i: XI LI NX Xilkernel (v6.1)

ALL PROGRAMMABLE.
UG646 June 4, 2014

Overview Xilkernel is a small, robust, and modular kernel. It is highly integrated with the Platform Studio
framework and is a free software library that you receive with the Xilinx Software Development
Kit (SDK). Xilkernel:

o Allows a high degree of customization, letting you tailor the kernel to an optimal level both
in terms of size and functionality.

e Supports the core features required in a lightweight embedded kernel, with a POSIX API.
o Works on MicroBlaze™ processor.

Xilkernel IPC services can be used to implement higher level services (such as networking,
video, and audio) and subsequently run applications using these services.

Why Use a The following are a few of the deciding factors that can influence your choice of using a kernel
Kernel? as the software platform for your next application project:

o Typical embedded control applications comprise various fasks that need to be performed
in a particular sequence or schedule. As the number of control tasks involved grows, it
becomes difficult to organize the sub-tasks manually, and to time-share the required work.
The responsiveness and the capability of such an application decreases dramatically
when the complexity is increased.

e Breaking down tasks as individual applications and implementing them on an operating
system (OS) is much more intuitive.

e A kernel enables the you to write code at an abstract level, instead of at a small, micro-
controller-level standalone code.

e Many common and legacy applications rely on OS services such as file systems, time
management, and so forth. Xilkernel is a thin library that provides these essential
services. Porting or using common and open source libraries (such as graphics or network
protocols) might require some form of these OS services also.

Key Features Xilkernel includes the following key features:
¢ High scalability into a given system through the inclusion or exclusion of functionality as
required.

e Complete kernel configuration and deployment within minutes from inside of SDK.

e Robustness of the kernel: system calls protected by parameter validity checks and proper
return of POSIX error codes.

e A POSIX API targeting embedded kernels, win core kernel features such as:
- Threads with round-robin or strict priority scheduling.
- Synchronization services: semaphores and mutex locks.
- IPC services: message queues and shared memory.
- Dynamic buffer pool memory allocation.
- Software timers.
- User-level interrupt handling.
e Static thread creation that startup with the kernel.

© 2014 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United

UG646 June 4, 2014 www.xilinx.com [send Feedback J 1

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=1

Xilkernel Organization

& XILINX

ALL PROGRAMMABLE.

Xilkernel
Organization

Building
Xilkernel
Applications

e System call interface to the kernel.
e Exception handling for the MicroBlaze processor.

¢ Memory protection using MicroBlaze Memory Management (Protection) Unit (MMU)
features when available.

The kernel is highly modular in design. You can select and customize the kernel modules that
are needed for the application at hand. Customizing the kernel is discussed in detail in “Kernel
Customization,” page 43(1). Figure 1 shows the various modules of Xilkernel:

Xilkernel Modules

User Application

B User level interrupt
1 handling
Xilkernel !
\ *
System Call Handler Scheduler Interrup:_lzr:ciﬂgl)'(ceptlon
Software Thread
Timers Management SETEIOES
Message Shared Dynamic Buffer
Queue Memory Management

X10226

Figure 1: Xilkernel Modules

Xilkernel is organized in the form of a library of kernel functions. This leads to a simple model
of kernel linkage. To build Xilkernel, you must include Xilkernel in your software platform,
configure it appropriately, and run Libgen to generate the Xilkernel library. Your application
sources can be edited and developed separately. After you have developed your application,
you must link with the Xilkernel library, thus pulling in all the kernel functionality to build the final
kernel image. The Xilkernel library is generated as 1ibxilkernel .a. Figure 2, page 3 shows
this development flow.

Internally, Xilkernel also supports the much more powerful, traditional OS-like method of
linkage and separate executables. Conventional operating systems have the kernel image as a
separate file and each application that executes on the kernel as a separate file. However,
Xilinx recommends that you use the more simple and more elegant library linkage mode. This
mode provides maximum ease of use. It is also the preferred mode for debugging,
downloading, and bootloading. The separate executable mode is required only by those who
have advanced requirements in the form of separate executables. The separate executable
mode and its caveats are documented in “Deprecated Features,” page 51.

The following are the steps for the kernel linkage mode of application development:

1. Application source C files should include the file xmk . h as the first file among others. For
example, defining the includexmk.h flag makes available certain definitions and
declarations from the GNU include files that are required by Xilkernel and applications.

1. Some of these features might not be fully supported in a given release of Xilkernel.

UG646 June 4, 2014

www.xilinx.com | Send Feedback | 2

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=2

& XILINX

ALL PROGRAMMABLE.

Building Xilkernel Applications

2. Your application software project links with the library 1ibxi1 . a. This library contains the
actual kernel functions generated. Your application links with this and forms the final kernel
and application image.

3. Xilkernel is responsible for all first level interrupt and exception handling on both the
MicroBlaze and PowerPC processors. Therefore, you should not directly attempt to use any
of the methods of handling interrupts documented for standalone programs. Instead refer
to the section on interrupt handling for how to handle user level interrupts and exceptions.

4. You can control the memory map of the kernel by using the linker script feature of the final
software application project that links with the kernel. Automatic linker script generation
helps you here.

