/****************************************************************************** * * Copyright (C) 2010 - 2014 Xilinx, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * Use of the Software is limited solely to applications: * (a) running on a Xilinx device, or * (b) that interact with a Xilinx device through a bus or interconnect. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Except as contained in this notice, the name of the Xilinx shall not be used * in advertising or otherwise to promote the sale, use or other dealings in * this Software without prior written authorization from Xilinx. * ******************************************************************************/ /*****************************************************************************/ /** * * @file xcanps.c * * Functions in this file are the minimum required functions for the XCanPs * driver. See xcanps.h for a detailed description of the driver. * * @note None. * * *
* MODIFICATION HISTORY: * * Ver Who Date Changes * ----- ----- -------- ----------------------------------------------- * 1.00a xd/sv 01/12/10 First release * 1.01a bss 12/27/11 Added the APIs XCanPs_SetTxIntrWatermark and * XCanPs_GetTxIntrWatermark. ** ******************************************************************************/ /***************************** Include Files *********************************/ #include "xcanps.h" /************************** Constant Definitions *****************************/ /**************************** Type Definitions *******************************/ /***************** Macros (Inline Functions) Definitions *********************/ /************************** Variable Definitions *****************************/ /************************** Function Prototypes ******************************/ static void StubHandler(void); /*****************************************************************************/ /* * * This function initializes a XCanPs instance/driver. * * The initialization entails: * - Initialize all members of the XCanPs structure. * - Reset the CAN device. The CAN device will enter Configuration Mode * immediately after the reset is finished. * * @param InstancePtr is a pointer to the XCanPs instance. * @param ConfigPtr points to the XCanPs device configuration structure. * @param EffectiveAddr is the device base address in the virtual memory * address space. If the address translation is not used then the * physical address is passed. * Unexpected errors may occur if the address mapping is changed * after this function is invoked. * * @return XST_SUCCESS always. * * @note None. * ******************************************************************************/ s32 XCanPs_CfgInitialize(XCanPs *InstancePtr, XCanPs_Config *ConfigPtr, u32 EffectiveAddr) { s32 Status; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(ConfigPtr != NULL); /* * Set some default values for instance data, don't indicate the device * is ready to use until everything has been initialized successfully. */ InstancePtr->IsReady = 0U; InstancePtr->CanConfig.BaseAddr = EffectiveAddr; InstancePtr->CanConfig.DeviceId = ConfigPtr->DeviceId; /* * Set all handlers to stub values, let user configure this data later. */ InstancePtr->SendHandler = (XCanPs_SendRecvHandler) StubHandler; InstancePtr->RecvHandler = (XCanPs_SendRecvHandler) StubHandler; InstancePtr->ErrorHandler = (XCanPs_ErrorHandler) StubHandler; InstancePtr->EventHandler = (XCanPs_EventHandler) StubHandler; /* * Indicate the component is now ready to use. */ InstancePtr->IsReady = XIL_COMPONENT_IS_READY; /* * Reset the device to get it into its initial state. */ XCanPs_Reset(InstancePtr); Status = XST_SUCCESS; return Status; } /*****************************************************************************/ /** * * This function resets the CAN device. Calling this function resets the device * immediately, and any pending transmission or reception is terminated at once. * Both Object Layer and Transfer Layer are reset. This function does not reset * the Physical Layer. All registers are reset to the default values, and no * previous status will be restored. TX FIFO, RX FIFO and TX High Priority * Buffer are also reset. * * When a reset is required due to an internal error, the driver notifies the * upper layer software of this need through the error status code or interrupts. * The upper layer software is responsible for calling this Reset function and * then re-configuring the device. * * The CAN device will be in Configuration Mode