/******************************************************************************
*
* Copyright (C) 2015 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xv_hscaler_l2.c
*
* The Horizontal Scaler Layer-2 Driver.
* The functions in this file provides an abstraction from the register peek/poke
* methodology by implementing most common use-case provided by the sub-core.
* See xv_hscaler_l2.h for a detailed description of the layer-2 driver
*
*
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- -------------------------------------------------------
* 1.00 rc 05/01/15 Initial Release
*
*
******************************************************************************/
/***************************** Include Files *********************************/
#include
#include "xv_hscaler_l2.h"
/************************** Constant Definitions *****************************/
#define PI (3.14159265358979)
#define STEP_PRECISION (65536) // 2^16
#define COEFF_PRECISION (4096) // 2^12
#define COEFF_QUANT (4096)
/* Mask definitions for Low and high 16 bits in a 32 bit number */
#define XMASK_LOW_16BITS (0x0000FFFF)
#define XMASK_HIGH_16BITS (0xFFFF0000)
/**************************** Type Definitions *******************************/
/**************************** Local Global *******************************/
static float SincCoeffs[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS];
static float TempCoeffs[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS];
static float WinCoeffs[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS];
static float NormCoeffs[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS];
int HSC_SAMPLES_PER_CLOCK = 2;
int HSC_MAX_WIDTH = 4096;
int STEP_PRECISION_SHIFT = 16;
int HSC_PHASE_SHIFT = 6;
/************************** Function Prototypes ******************************/
static float hamming( int x, int taps);
static float sinc(float x);
static void CalculatePhases(XV_hscaler_l2 *pHscL2Data,
u32 WidthIn,
u32 WidthOut,
u32 PixelRate);
static void XV_HScalerGetCoeff(XV_hscaler *InstancePtr,
XV_hscaler_l2 *pHscL2Data,
u32 WidthIn,
u32 WidthOut,
u32 PixPerClk);
static void XV_HScalerSetCoeff(XV_hscaler *InstancePtr,
XV_hscaler_l2 *pHscL2Data);
/*****************************************************************************/
/**
* This function starts the horizontal scaler core
*
* @param InstancePtr is a pointer to the core instance to be worked on.
*
* @return None
*
******************************************************************************/
void XV_HScalerStart(XV_hscaler *InstancePtr)
{
Xil_AssertVoid(InstancePtr != NULL);
XV_hscaler_EnableAutoRestart(InstancePtr);
XV_hscaler_Start(InstancePtr);
}
/*****************************************************************************/
/**
* This function stops the horizontal scaler core
*
* @param InstancePtr is a pointer to the core instance to be worked on.
*
* @return None
*
******************************************************************************/
void XV_HScalerStop(XV_hscaler *InstancePtr)
{
Xil_AssertVoid(InstancePtr != NULL);
XV_hscaler_DisableAutoRestart(InstancePtr);
}
/*****************************************************************************/
/**
* This function applies the hamming filter on specified pixel position
*
* @param x is the pixel coordinate in horizontal direction
* @param taps is the number of taps available to the scaler
*
* @return hamming filter result
*
******************************************************************************/
static float hamming( int x, int taps)
{
//0.54 + 0.46 * cos(pi * x / filter_size); 0.54 - 0.46 * cos(2*pi * x / filter_size)
return (float) (0.54 + (0.46*cos((PI*x)/(taps+1))));
}
/*****************************************************************************/
/**
* This function applies the SIN function to specified pixel position
*
* @param x is the pixel coordinate in horizontal direction
*
* @return Sine function result
*
******************************************************************************/
static float sinc(float x)
{
if (x==0)
return 1;
return (float) sin(x*PI)/(float)(x*PI);
}
/*****************************************************************************/
/**
* This function calculates the phases for 1 line. Same phase info is used for
* full frame
*
* @param WidthIn is the input frame width
* @param WidthOut is the scaled frame width
* @param PixelRate is the number of pixels per clock being processed
*
* @return None
*
******************************************************************************/
static void CalculatePhases(XV_hscaler_l2 *pHscL2Data,
u32 WidthIn,
u32 WidthOut,
u32 PixelRate)
{
int loopWidth;
loopWidth = ((WidthIn > WidthOut) ? WidthIn +(HSC_SAMPLES_PER_CLOCK-1) : WidthOut +(HSC_SAMPLES_PER_CLOCK-1))/HSC_SAMPLES_PER_CLOCK;
int x, s;
int offset = 0;
int xWritePos = 0;
int OutputWriteEn;
int GetNewPix;
int PhaseH;
int arrayIdx;
int xReadPos = 0;
int nrRds = 0;
int nrRdsClck = 0;
arrayIdx = 0;
for (x=0; xphasesH[x] = 0;
nrRdsClck = 0;
for (s=0; s>(STEP_PRECISION_SHIFT-HSC_PHASE_SHIFT)) & (XV_HSCALER_MAX_H_PHASES-1);//(HSC_PHASES-1);
GetNewPix = 0;
OutputWriteEn = 0;
if ((offset >> STEP_PRECISION_SHIFT) != 0)
{
// read a new input sample
GetNewPix = 1;
offset = offset - (1<> STEP_PRECISION_SHIFT) == 0) && (xWritePos< WidthOut))
{
// produce a new output sample
offset += PixelRate;
OutputWriteEn = 1;
xWritePos++;
}
//printf("x %5d, offset %5d, phase %5d, arrayIdx %5d, readpos %5d writepos %5d rden %3d wren %3d\n", (int)x*HSC_SAMPLES_PER_CLOCK+s, offset, (int)PhaseH, (int)arrayIdx, (int)xReadPos, xWritePos, GetNewPix, OutputWriteEn);
pHscL2Data->phasesH[x] = pHscL2Data->phasesH[x] | (PhaseH << (s*9));
pHscL2Data->phasesH[x] = pHscL2Data->phasesH[x] | (arrayIdx << (6 + (s*9)));
pHscL2Data->phasesH[x] = pHscL2Data->phasesH[x] | (OutputWriteEn << (8 + (s*9)));
if (GetNewPix) nrRdsClck++;
}
if (arrayIdx>=HSC_SAMPLES_PER_CLOCK) arrayIdx &= (HSC_SAMPLES_PER_CLOCK-1);
//printf("%d nrRds per clock %d left hanging\n", nrRdsClck, nrRds);
nrRds += nrRdsClck;
if (nrRds>=HSC_SAMPLES_PER_CLOCK)
{
nrRds -= HSC_SAMPLES_PER_CLOCK;
//printf("getting %d new samples\n", HSC_SAMPLES_PER_CLOCK);
}
}
}
/*****************************************************************************/
/**
* This function loads user defined filter coefficients in the scaler coefficient
* storage
*
* @param InstancePtr is a pointer to the core instance to be worked on.