5. Your application must provide amain () which is the starting point of execution for your
kernel image. Inside your main (), you can do any initialization and setup that you need
to do. The kernel remains unstarted and dormant. At the point where your application setup
is complete and you want the kernel to start, you must invoke xilkernel_main() that
starts off the kernel, enables interrupts, and transfers control to your application processes,
as configured. Some system-level features may need to be enabled before invoking
xilkernel_main(). These are typically machine-state features such as cache
enablement, hardware exception enablement which must be “always ON” even when
context switching from application to application. Make sure that you setup such system
state before invoking xilkernel main(). Also, you must not arbitrarily modify such
system-state in your application threads. If a context switch occurs when the system state
is modified, it could lead to subsequent threads executing without that state being enabled;
consequently, you must lock out context switches and interrupts before you modify such a
state.

Note: Your linker script must be aware of the requirements for the kernel.

Pure Separate Executable Mode Scenario Kernel Bundled Executable Mode Scenario
User Space User Space
Proc Proco Procg Procy Procs Procg
i A A | y A
|
System Call Handler Procy [—s! ~ System Call Handler
———————————————————— l= mr————————7]
P |18 8
xilkernel.elf foce E&! libxikernel.a
Procy —»I(%§|
| |

Kernel Image
9 Kernel Image

X10128

Figure 2: Xilkernel Development Flow

UG646 June 4, 2014 www.xilinx.com [send Feedback J 3

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=3

Xilkernel Process Model

& XILINX

ALL PROGRAMMABLE.

Xilkernel
Process Model

Xilkernel
Scheduling
Model

The units of execution within Xilkernel are called process contexts. Scheduling is done at the
process context level. There is no concept of thread groups combining to form, what is
conventionally called a process. Instead, all the threads are peers and compete equally for
resources. The POSIX threads API is the primary user-visible interface to these process
contexts. There are a few other useful additional interfaces provided, that are not a part of
POSIX. The interfaces allow creating, destroying, and manipulating created application
threads. The actual interfaces are described in detail in “Xilkernel API,” page 6. Threads are
manipulated with thread identifiers. The underlying process context is identified with a process
identifier pid_t.

Xilkernel supports either priority-driven, preemptive scheduling with time slicing (SCHED_PRT0)
or simple round-robin scheduling (SCHED_RR). This is a global scheduling policy and cannot be
changed on a per-thread basis. This must be configured statically at kernel generation time.

In SCHED_RR, there is a single ready queue and each process context executes for a
configured time slice before yielding execution to the next process context in the queue.

In SCHED_PRIO there are as many ready queues as there are priority levels. Priority 0 is the
highest priority in the system and higher values mean lower priority.

As shown in the following figure, the process that is at the head of the highest priority ready
queue is always scheduled to execute next. Within the same priority level, scheduling is round-
robin and time-sliced. If a ready queue level is empty, it is skipped and the next ready queue
level examined for schedulable processes. Blocked processes are off their ready queues and in
their appropriate wait queues. The number of priority levels can be configured for

SCHED_ PRIO.

For both the scheduling models, the length of the ready queue can also be configured. If there
are wait queues inside the kernel (in semaphores, message queues), they are configured as
priority queues if scheduling mode is SCHED_PRIO. Otherwise, they are configured as simple
first-in-first-out (FIFO) queues.

Active

S " ¥
N I e vA R vA v
B C D

(Blocked)

Priority
((
)
((
)

W -
“W|_—F-tar QA

G
15 (Blocked)

X10132

Figure 3: Priority-Driven Scheduling

UG646 June 4, 2014

www.xilinx.com | Send Feedback | ‘

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=4

v
Xilkernel Scheduling Model iA XI LI NX

ALL PROGRAMMABLE..

Each process context is in any of the following six states:

e PROC_NEW - A newly created process.

e PROC_READY - A process ready to execute.

e PROC_RUN - A process that is running.

e PROC_WAIT - A process that is blocked on a resource.
e PROC_DELAY - A process that is waiting for a timeout.

e PROC_TIMED WAIT - A process thatis blocked on a resource and has an associated
timeout.

When a process terminates, it enters a dead state called pProc_DpeaD. The process context state
diagram is shown in the following figure.

ACTIVATED

SCHEDULED OUT . PROC_RUN l: TIMEOUT

SCHEDULED IN

BLOCKED

UNBLOCKED/TIMEOUT

BLOCKED
UNBLOCKED
BLOCKED

—

PROC_TIMED
_WAIT

PROC_READY PROC_WAIT

EXIT

PROC_DELAY

killed
killed

»(PROC_DEAD |+

/ X10227

Figure 4: Process Context States

UG646 June 4, 2014

www.xilinx.com | Send Feedback | >

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=5

POSIX Interface

& XILINX

ALL PROGRAMMABLE.