immediately after this function * returns. * * @param InstancePtr is a pointer to the XCanPs instance. * * @return None. * * @note None. * ******************************************************************************/ void XCanPs_Reset(XCanPs *InstancePtr) { Xil_AssertVoid(InstancePtr != NULL); Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_SRR_OFFSET, \ XCANPS_SRR_SRST_MASK); } /****************************************************************************/ /** * * This routine returns the current operation mode of the CAN device. * * @param InstancePtr is a pointer to the XCanPs instance. * * @return * - XCANPS_MODE_CONFIG if the device is in Configuration Mode. * - XCANPS_MODE_SLEEP if the device is in Sleep Mode. * - XCANPS_MODE_NORMAL if the device is in Normal Mode. * - XCANPS_MODE_LOOPBACK if the device is in Loop Back Mode. * - XCANPS_MODE_SNOOP if the device is in Snoop Mode. * * @note None. * *****************************************************************************/ u8 XCanPs_GetMode(XCanPs *InstancePtr) { u32 StatusReg; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); StatusReg = XCanPs_GetStatus(InstancePtr); if ((StatusReg & XCANPS_SR_CONFIG_MASK) != (u32)0) { return (u8)XCANPS_MODE_CONFIG; } else if ((StatusReg & XCANPS_SR_SLEEP_MASK) != (u32)0) { return (u8)XCANPS_MODE_SLEEP; } else if ((StatusReg & XCANPS_SR_NORMAL_MASK) != (u32)0) { if ((StatusReg & XCANPS_SR_SNOOP_MASK) != (u32)0) { return (u8)XCANPS_MODE_SNOOP; } else { return (u8)XCANPS_MODE_NORMAL; } } else { /* * If this line is reached, the device is in Loop Back Mode. */ return (u8)XCANPS_MODE_LOOPBACK; } } /*****************************************************************************/ /** * * This function allows the CAN device to enter one of the following operation * modes: * - Configuration Mode: Pass in parameter XCANPS_MODE_CONFIG * - Sleep Mode: Pass in parameter XCANPS_MODE_SLEEP * - Normal Mode: Pass in parameter XCANPS_MODE_NORMAL * - Loop Back Mode: Pass in parameter XCANPS_MODE_LOOPBACK. * - Snoop Mode: Pass in parameter XCANPS_MODE_SNOOP. * * Read the xcanps.h file and device specification for detailed description of * each operation mode. * * @param InstancePtr is a pointer to the XCanPs instance. * @param OperationMode specify which operation mode to enter. Valid value * is any of XCANPS_MODE_* defined in xcanps.h. Multiple modes * can not be entered at the same time. * * @return None. * * @note * * This function does NOT ensure CAN device enters the specified operation mode * before it returns the control to the caller. The caller is responsible for * checking current operation mode using XCanPs_GetMode(). * ******************************************************************************/ void XCanPs_EnterMode(XCanPs *InstancePtr, u8 OperationMode) { u8 CurrentMode; Xil_AssertVoid(InstancePtr != NULL); Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); Xil_AssertVoid((OperationMode == (u8)XCANPS_MODE_CONFIG) || (OperationMode == (u8)XCANPS_MODE_SLEEP) || (OperationMode == (u8)XCANPS_MODE_NORMAL) || (OperationMode == (u8)XCANPS_MODE_LOOPBACK) || (OperationMode == (u8)XCANPS_MODE_SNOOP)); CurrentMode = XCanPs_GetMode(InstancePtr); /* * If current mode is Normal Mode and the mode to enter is Sleep Mode, * or if current mode is Sleep Mode and the mode to enter is Normal * Mode, no transition through Configuration Mode is needed. */ if ((CurrentMode == (u8)XCANPS_MODE_NORMAL) && (OperationMode == (u8)XCANPS_MODE_SLEEP)) { /* * Normal Mode ---> Sleep Mode */ XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_MSR_OFFSET, XCANPS_MSR_SLEEP_MASK); return; } else if ((CurrentMode == (u8)XCANPS_MODE_SLEEP) && (OperationMode == (u8)XCANPS_MODE_NORMAL)) { /* * Sleep Mode ---> Normal Mode */ XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_MSR_OFFSET, 0U); return; } else { /*This else was made for misra-c compliance*/ ; } /* * If the mode transition is not any of the two cases above, CAN must * enter Configuration Mode before switching into the target operation * mode. */ XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_SRR_OFFSET, 0U); /* * Check if the device has entered Configuration Mode, if not, return to * the caller. */ if (XCanPs_GetMode(InstancePtr) != (u8)XCANPS_MODE_CONFIG) { return; } switch (OperationMode) { case XCANPS_MODE_CONFIG: /* * As CAN is in Configuration Mode already. * Nothing is needed to be done here. */ break; case XCANPS_MODE_SLEEP: XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_MSR_OFFSET, XCANPS_MSR_SLEEP_MASK); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_SRR_OFFSET, XCANPS_SRR_CEN_MASK); break; case XCANPS_MODE_NORMAL: XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_MSR_OFFSET, 0U); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_SRR_OFFSET, XCANPS_SRR_CEN_MASK); break; case XCANPS_MODE_LOOPBACK: XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_MSR_OFFSET, XCANPS_MSR_LBACK_MASK); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_SRR_OFFSET, XCANPS_SRR_CEN_MASK); break; case XCANPS_MODE_SNOOP: XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_MSR_OFFSET, XCANPS_MSR_SNOOP_MASK); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_SRR_OFFSET, XCANPS_SRR_CEN_MASK); break; default: /*This default was made for misra-c compliance*/ break; } } /*****************************************************************************/ /** * * This function returns Status value from Status Register (SR). Use the * XCANPS_SR_* constants defined in xcanps_hw.h to interpret the returned * value. * * @param InstancePtr is a pointer to the XCanPs instance. * * @return The 32-bit value read from Status Register. * * @note None. * ******************************************************************************/ u32 XCanPs_GetStatus(XCanPs *InstancePtr) { Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); return XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_SR_OFFSET); } /*****************************************************************************/ /** * * This function reads Receive and Transmit error counters. * * @param InstancePtr is a pointer to the XCanPs instance. * @param RxErrorCount is a pointer to data in which the Receive Error * counter value is returned. * @param TxErrorCount is a pointer to data in which the Transmit Error * counter value is returned. * * @return None. * * @note None. * ******************************************************************************/ void XCanPs_GetBusErrorCounter(XCanPs *InstancePtr, u8 *RxErrorCount, u8 *TxErrorCount) { u32 ErrorCount; Xil_AssertVoid(InstancePtr != NULL); Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); Xil_AssertVoid(RxErrorCount != NULL); Xil_AssertVoid(TxErrorCount != NULL); /* * Read Error Counter Register and parse it. */ ErrorCount = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_ECR_OFFSET); *RxErrorCount = (u8)((ErrorCount & XCANPS_ECR_REC_MASK) >> XCANPS_ECR_REC_SHIFT); *TxErrorCount = (u8)(ErrorCount & XCANPS_ECR_TEC_MASK); } /*****************************************************************************/ /** * * This function reads Error Status value from Error Status Register (ESR). Use * the XCANPS_ESR_* constants defined in xcanps_hw.h to interpret the * returned value. * * @param InstancePtr is a pointer to the XCanPs instance. * * @return The 32-bit value read from Error Status Register. * * @note None. * ******************************************************************************/ u32 XCanPs_GetBusErrorStatus(XCanPs *InstancePtr) { Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); return XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_ESR_OFFSET); } /*****************************************************************************/ /** * * This function clears Error Status bit(s) previously set in Error * Status Register (ESR). Use the XCANPS_ESR_* constants defined in xcanps_hw.h * to create the value to pass in. If a bit was cleared in Error Status Register * before this function is called, it will not be modified. * * @param InstancePtr is a pointer to the XCanPs instance. * * @param Mask is he 32-bit mask used to clear bits in Error Status * Register. Multiple XCANPS_ESR_* values can be 'OR'ed to clear * multiple bits. * * @note None. * ******************************************************************************/ void XCanPs_ClearBusErrorStatus(XCanPs *InstancePtr, u32 Mask) { Xil_AssertVoid(InstancePtr != NULL); Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_ESR_OFFSET, Mask); } /*****************************************************************************/ /** * * This function sends a CAN Frame. If the TX FIFO is not full then the given * frame is written into the the TX FIFO otherwise, it returns an error code * immediately. * This function does not wait for the given frame being sent to CAN bus. * * @param InstancePtr is a pointer to the XCanPs instance. * @param FramePtr is a pointer to a 32-bit aligned buffer containing the * CAN frame to be sent. * * @return * - XST_SUCCESS if TX