initialize(IntcInstancePtr, INTC_DEVICE_ID);
	if (Status != XST_SUCCESS) {

		xil_printf("Failed init intc\r\n");
		return XST_FAILURE;
	}

	Status = XIntc_Connect(IntcInstancePtr, TxIntrId,
			       (XInterruptHandler) TxIntrHandler, AxiDmaPtr);
	if (Status != XST_SUCCESS) {

		xil_printf("Failed tx connect intc\r\n");
		return XST_FAILURE;
	}

	Status = XIntc_Connect(IntcInstancePtr, RxIntrId,
			       (XInterruptHandler) RxIntrHandler, AxiDmaPtr);
	if (Status != XST_SUCCESS) {

		xil_printf("Failed rx connect intc\r\n");
		return XST_FAILURE;
	}

	/* Start the interrupt controller */
	Status = XIntc_Start(IntcInstancePtr, XIN_REAL_MODE);
	if (Status != XST_SUCCESS) {

		xil_printf("Failed to start intc\r\n");
		return XST_FAILURE;
	}

	XIntc_Enable(IntcInstancePtr, TxIntrId);
	XIntc_Enable(IntcInstancePtr, RxIntrId);

#else

	XScuGic_Config *IntcConfig;


	/*
	 * Initialize the interrupt controller driver so that it is ready to
	 * use.
	 */
	IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);
	if (NULL == IntcConfig) {
		return XST_FAILURE;
	}

	Status = XScuGic_CfgInitialize(IntcInstancePtr, IntcConfig,
					IntcConfig->CpuBaseAddress);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}


	XScuGic_SetPriorityTriggerType(IntcInstancePtr, TxIntrId, 0xA0, 0x3);

	XScuGic_SetPriorityTriggerType(IntcInstancePtr, RxIntrId, 0xA0, 0x3);
	/*
	 * Connect the device driver handler that will be called when an
	 * interrupt for the device occurs, the handler defined above performs
	 * the specific interrupt processing for the device.
	 */
	Status = XScuGic_Connect(IntcInstancePtr, TxIntrId,
				(Xil_InterruptHandler)TxIntrHandler,
				AxiDmaPtr);
	if (Status != XST_SUCCESS) {
		return Status;
	}

	Status = XScuGic_Connect(IntcInstancePtr, RxIntrId,
				(Xil_InterruptHandler)RxIntrHandler,
				AxiDmaPtr);
	if (Status != XST_SUCCESS) {
		return Status;
	}

	XScuGic_Enable(IntcInstancePtr, TxIntrId);
	XScuGic_Enable(IntcInstancePtr, RxIntrId);


#endif

	/* Enable interrupts from the hardware */

	Xil_ExceptionInit();
	Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
			(Xil_ExceptionHandler)INTC_HANDLER,
			(void *)IntcInstancePtr);

	Xil_ExceptionEnable();

	return XST_SUCCESS;
}

/*****************************************************************************/
/**
*
* This function disables the interrupts for DMA engine.
*
* @param	IntcInstancePtr is the pointer to the INTC component instance
* @param	TxIntrId is interrupt ID associated w/ DMA TX channel
* @param	RxIntrId is interrupt ID associated w/ DMA RX channel
*
* @return	None.
*
* @note		None.
*
******************************************************************************/
static void DisableIntrSystem(INTC * IntcInstancePtr,
					u16 TxIntrId, u16 RxIntrId)
{
#ifdef XPAR_INTC_0_DEVICE_ID
	/* Disconnect the interrupts for the DMA TX and RX channels */
	XIntc_Disconnect(IntcInstancePtr, TxIntrId);
	XIntc_Disconnect(IntcInstancePtr, RxIntrId);
#else
	XScuGic_Disconnect(IntcInstancePtr, TxIntrId);
	XScuGic_Disconnect(IntcInstancePtr, RxIntrId);
#endif
}