POSIX Interface

Xilkernel
Functions

Xilkernel API

Xilkernel provides a POSIX interface to the kernel. Not all the concepts and interfaces defined
by POSIX are available. A subset covering the most useful interfaces and concepts are
implemented. Xilkernel programs can run almost equivalently on your desktop OS, like Linux or
SunOS. This makes for easy application development, portability and legacy software support.
The programming model appeals to those who have worked on equivalent POSIX interfaces on
traditional operating systems. For those interfaces that have been provided, POSIX is
rigorously adhered to in almost all cases. For cases that do differ, the differences are clearly
specified. Refer to “Xilkernel API”, for the actual interfaces and their descriptions.

Click an item below view function summaries and descriptions for:

e Thread Management

e Semaphores

e Message Queues

e Shared Memory

e Mutex Locks

e Dynamic Buffer Memory Management
e Software Timers

e Memory Protection Overview

Thread Management

Xilkernel supports the basic POSIX threads API. Thread creation and manipulation is done in
standard POSIX notation. Threads are identified by a unique thread identifier. The thread
identifier is of type pthread_t. This thread identifier uniquely identifies a thread for an
operation. Threads created in the system have a kernel wrapper to which they return control to
when they terminate. So, a specific exit function is not required at the end of the thread’s code.

Thread stack is allocated automatically on behalf of the thread from a pool of Block Starting
Symbol (BSS) memory that is statically allocated based upon the maximum number of system
threads. You can also assign a custom piece of memory as the stack for each thread to create
dynamically.

The entire thread module is optional and can be configured in or out as a part of the software
specification. See “Configuring Thread Management,” page 45 for more details on customizing
this module.

UG646 June 4, 2014

www.xilinx.com | Send Feedback | °

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=6

& XILINX

ALL PROGRAMMABLE..

Xilkernel API

Thread Management Function Summary

The following list is a linked summary of the thread management functions in Xilkernel. Click on
a function to view a detailed description.

int pthread_create(pthread_t thread, pthread_attr_t* att, void*(*start_func)(void*),void*
param)

void pthread_exit(void *value_ptr)

int pthread_join(pthread_t thread, void **value_ptr)

int pthread_detach(pthread_t target)

int pthread_equal(pthread_t t1, pthread_t t2)

int pthread_getschedparam(pthread_t thread, int *policy, struct sched_param *param)
int pthread_setschedparam(pthread_t thread, int policy, const struct sched_param *param)
int pthread_attr_init(pthread_attr_t* attr)

int pthread_attr_destroy (pthread_attr_t* attr)

int pthread_attr_setdetachstate(pthread_attr_t* attr, int dstate)

int pthread_attr_getdetachstate(pthread_attr_t* attr, int *dstate)

int pthread_attr_setschedparam(pthread_attr_t* attr, struct sched_param *schedpar)
int pthread_attr_getschedparam(pthread_attr_t* attr, struct sched_param* schedpar)
int pthread_attr_setstack(const pthread_attr_t *attr, void *stackaddr, size_t stacksize)
int pthread_attr_getstack(const pthread_attr_t *attr, void **stackaddr, size_t *stacksize)
pid_t get_currentPID(void)

int kill(pid_tpid)

int process_status(pid_t pid, p_stat *ps)

int xmk_add_static_thread(void* (*start_routine)(void *), int sched_priority)

int yield(void)

UG646 June 4, 2014 www.xilinx.com [send Feedback J 7

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=7

& XILINX

ALL PROGRAMMABLE.

Xilkernel API

Thread Management Function Descriptions

The following descriptions are the thread management interface identifiers.

int pthread_ create(pthread_t thread, pthread_attr_t* att,
void* (*start_func) (void*) ,void* param)
Parameters thread is the location at which to store the created thread’s identifier.
attr is the pointer to thread creation attributes structure.

start_ func is the start address of the function from which the thread needs to
execute.

param is the pointer argument to the thread function.

Returns 0 and thread identifier of the created thread in *thread, on success.
-1if thread refers to an invalid location.
EINVAL if attr refers to invalid attributes.
EAGAIN if resources unavailable to create the thread.

Description pthread_create() creates a new thread, with attributes specified by attr,
within a process. If attr is NULL, the default attributes are used. If the attributes
specified by at tr are modified later, the thread’s attributes are not affected. Upon
successful completion, pthread_create() stores the ID of the created thread in
the location referenced by thread. The thread is created executing start_routine
with arg as its sole argument. If the start_routine returns, the effect is as if
there was an implicit call to pthread_exit () using the return value of
start_routine as the exit status. This is explained in the pthread_exit
description.

You can control various attributes of a thread during its creation. See the
pthread_attr routines for a description of the kinds of thread creation attributes
that you can control.

Includes xmk.h, pthread.h

void pthread_exit (void *value_ ptr)

Parameters value_ptris a pointer to the return value of the thread.
Returns None.
Description The pthread_exit () function terminates the calling thread and makes the

value value ptr available to any successful join with the terminating thread.
Thread termination releases process context resources including, but not limited
to, memory and attributes. An implicit call to pthread_exit () is made when a
thread returns from the creating start routine. The return value of the function
serves as the thread’s exit status. Therefore no explicit pthread_exit () is
required at the end of a thread.

Includes xmk.h, pthread.h

UGH646 June 4, 2014 www.xilinx.com | Send Feedback |

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=8

Xilkernel API

& XILINX

ALL PROGRAMMABLE.

int pthread_join (pthread_t thread, void **value_ptr)

Parameters

Returns

Description

Includes

value_ptris a pointer to the return value of the thread.