FIFO was not full and the given frame was * written into the FIFO. * - XST_FIFO_NO_ROOM if there is no room in the TX FIFO for the * given frame. * * @note None. * ******************************************************************************/ s32 XCanPs_Send(XCanPs *InstancePtr, u32 *FramePtr) { s32 Status; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(FramePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); if (XCanPs_IsTxFifoFull(InstancePtr) == TRUE) { Status = XST_FIFO_NO_ROOM; } else { /* * Write IDR, DLC, Data Word 1 and Data Word 2 to the CAN device. */ XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_TXFIFO_ID_OFFSET, FramePtr[0]); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_TXFIFO_DLC_OFFSET, FramePtr[1]); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_TXFIFO_DW1_OFFSET, FramePtr[2]); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_TXFIFO_DW2_OFFSET, FramePtr[3]); Status = XST_SUCCESS; } return Status; } /*****************************************************************************/ /** * * This function receives a CAN Frame. This function first checks if RX FIFO is * empty, if not, it then reads a frame from the RX FIFO into the given buffer. * This function returns error code immediately if there is no frame in the RX * FIFO. * * @param InstancePtr is a pointer to the XCanPs instance. * @param FramePtr is a pointer to a 32-bit aligned buffer where the CAN * frame to be written. * * @return * - XST_SUCCESS if RX FIFO was not empty and a frame was read from * RX FIFO successfully and written into the given buffer. * - XST_NO_DATA if there is no frame to be received from the FIFO. * * @note None. * ******************************************************************************/ s32 XCanPs_Recv(XCanPs *InstancePtr, u32 *FramePtr) { s32 Status; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(FramePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); if (XCanPs_IsRxEmpty(InstancePtr) == TRUE) { Status = XST_NO_DATA; } else { /* * Read IDR, DLC, Data Word 1 and Data Word 2 from the CAN device. */ FramePtr[0] = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_RXFIFO_ID_OFFSET); FramePtr[1] = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_RXFIFO_DLC_OFFSET); FramePtr[2] = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_RXFIFO_DW1_OFFSET); FramePtr[3] = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_RXFIFO_DW2_OFFSET); /* * Clear RXNEMP bit in ISR. This allows future XCanPs_IsRxEmpty() call * returns correct RX FIFO occupancy/empty condition. */ XCanPs_IntrClear(InstancePtr, XCANPS_IXR_RXNEMP_MASK); Status = XST_SUCCESS; } return Status; } /*****************************************************************************/ /** * * This routine sends a CAN High Priority frame. This function first checks if * TX High Priority Buffer is empty. If yes, it then writes the given frame into * the Buffer. If not, this function returns immediately. This function does not * wait for the given frame being sent to CAN bus. * * @param InstancePtr is a pointer to the XCanPs instance. * @param FramePtr is a pointer to a 32-bit aligned buffer containing the * CAN High Priority frame to be sent. * * @return * - XST_SUCCESS if TX High Priority Buffer was not full and the * given frame was written into the buffer. * - XST_FIFO_NO_ROOM if there is no room in the TX High Priority * Buffer for this frame. * * @note * * If the frame needs to be sent immediately and not delayed by processor's * interrupt handling, the caller should disable interrupt at processor * level before invoking this function. * ******************************************************************************/ s32 XCanPs_SendHighPriority(XCanPs *InstancePtr, u32 *FramePtr) { s32 Status; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(FramePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); if (XCanPs_IsHighPriorityBufFull(InstancePtr) == TRUE) { Status = XST_FIFO_NO_ROOM; } else { /* * Write IDR, DLC, Data Word 1 and Data Word 2 to the CAN device. */ XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_TXHPB_ID_OFFSET, FramePtr[0]); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_TXHPB_DLC_OFFSET, FramePtr[1]); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_TXHPB_DW1_OFFSET, FramePtr[2]); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_TXHPB_DW2_OFFSET, FramePtr[3]); Status = XST_SUCCESS; } return Status; } /*****************************************************************************/ /** * * This