0 on success.
ESRCH if the target thread is not in a joinable state or is an invalid thread.
EINVAL if the target thread already has someone waiting to join with it.

Thepthread_join() function suspends execution of the calling thread until
the pthread_t (target thread) terminates, unless the target thread has already
terminated.Upon return from a successful pthread_join() call with a non-
NULL value_ptr argument, the value passed to the pthread_exit ()
function by the terminating thread is made available in the location referenced by
value_ptr. When a pthread_join() returns successfully, the target
thread has been terminated. The results of multiple simultaneous calls to
pthread_join() specifying the same target thread are that only one thread
succeeds and the others fail with EINVAL.

Note: No deadlock detection is provided.

xmk.h, pthread.h

pthread_t pthread_self (void)

Parameters

Returns

Description

Includes

None.

On success, returns thread identifier of current thread.
Error behavior not defined.

The pthread_self () function returns the thread ID of the calling thread.

xmk.h, pthread.h

int pthread_detach (pthread_t target)

Parameters

Returns

Description

Includes

target is the target thread to detach.

0 on success.
ESRCH if target thread cannot be found.

The pthread_detach() function indicates to the implementation that
storage for the thread can be reclaimed when that thread terminates. If thread
has not terminated, pthread_detach () does not cause it to terminate. The
effect of multiple pthread_detach() calls on the same target thread is
unspecified.

xmk.h, pthread.h

int pthread_equal (pthread_t tl1, pthread_t t2)

Parameters

Returns

Description

Includes

t1 and t2 are the two thread identifiers to compare.

1if £t1 and t2 refer to threads that are equal.
0 otherwise.

The pthread_equal () function returns a non-zero value if t1 and t2 are
equal; otherwise, zero is returned. If either t 1 or £2 are not valid thread IDs, zero
is returned.

xmk.h, pthread.h

UG646 June 4, 2014

www.xilinx.com | Send Feedback |

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=9

Xilkernel API

& XILINX

ALL PROGRAMMABLE.

int pthread_getschedparam(pthread_t thread, int *policy,
struct sched_param *param)

Parameters

Returns

Description

Returns

thread is the identifier of the thread on which to perform the operation.
policy is a pointer to the location where the global scheduling policy is stored.
param is a pointer to the scheduling parameters structure.

0 on success.

ESRCH if the value specified by thread does not refer to an existing thread.
EINVAL if param or policy refer to invalid memory.

The pthread_getschedparam() function gets the scheduling policy and

parameters of an individual thread. For SCHED_RR there are no scheduling
parameters; consequently, this routine is not defined for SCHED_RR.

For SCHED_PRTIO, the only required member of the sched_param structure is
the priority sched_priority. The returned priority value is the value specified
by the most recent pthread_getschedparam() or
pthread_create() call affecting the target thread.

It does not reflect any temporary adjustments to its priority as a result of any
priority inheritance or ceiling functions.

This routine is defined only if scheduling type is SCHED_PRIO.
xmk.h, pthread.h

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param)

Parameters

Returns

Description

Includes

thread is the identifier of the thread on which to perform the operation.
policyisignored.
paramis a pointer to the scheduling parameters structure.

0 on success.
ESRCH if thread does not refer to a valid thread.
EINVAL if the scheduling parameters are invalid.

The pthread_setschedparam() function sets the scheduling policy and
parameters of individual threads to be retrieved. For SCHED_RR there are no
scheduling parameters; consequently this routine is not defined for SCHED_RR.
For SCHED_PRIO, the only required member of the sched_param structure is
the priority sched_priority. The priority value must be a valid value as
configured in the scheduling parameters of the kernel. The policy parameter is
ignored.

Note: This routine is defined only if scheduling type is SCHED_PRIO.
xmk.h, pthread.h

UG646 June 4, 2014

www.xilinx.com | Send Feedback | 10

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=10

& XILINX

ALL PROGRAMMABLE.

Xilkernel API

int pthread_attr init (pthread_attr_t* attr)

Parameters attris a pointer to the attribute structure to be initialized.
Returns 0 on success.
1 on failure.

EINVAL on invalid attr parameter.

Description The pthread_attr_init () function initializes a thread attributes object
attr with the default value for all of the individual attributes used by a given
implementation. The function contents are defined in the sys/types.h
header.

Note: This function does not make a call to the kernel.

Includes xmk.h, pthread.h

int pthread_attr_ destroy (pthread_attr_t* attr)
Parameters attr is a pointer to the thread attributes that must be destroyed.

Returns 0 on success.
EINVAL On errors.

Description The pthread_attr_destroy () function destroys a thread attributes
object and sets attr to an implementation-defined invalid value.

Re-initialize a destroyed attzr attributes object with
pthread_attr_init ();the results of otherwise referencing the object
after it is destroyed are undefined.

Note: This function does not make a call to the kernel.

Includes xmk.h, pthread.h

int pthread_attr setdetachstate (pthread_attr_t* attr, int

dstate)

Parameters attr is the attribute structure on which the operation is to be performed.
dstate is the detachstate required.

Returns 0 on success.

EINVAL on invalid parameters.

Description The detachstate attribute controls whether the thread is created in a detached
state. If the thread is created detached, then when the thread exits, the thread’s
resources are detached without requiring a pthread_join() oracall
pthread_detach().The application can set detachstate to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

Note: This does not make a call into the kernel.

Includes xmk.h, pthread.h

UG646 June 4, 2014 www.xilinx.com [send Feedback | 1

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=11

& XILINX

Xilkernel API
ALL PROGRAMMABLE.

int pthread_attr_getdetachstate (pthread_attr_t* attr, int
*dstate)
Parameters attr is the attribute structure on which the operation is to be performed.
dstate is the location in which to store the detachstate.

Returns 0 on success.
EINVAL on invalid parameters.

Description The implementation stores either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE in dstate, if the value of detachstate was valid
inattr.

Note: This does not make a call into the kernel.

Includes xmk.h, pthread.h

int pthread_ attr_ setschedparam(pthread_attr_t* attr,
struct sched_param *schedpar)

Parameters attr is the attribute structure on which the operation is to be performed.
schedpar is the location of the structure that contains the scheduling
parameters.

Returns 0 on success.

EINVAL on invalid parameters.
ENOTSUP for invalid scheduling parameters.

Description The pthread_attr_setschedparam() function sets the scheduling
parameter attributes in the attr argument.

The contents of the sched_param structure are defined in the sched.h
header.

Note: This does not make a call into the kernel.

Includes xmk.h, pthread.h

int pthread_attr getschedparam(pthread_attr_t* attr,
struct sched_param* schedpar)
Parameters attr is the attribute structure on which the operation is to be performed.
schedpar is the location at which to store the sched_param structure.

Returns 0 on success.
EINVAL on invalid parameters.

Description The pthread_attr_getschedparam() gets the scheduling parameter
attributes in the at tr argument. The contents of the param structure are defined
in the sched.h header.

Note: This does not make a call to the kernel.

Includes xmk.h, pthread.h

UG646 June 4, 2014 www.xilinx.com [send Feedback | 12

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=12

Xilkernel API

& XILINX

ALL PROGRAMMABLE.

int pthread_attr_ setstack(const pthread_attr_t *attr, void
*stackaddr, size_ t stacksize)

Parameters

Returns

Description

Includes

attr is the attributes structure on which to perform the operation.
stackaddr is base address of the stack memory.
stacksize is the size of the memory block in bytes.

0 on success.

EINVAL if the attr param is invalid or if stackaddr is not aligned
appropriately.

The pthread_attr_setstack() function shall set the thread creation
stack attributes stackaddr and stacksize in the attr object.

The stack attributes specify the area of storage to be used for the created
thread's stack. The base (lowest addressable byte) of the storage is stackaddr,
and the size of the storage is stacksize bytes.

The stackaddr must be aligned appropriately according to the processor EABI,
to be used as a stack; for example, pthread_attr_setstack() might fail
with EINVAL if (stackaddr and 0x3) is not 0.

Note: For the MicroBlaze processor, the alignment required is 4 bytes.

xmk.h, pthread.h

int pthread_attr_getstack (const pthread_attr_t *attr, void
**stackaddr, size_t *stacksize)

Parameters

Returns

Description

Includes

attr is the attributes structure on which to perform the operation.
stackaddr is the location at which to store the base address of the stack
memory.

stacksize is the location at which to store the size of the memory block in
bytes.

0 on success.
EINVAL oninvalid attr.

The pthread_attr_getstack() function retrieves the thread creation
attributes related to stack of the specified attributes structure and stores it in
stackaddr and stacksize.

xmk.h, pthread.h

pid_t get_currentPID(void)

Parameters
Returns

Description

Includes

None.
The process identifier associated with the current thread or elf process.

Gets the underlying process identifier of the process context that is executing
currently. The process identifier is needed to perform certain operations like
kill () on both processes and threads.

xmk.h, sys/process.h

UG646 June 4, 2014

www.xilinx.com | Send Feedback | 13

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=13

Xilkernel API

& XILINX

ALL PROGRAMMABLE.

int kill (pid_tpid)

Parameters

Returns

Description

Includes

pid is the PID of the process.

0 on success.
-1 on failure.

Removes the process context specified by pid from the system. If pid refers to
the current executing process context, then it is equivalent to the current process
context terminating. A kill can be invoked on processes that are suspended on
wait queues or on a timeout. No indication is given to other processes that are
dependant on this process context.

Note: This function is defined only if CONFIG_KILL is true. This can be
configured in with the enhanced features category of the kernel.

xmk.h, sys/process.h

int process_status (pid_t pid, p_stat *ps)

Parameters

Returns

Description

Includes

pidis the PID of process.
ps is the buffer where the process status is returned.

Process status in ps on success.

NULL in ps on failure.

Get the status of the process or thread, whose pid is pid. The status is returned
in structure p_stat which has the following fields:

e pidis the process ID.

e stateis the current scheduling state of the process.