routine enables individual acceptance filters. Up to 4 filters could * be enabled. * * @param InstancePtr is a pointer to the XCanPs instance. * @param FilterIndexes specifies which filter(s) to enable. Use * any XCANPS_AFR_UAF*_MASK to enable one filter, and "Or" * multiple XCANPS_AFR_UAF*_MASK values if multiple filters need * to be enabled. Any filter not specified in this parameter will * keep its previous enable/disable setting. * * @return None. * * @note None. * * ******************************************************************************/ void XCanPs_AcceptFilterEnable(XCanPs *InstancePtr, u32 FilterIndexes) { u32 EnabledFilters; Xil_AssertVoid(InstancePtr != NULL); Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); /* * Calculate the new value and write to AFR. */ EnabledFilters = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFR_OFFSET); EnabledFilters |= FilterIndexes; EnabledFilters &= (u32)XCANPS_AFR_UAF_ALL_MASK; XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFR_OFFSET, EnabledFilters); } /*****************************************************************************/ /** * * This routine disables individual acceptance filters. Up to 4 filters could * be disabled. If all acceptance filters are disabled then all the received * frames are stored in the RX FIFO. * * @param InstancePtr is a pointer to the XCanPs instance. * @param FilterIndexes specifies which filter(s) to disable. Use * any XCANPS_AFR_UAF*_MASK to disable one filter, and "Or" * multiple XCANPS_AFR_UAF*_MASK values if multiple filters need * to be disabled. Any filter not specified in this parameter will * keep its previous enable/disable setting. If all acceptance * filters are disabled then all received frames are stored in the * RX FIFO. * * @return None. * * @note None. * ******************************************************************************/ void XCanPs_AcceptFilterDisable(XCanPs *InstancePtr, u32 FilterIndexes) { u32 EnabledFilters; Xil_AssertVoid(InstancePtr != NULL); Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); /* * Calculate the new value and write to AFR. */ EnabledFilters = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFR_OFFSET); EnabledFilters &= (u32)XCANPS_AFR_UAF_ALL_MASK & (~FilterIndexes); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFR_OFFSET, EnabledFilters); } /*****************************************************************************/ /** * * This function returns enabled acceptance filters. Use XCANPS_AFR_UAF*_MASK * defined in xcanps_hw.h to interpret the returned value. If no acceptance * filters are enabled then all received frames are stored in the RX FIFO. * * @param InstancePtr is a pointer to the XCanPs instance. * * @return The value stored in Acceptance Filter Register. * * @note None. * * ******************************************************************************/ u32 XCanPs_AcceptFilterGetEnabled(XCanPs *InstancePtr) { Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); return XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFR_OFFSET); } /*****************************************************************************/ /** * * This function sets values to the Acceptance Filter Mask Register (AFMR) and * Acceptance Filter ID Register (AFIR) for the specified Acceptance Filter. * Use XCANPS_IDR_* defined in xcanps_hw.h to create the values to set the * filter. Read the xcanps.h file and device specification for details. * * This function should be called only after: * - The given filter is disabled by calling XCanPs_AcceptFilterDisable() * - And the CAN device is ready to accept writes to AFMR and AFIR, i.e., * XCanPs_IsAcceptFilterBusy() returns FALSE. * * @param InstancePtr is a pointer to the XCanPs instance. * @param FilterIndex defines which Acceptance Filter Mask and ID Register * to set. Use any single XCANPS_AFR_UAF*_MASK value. * @param MaskValue is the value to write to the chosen Acceptance Filter * Mask Register. * @param IdValue is the value to write to the chosen Acceptance Filter * ID Register. * * @return * - XST_SUCCESS if the values were set successfully. * - XST_FAILURE if the given filter was not disabled, or the CAN * device was not ready to accept writes to AFMR and AFIR. * * @note None. * ******************************************************************************/ s32 XCanPs_AcceptFilterSet(XCanPs *InstancePtr, u32 FilterIndex, u32 MaskValue, u32 IdValue) { u32 EnabledFilters; s32 Status; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); Xil_AssertNonvoid((FilterIndex == XCANPS_AFR_UAF4_MASK) || (FilterIndex == XCANPS_AFR_UAF3_MASK) || (FilterIndex == XCANPS_AFR_UAF2_MASK) || (FilterIndex == XCANPS_AFR_UAF1_MASK)); /* * Return an error if the given filter is currently enabled. */ EnabledFilters = XCanPs_AcceptFilterGetEnabled(InstancePtr); if ((EnabledFilters & FilterIndex) == FilterIndex) { Status = XST_FAILURE; } else { /* * If the CAN device is not ready to accept writes to AFMR and AFIR, * return error code. */ if (XCanPs_IsAcceptFilterBusy(InstancePtr) == TRUE) { Status = XST_FAILURE; } else { /* * Write to the AFMR and AFIR of the specified filter. */ switch (FilterIndex) { case XCANPS_AFR_UAF1_MASK: /* Acceptance Filter No. 1 */ XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFMR1_OFFSET, MaskValue); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFIR1_OFFSET, IdValue); break; case XCANPS_AFR_UAF2_MASK: /* Acceptance Filter No. 2 */ XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFMR2_OFFSET, MaskValue); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFIR2_OFFSET, IdValue); break; case XCANPS_AFR_UAF3_MASK: /* Acceptance Filter No. 3 */ XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFMR3_OFFSET, MaskValue); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFIR3_OFFSET, IdValue); break; case XCANPS_AFR_UAF4_MASK: /* Acceptance Filter No. 4 */ XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFMR4_OFFSET, MaskValue); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFIR4_OFFSET, IdValue); break; default: /*This default was made for misra-c compliance*/ break; } Status = XST_SUCCESS; } } return Status; } /*****************************************************************************/ /** * * This function reads the values of the Acceptance Filter Mask and ID Register * for the specified Acceptance Filter. Use XCANPS_IDR_* defined in xcanps_hw.h * to interpret the values. Read the xcanps.h file and device specification for * details. * * @param InstancePtr is a pointer to the XCanPs instance. * @param FilterIndex defines which Acceptance Filter Mask Register to get * Mask and ID from. Use any single XCANPS_FILTER_* value. * @param MaskValue is a pointer to the data in which the Mask value read * from the chosen Acceptance Filter Mask Register is returned. * @param IdValue is a pointer to the data in which the ID value read * from the chosen Acceptance Filter ID Register is returned. * * @return None. * * @note None. * ******************************************************************************/ void XCanPs_AcceptFilterGet(XCanPs *InstancePtr, u32 FilterIndex, u32 *MaskValue, u32 *IdValue) { Xil_AssertVoid(InstancePtr != NULL); Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); Xil_AssertVoid((FilterIndex == XCANPS_AFR_UAF4_MASK) || (FilterIndex == XCANPS_AFR_UAF3_MASK) || (FilterIndex == XCANPS_AFR_UAF2_MASK) || (FilterIndex == XCANPS_AFR_UAF1_MASK)); Xil_AssertVoid(MaskValue != NULL); Xil_AssertVoid(IdValue != NULL); /* * Read from the AFMR and AFIR of the specified filter. */ switch (FilterIndex) { case XCANPS_AFR_UAF1_MASK: /* Acceptance Filter No. 1 */ *MaskValue = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFMR1_OFFSET); *IdValue = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFIR1_OFFSET); break; case XCANPS_AFR_UAF2_MASK: /* Acceptance Filter No. 2 */ *MaskValue = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFMR2_OFFSET); *IdValue = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFIR2_OFFSET); break; case XCANPS_AFR_UAF3_MASK: /* Acceptance Filter No. 3 */ *MaskValue = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFMR3_OFFSET); *IdValue = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFIR3_OFFSET); break; case XCANPS_AFR_UAF4_MASK: /* Acceptance Filter No. 4 */ *MaskValue = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFMR4_OFFSET); *IdValue = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_AFIR4_OFFSET); break; default: /*This default was made for misra-c compliance*/ break; } } /*****************************************************************************/ /** * * This routine sets Baud Rate Prescaler value. The system clock for the CAN * controller is divided by (Prescaler + 1) to generate the quantum clock * needed for sampling and synchronization. Read the device specification * for details. * * Baud Rate Prescaler can be set only if the CAN device is in Configuration * Mode. Call XCanPs_EnterMode() to enter Configuration Mode before using this * function. * * @param