The contents of p_stat are defined in the sys/ktypes .h header.

xmk.h, sys/process.h

int xmk add static_ thread(void* (*start_routine) (void *),
int sched _priority)

Parameters

Returns

Description

Includes

start_routine is the thread start routine.

sched_priorityis the priority of the thread when the kernel is configured for
priority scheduling.

0 on success and -1 on failure.

This function provides the ability to add a thread to the list of startup or static
threads that run on kernel start, via C code. This function must be used prior to
xilkernel_main() being invoked.

xmk.h, sys/init.h

UG646 June 4, 2014

www.xilinx.com | Send Feedback | b

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=14

Xilkernel API

& XILINX

ALL PROGRAMMABLE.

int yield(void)

Parameters None.
Returns None.
Description Yields the processor to the next process context that is ready to execute. The

current process is put back in the appropriate ready queue.
Note: This function is optional and included only if CONFIG_YIELD is defined.
This can be configured in with the enhanced features category of the kernel.

Includes xmk.h, sys/process.h

Semaphores

Xilkernel supports kernel-allocated POSIX semaphores that can be used for synchronization.
POSIX semaphores are counting semaphores that also count below zero (a negative value
indicates the number of processes blocked on the semaphore). Xilkernel also supports a few
interfaces for working with named semaphores. The number of semaphores allocated in the
kernel and the length of semaphore wait queues can be configured during system initialization.
Refer to “Configuring Semaphores,” page 46 for more details. The semaphore module is
optional and can be configured in or out during system initialization. The message queue
module, described later on in this document, uses semaphores. This module must be included
if you are to use message queues.

Semaphore Function Summary

The following list provides a linked summary of the semaphore functions in Xilkernel. You can
click on a function to go to the description.

int sem_init(sem_t *sem, int pshared, unsigned value)
int sem_destroy(sem_t* sem)

int sem_getvalue(sem_t* sem, int* value)

int sem_wait(sem_t* sem)

int sem_trywait(sem_t* sem)

int sem_timedwait(sem_t* sem, unsigned_ms)
sem_t* sem_open(const char® name, int oflag,...)

int sem_close(sem_t* sem)

int sem_post(sem_t* sem)

int sem_unlink(const char® name)

UG646 June 4, 2014

www.xilinx.com | Send Feedback | 1

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=15

& XILINX

ALL PROGRAMMABLE.

Xilkernel API

Semaphore Function Descriptions

The following are descriptions of the Xilkernel semaphore functions:

int sem_init (sem_t *sem, int pshared, unsigned value)
Parameters sem is the location at which to store the created semaphore’s identifier.
pshared indicates sharing status of the semaphore, between processes.
value is the initial count of the semaphore.
Note: pshared is unused currently.

Returns 0 on success.

-1 on failure and sets errno appropriately. The errno is setto ENOSPC if no
more semaphore resources are available in the system.

Description The sem_init () function initializes the unnamed semaphore referred to by
sem. The value of the initialized semaphore is value. Following a successful
callto sem_init (), the semaphore can be used in subsequent calls to
sem_wait(), sem_trywait(), sem_post(), and
sem_destroy (). This semaphore remains usable until the semaphore is
destroyed. Only sem itself can be used for performing synchronization. The
result of referring to copies of sem in calls to sem_wait (),

sem_trywait(), sem_post(), and sem_destroy() is undefined.
Attempting to initialize an already initialized semaphore results in undefined
behavior.

Includes xmk.h, semaphore.h

int sem destroy(sem_ t* sem)
Parameters sem is the semaphore to be destroyed.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to:
e EINVAL if the semaphore identifier does not refer to a valid semaphore.
e EBUSY if the semaphore is currently locked, and processes are blocked on it.

Description The sem_destroy () function destroys the unnamed semaphore indicated
by sem. Only a semaphore that was created using sem_init() can be destroyed
using sem_destroy (); the effect of calling sem_destroy () with a named

semaphore is undefined. The effect of subsequent use of the semaphore semis
undefined until sem is re-initialized by another call to sem_init().

Includes xmk.h, semaphore.h

UG646 June 4, 2014 www.xilinx.com [send Feedback | 16

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=16

Xilkernel API

& XILINX

ALL PROGRAMMABLE.

int sem getvalue (sem t* sem, int* value)

Parameters

Returns

Description

Includes

sem is the semaphore identifier.
value is the location where the semaphore value is stored.

0 on success and value appropriately filled in.

-1 on failure and sets errno appropriately.The errno can be setto EINVAL if
the semaphore identifier refers to an invalid semaphore.

The sem_getvalue () function updates the location referenced by the sval
argument to have the value of the semaphore referenced by sem without
affecting the state of the semaphore. The updated value represents an actual
semaphore value that occurred at some unspecified time during the call, but it
need not be the actual value of the semaphore when it is returned to the calling
process.

If sem is locked, then the object to which sval points is set to a negative number
whose absolute value represents the number of processes waiting for the
semaphore at some unspecified time during the call.

xmk.h, semaphore.h

int sem wait (sem_t* sem)

Parameters

Returns

Description

Includes

sem is the semaphore identifier.

0 on success and the semaphore in a locked state.