InstancePtr is a pointer to the XCanPs instance. * @param Prescaler is the value to set. Valid values are from 0 to 255. * * @return * - XST_SUCCESS if the Baud Rate Prescaler value is set * successfully. * - XST_FAILURE if CAN device is not in Configuration Mode. * * @note None. * ******************************************************************************/ s32 XCanPs_SetBaudRatePrescaler(XCanPs *InstancePtr, u8 Prescaler) { s32 Status; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); if (XCanPs_GetMode(InstancePtr) != (u8)XCANPS_MODE_CONFIG) { Status = XST_FAILURE; } else { XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_BRPR_OFFSET, (u32)Prescaler); Status = XST_SUCCESS; } return Status; } /*****************************************************************************/ /** * * This routine gets Baud Rate Prescaler value. The system clock for the CAN * controller is divided by (Prescaler + 1) to generate the quantum clock * needed for sampling and synchronization. Read the device specification for * details. * * @param InstancePtr is a pointer to the XCanPs instance. * * @return Current used Baud Rate Prescaler value. The value's range is * from 0 to 255. * * @note None. * ******************************************************************************/ u8 XCanPs_GetBaudRatePrescaler(XCanPs *InstancePtr) { u32 ReadValue; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); ReadValue = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_BRPR_OFFSET); return ((u8)ReadValue); } /*****************************************************************************/ /** * * This routine sets Bit time. Time segment 1, Time segment 2 and * Synchronization Jump Width are set in this function. Device specification * requires the values passed into this function be one less than the actual * values of these fields. Read the device specification for details. * * Bit time can be set only if the CAN device is in Configuration Mode. * Call XCanPs_EnterMode() to enter Configuration Mode before using this * function. * * @param InstancePtr is a pointer to the XCanPs instance. * @param SyncJumpWidth is the Synchronization Jump Width value to set. * Valid values are from 0 to 3. * @param TimeSegment2 is the Time Segment 2 value to set. Valid values * are from 0 to 7. * @param TimeSegment1 is the Time Segment 1 value to set. Valid values * are from 0 to 15. * * @return * - XST_SUCCESS if the Bit time is set successfully. * - XST_FAILURE if CAN device is not in Configuration Mode. * * @note None. * ******************************************************************************/ s32 XCanPs_SetBitTiming(XCanPs *InstancePtr, u8 SyncJumpWidth, u8 TimeSegment2, u8 TimeSegment1) { u32 Value; s32 Status; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); Xil_AssertNonvoid(SyncJumpWidth <= (u8)3U); Xil_AssertNonvoid(TimeSegment2 <= (u8)7U); Xil_AssertNonvoid(TimeSegment1 <= (u8)15U ); if (XCanPs_GetMode(InstancePtr) != (u8)XCANPS_MODE_CONFIG) { Status = XST_FAILURE; } else { Value = ((u32) TimeSegment1) & XCANPS_BTR_TS1_MASK; Value |= (((u32) TimeSegment2) << XCANPS_BTR_TS2_SHIFT) & XCANPS_BTR_TS2_MASK; Value |= (((u32) SyncJumpWidth) << XCANPS_BTR_SJW_SHIFT) & XCANPS_BTR_SJW_MASK; XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_BTR_OFFSET, Value); Status = XST_SUCCESS; } return Status; } /*****************************************************************************/ /** * * This routine gets Bit time. Time segment 1, Time segment 2 and * Synchronization Jump Width values are read in this function. According to * device specification, the actual value of each of these fields is one * more than the value read. Read the device specification for details. * * @param InstancePtr is a pointer to the XCanPs instance. * @param SyncJumpWidth will store the Synchronization Jump Width value * after this function returns. Its value ranges from 0 to 3. * @param TimeSegment2 will store the Time Segment 2 value after this * function returns. Its value ranges from 0 to 7. * @param TimeSegment1 will store the Time Segment 1 value after this * function returns. Its value ranges from 0 to 15. * * @return None. * * @note None. * ******************************************************************************/ void XCanPs_GetBitTiming(XCanPs *InstancePtr, u8 *SyncJumpWidth, u8 *TimeSegment2, u8 *TimeSegment1) { u32 Value; Xil_AssertVoid(InstancePtr != NULL); Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); Xil_AssertVoid(SyncJumpWidth != NULL); Xil_AssertVoid(TimeSegment2 != NULL); Xil_AssertVoid(TimeSegment1 != NULL); Value = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_BTR_OFFSET); *TimeSegment1 = (u8) (Value & XCANPS_BTR_TS1_MASK); *TimeSegment2 = (u8) ((Value & XCANPS_BTR_TS2_MASK) >> XCANPS_BTR_TS2_SHIFT); *SyncJumpWidth = (u8) ((Value & XCANPS_BTR_SJW_MASK) >> XCANPS_BTR_SJW_SHIFT); } /****************************************************************************/ /** * * This routine sets the Rx Full threshold in the Watermark Interrupt Register. * * @param InstancePtr is a pointer to the XCanPs instance. * @param Threshold is the threshold to be set. The valid values are * from 1 to 63. * * @return * - XST_FAILURE - If the CAN device is not in Configuration Mode. * - XST_SUCCESS - If the Rx Full threshold is set in Watermark * Interrupt Register. * * @note The threshold can only be set when the CAN device is in the * configuration mode. * *****************************************************************************/ s32 XCanPs_SetRxIntrWatermark(XCanPs *InstancePtr, u8 Threshold) { u32 ThrReg; s32 Status; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); Xil_AssertNonvoid(Threshold <= (u8)63); if (XCanPs_GetMode(InstancePtr) != (u8)XCANPS_MODE_CONFIG) { Status = XST_FAILURE; } else { ThrReg = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_WIR_OFFSET); ThrReg &= XCANPS_WIR_EW_MASK; ThrReg |= ((u32)Threshold & XCANPS_WIR_FW_MASK); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_WIR_OFFSET, ThrReg); Status = XST_SUCCESS; } return Status; } /****************************************************************************/ /** * * This routine gets the Rx Full threshold from the Watermark Interrupt Register. * * @param InstancePtr is a pointer to the XCanPs instance. * * @return The Rx FIFO full watermark threshold value. The valid values * are 1 to 63. * * @note None. * *****************************************************************************/ u8 XCanPs_GetRxIntrWatermark(XCanPs *InstancePtr) { Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); return (u8) (XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_WIR_OFFSET) & XCANPS_WIR_FW_MASK); } /****************************************************************************/ /** * * This routine sets the Tx Empty Threshold in the Watermark Interrupt Register. * * @param InstancePtr is a pointer to the XCanPs instance. * @param Threshold is the threshold to be set. The valid values are * from 1 to 63. * * @return * - XST_FAILURE - If the CAN device is not in Configuration Mode. * - XST_SUCCESS - If the threshold is set in Watermark * Interrupt Register. * * @note The threshold can only be set when the CAN device is in the * configuration mode. * *****************************************************************************/ s32 XCanPs_SetTxIntrWatermark(XCanPs *InstancePtr, u8 Threshold) { u32 ThrReg; s32 Status; Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); Xil_AssertNonvoid(Threshold <= (u8)63); if (XCanPs_GetMode(InstancePtr) != (u8)XCANPS_MODE_CONFIG) { Status = XST_FAILURE; } else { ThrReg = XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_WIR_OFFSET); ThrReg &= XCANPS_WIR_FW_MASK; ThrReg |= (((u32)Threshold << XCANPS_WIR_EW_SHIFT) & XCANPS_WIR_EW_MASK); XCanPs_WriteReg(InstancePtr->CanConfig.BaseAddr, XCANPS_WIR_OFFSET, ThrReg); Status = XST_SUCCESS; } return Status; } /****************************************************************************/ /** * * This routine gets the Tx Empty threshold from Watermark Interrupt Register. * * @param InstancePtr is a pointer to the XCanPs instance. * * @return The Tx Empty FIFO threshold value. The valid values are 1 to 63. * * @note None. * *****************************************************************************/ u8 XCanPs_GetTxIntrWatermark(XCanPs *InstancePtr) { Xil_AssertNonvoid(InstancePtr != NULL); Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY); return (u8) ((XCanPs_ReadReg(InstancePtr->CanConfig.BaseAddr, XCANPS_WIR_OFFSET) & XCANPS_WIR_EW_MASK) >> XCANPS_WIR_EW_SHIFT); } /******************************************************************************/ /* * This routine is a stub for the asynchronous callbacks. The stub is here in * case the upper layer forgot to set the handler(s). On initialization, all * handlers are set to this callback. It is considered an error for this handler * to be invoked. * ******************************************************************************/ static void StubHandler(void) { Xil_AssertVoidAlways(); }