-1 on failure and errno is set appropriately. The errno can be set to:
e EINVAL if the semaphore identifier is invalid.

e EIDRM if the semaphore was forcibly removed.

The sem_wait () function locks the semaphore referenced by sem by
performing a semaphore lock operation on that semaphore. If the semaphore
value is currently zero, then the calling thread does not return from the call to
sem_wait () untilit either locks the semaphore or the semaphore is forcibly
destroyed.

Upon successful return, the state of the semaphore is locked and remains locked
until the sem_post () function is executed and returns successfully.

Note: When a process is unblocked within the sem_wai t call, where it blocked
due to unavailability of the semaphore, the semaphore might have been destroyed
forcibly. In such a case, -1 is returned. Semaphores might be forcibly destroyed due
to destroying message queues that use semaphores internally. No deadlock
detection is provided.

xmk.h, semaphore.h

int sem trywait (sem_t* sem)

Parameters

Returns

Description

Includes

sem is the semaphore identifier.

0 on success.

-1 on failure and errno is set appropriately. The errno can be set to:

e EINVAL if the semaphore identifier is invalid.

e EAGAIN if the semaphore could not be locked immediately.

The sem_trywait () function locks the semaphore referenced by semonly if

the semaphore is currently not locked; that is, if the semaphore value is currently
positive. Otherwise, it does not lock the semaphore and returns -1.

xmk.h, semaphore.h

UG646 June 4, 2014

www.xilinx.com | Send Feedback | 7

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=17

Xilkernel API i: XI LI NX

ALL PROGRAMMABLE.

int sem_ timedwait (sem_t* sem, unsigned ms)
Parameters sem is the semaphore identifier.

Returns 0 on success and the semaphore in a locked state.
-1 on failure and errno is set appropriately. The errno can be set to:
e EINVAL - If the semaphore identifier does not refer to a valid semaphore.

e ETIMEDOUT - The semaphore could not be locked before the specified
timeout expired.

e EIDRM - If the semaphore was forcibly removed from the system.

Description The sem_timedwait () function locks the semaphore referenced by sem by
performing a semaphore lock operation on that semaphore. If the semaphore
value is currently zero, then the calling thread does not return from the call to
sem_timedwait () until one of the following conditions occurs:

o [t locks the semaphore.
e The semaphore is forcibly destroyed.
e The timeout specified has elapsed.

Upon successful return, the state of the semaphore is locked and remains locked
until the sem_post () function is executed and returns successfully.

Note: When a process is unblocked within the sem_wai t call, where it blocked
due to unavailability of the semaphore, the semaphore might have been destroyed
forcibly. In such a case, -1 is returned. Semaphores maybe forcibly destroyed due to
destroying message queues which internally use semaphores. No deadlock
detection is provided.

Note: This routine depends on software timers support being present in the kernel
and is defined only if CONFIG_TIME is true.

Note: This routine is slightly different from the POSIX equivalent. The POSIX
version specifies the timeout as absolute wall-clock time. Because there is no
concept of absolute time in Xilkernel, we use relative time specified in milliseconds.

Includes xmk.h, semaphore.h

UG646 June 4, 2014 www.xilinx.com [send Feedback J 18

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=18

Xilkernel API

& XILINX

ALL PROGRAMMABLE.

sem_t* sem_open(const char* name, int oflag,...)

Parameters

Returns

Description

Includes

name points to a string naming a semaphore object.
oflag is the flag that controls the semaphore creation.

A pointer to the created/existing semaphore identifier.

SEM_FAILED on failures and when errno is set appropriately. The errno can

be set to:

e ENOSPC - If the system is out of resources to create a new semaphore (or
mapping).

e EEXIST - if 0_EXCL has been requested and the named semaphore already
exists.

e EINVAL - if the parameters are invalid.

The sem_open() function establishes a connection between a named

semaphore and a process. Following a call to sem_open () with semaphore
name, the process can reference the semaphore associated with name using the
address returned from the call. This semaphore can be used in subsequent calls

to sem_wait(), sem_trywait(), sem_post(),and sem_close().
The semaphore remains usable by this process until the semaphore is closed by
asuccessfulcallto sem_close().The oflagargumentcontrols whetherthe
semaphore is created or merely accessed by the call to sem_open (). The bits
that can be set in oflag are:

¢ O_CREAT

Used to create a semaphore if it does not already exist. If O_CREAT is set
and the semaphore already exists, then O_CREAT has no effect, except as
noted under O_EXCL. Otherwise, sem_open() creates a named
semaphore. O_CREAT requires a third and a fourth argument: mode, which
is of type mode_t, and value, which is of type unsigned.

¢ O_EXCL
If O_EXCL and O_CREAT are set, sem_open () fails if the semaphore
name exists. The check for the existence of the semaphore and the
creation of the semaphore if it does not exist are atomic with respect to
other processes executing sem_open () with O_EXCL and O_CREAT
set. If O_EXCL is set and O_CREAT is not set, the effect is undefined.

Note: The mode argument is unused currently. This interface is optional and is
defined only if CONFIG_NAMED_SEMA is set to TRUE.

Note: If flags other than O_CREAT and O_EXCL are specified in the ofIlag
parameter, an error is signalled.

The semaphore is created with an initial value of value.

After the name semaphore has been created by sem_open () with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open () with the same value of name.

If a process makes multiple successful calls to sem_open () with the same
value for name, the same semaphore address is returned for each such
successful call, assuming that there have been no calls to sem_unlink() for
this semaphore.

xmk.h, semaphore.h

int sem close(sem_t* sem)

Parameters

Returns

sem is the semaphore identifier.

0 on success.
on failure and sets errno appropriately. The errno can be set to:
e EINVAL - If the semaphore identifier is invalid.

e ENOTSUP - If the semaphore is currently locked and/or processes are blocked
on the semaphore.

—_

UG646 June 4, 2014

www.xilinx.com | Send Feedback | 19

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=19

Xilkernel API

& XILINX

ALL PROGRAMMABLE.

Description

Includes

The sem_close () function indicates that the calling process is finished using
the named semaphore sem. The sem_close() function deallocates (that is,
make available for reuse by a subsequent sem_open () by this process) any
system resources allocated by the system for use by this process for this
semaphore. The effect of subsequent use of the semaphore indicated by sem by
this process is undefined. The name mapping for this named semaphore is also
destroyed. The call fails if the semaphore is currently locked.

Note: This interface is optional and is defined only if CONFIG_NAMED_SEMA is
true.

xmk.h, semaphore.h

int sem post (sem_t* sem)

Parameters

Returns

Description

Includes

sem is the semaphore identifier.

0 on success.

-1 on failure and sets errno appropriately. The errno can be set to EINVAL if
the semaphore identifier is invalid.

The sem_post () function performs an unlock operation on the semaphore
referenced by the sem identifier.

If the semaphore value resulting from this operation is positive, then no threads
were blocked waiting for the semaphore to become unlocked and the semaphore
value is incremented.

If the value of the semaphore resulting from this operation is zero or negative,
then one of the threads blocked waiting for the semaphore is allowed to return
successfully from its call to sem_wait (). This is either the first thread on the
queue, if scheduling mode is SCHED_RR or, it is the highest priority thread in the
queue, if scheduling mode is SCHED_PRIO.

Note: If an unlink operation was requested on the semaphore, the post operation
performs an unlink when no more processes are waiting on the semaphore.

xmk.h, semaphore.h

UG646 June 4, 2014

www.xilinx.com | Send Feedback | 20

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG646&Title=Xilkernel%20%28v6.1%29&releaseVersion=6.1&docPage=20

Xilkernel API

& XILINX

ALL PROGRAMMABLE.

int sem unlink (const char* name)
Parameters name is the name that refers to the semaphore.

Returns 0 on success.

-1 on failure and errno is set appropriately. errno can be set to ENOENT - If an
entry for name cannot be located.

Description The sem_unlink() function removes the semaphore named by the string
name. If the semaphore named by name has processes blocked on it, then
sem_unlink() has noimmediate effect on the state of the semaphore. The
destruction of the semaphore is postponed until all blocked and locking
processes relinquish the semaphore. Calls to sem_open () to recreate or
reconnect to the semaphore refer to a new semaphore after sem_unlink()
is called. The sem_unlink () call does not block until all references relinquish
the semaphore; it returns immediately.

Note: If an unlink operation had been requested on the semaphore, the unlink is
performed on a post operation that sees that no more processes waiting on the
semaphore. This interface is optional and is defined only if CONFIG_NAMED_SEMA
is true.

Includes xmk.h, semaphore.h

Message Queues

Xilkernel supports kernel allocated X/Open System Interface (XSI) message queues. XSl is a
set of optional interfaces under POSIX. Message queues can be used as an IPC mechanism.
The message queues can take in arbitrary sized messages. However, buffer memory allocation
must be configured appropriately for the memory blocks required for the messages, as a part of
system buffer memory allocation initialization. The number of message queue structures
allocated in the kernel and the length of the message queues can be also be configured during
system initialization. The message queue module is optional and can be configured in/out.
Refer to “Configuring Message Queues,” page 46 for more details. This module depends on
the semaphore module and the dynamic buffer memory allocation module being present in the
system. There is also a larger, but more powerful message queue functionality that can be
configured if required. When the enhanced message queue interface is chosen, then malloc
and free are used to allocate and free space for the messages. Therefore, arbitrary sized
messages can be passed around without having to make sure that buffer memory allocation
APlIs can handle requests for arbitrary size.

Note: When using the enhanced message queue feature, you must choose your global heap size
carefully, such that requests for heap memory from the message queue interfaces are satisfied without
errors. You must also be aware of thread-safety issues when usingmalloc(), free () inyourown
code. You must disable interrupts and context switches before invoking the dynamic memory allocation
routines. You must follow the same rules when using any other library routines that may internally use
dynamic memory allocation.

Message Queue Function Summary

The following list provides a linked summary of the message queues in Xilkernel. You can click
on a function to go to the description.

int msgget(key_t key, int msgflg)

int msgctl(int msqid, int cmd, struct msqid_ds* buf)

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)

ssize_t msgrev(int msqid, void *msgp, size_t nbytes, long msgtyp, int msgflg)

UG646 June 4, 20