* @param pHscL2Data is a pointer to the core instance layer 2 data.
* @param HCoeff is the user defined filter coefficients
******************************************************************************/
void XV_HscalerLoadUsrCoeffients(XV_hscaler *InstancePtr,
XV_hscaler_l2 *pHscL2Data,
const short HCoeff[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS])
{
int i,j,k, pad, offset;
int num_phases = XV_HSCALER_MAX_H_PHASES;
int num_taps = pHscL2Data->EffectiveTaps;
/*
* Assert validates the input arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(pHscL2Data != NULL);
Xil_AssertVoid((pHscL2Data->EffectiveTaps > 0) &&
(pHscL2Data->EffectiveTaps <= XV_HSCALER_MAX_H_TAPS));
//determine if coefficient needs padding (effective vs. max taps)
pad = XV_HSCALER_MAX_H_TAPS - num_taps;
offset = ((pad) ? (pad>>1) : 0);
//Load User defined coefficients into scaler coefficient table
for (i = 0; i < num_phases; i++)
{
for (k=0,j=offset; jcoeff[i][j] = HCoeff[i][k];
}
}
if(pad) //effective taps < max_taps
{
for (i = 0; i < num_phases; i++)
{
//pad left
for (j = 0; j < offset; j++)
{
pHscL2Data->coeff[i][j] = 0;
}
//pad right
for (j = (num_taps+offset); j < XV_HSCALER_MAX_H_TAPS; j++)
{
pHscL2Data->coeff[i][j] = 0;
}
}
}
}
/*****************************************************************************/
/**
* This function computes the filter coefficients based on scaling ratio and
* stores them into the layer 2 data storage
*
* @param InstancePtr is a pointer to the core instance to be worked on.
* @param pVscL2Data is a pointer to the core instance layer 2 data.
* @param HeightIn is the input frame height
* @param HeightOut is the scaled frame height
*
* @return None
*
******************************************************************************/
static void XV_HScalerGetCoeff(XV_hscaler *InstancePtr,
XV_hscaler_l2 *pHscL2Data,
u32 WidthIn,
u32 WidthOut,
u32 PixPerClk)
{
int num_phases = XV_HSCALER_MAX_H_PHASES;
int num_taps = pHscL2Data->EffectiveTaps;
int center_tap = num_taps/2;
int i,j, pad, offset;
float x, fc;
float sum[XV_HSCALER_MAX_H_PHASES];
float cos_win[XV_HSCALER_MAX_H_TAPS];
/*
* Assert validates the input arguments
*/
Xil_AssertVoid((pHscL2Data->EffectiveTaps > 0) &&
(pHscL2Data->EffectiveTaps <= XV_HSCALER_MAX_H_TAPS));
if(WidthIn < WidthOut)
{
fc = (float)WidthIn/(float)WidthOut;
}
else
{
fc = (float)WidthOut/(float)WidthIn;
}
//determine if coefficient needs padding (effective vs. max taps)
pad = XV_HSCALER_MAX_H_TAPS - num_taps;
offset = ((pad) ? (pad>>1) : 0);
for(i=0; iFilterSel)
{
case XV_HFILT_LANCZOS:
//Window is a sinc function instead of cosine function
// if using lanczos2 or lanczos3 kernel
// lanczos(x) = sinc(x) * sinc(x / filter_size);
for (i = 0; i < num_phases; i++)
{
for (j = 0; j < num_taps; j++)
{
x = TempCoeffs[i][j];
WinCoeffs[i][j] = SincCoeffs[i][j] * sinc((fc*x)/num_taps);
}
}
break;
case XV_HFILT_WINDOWED_SINC:
for (j = 1; j <= num_taps; j++)
{
cos_win[j-1] = hamming(j, num_taps);
}
for (i = 0; i < num_phases; i++)
{
for (j = 0; j < num_taps; j++)
{
WinCoeffs[i][j] = SincCoeffs[i][j] * cos_win[j];
}
}
break;
}
// normalize to unity and quantize
for (i = 0; i < num_phases; i++)
{
sum[i] = 0;
for (j = 0; j < num_taps; j++)
{
sum[i] += WinCoeffs[i][j];
}
}
for (i = 0; i < num_phases; i++)
{
for (j = offset; j < num_taps; j++)
{
NormCoeffs[i][j] = WinCoeffs[i][j]/sum[i];
pHscL2Data->coeff[i][j] = (short) ((NormCoeffs[i][j] * COEFF_QUANT) + 0.5);
}
}
if(pad) //effective taps < max_taps
{
for (i = 0; i < num_phases; i++)
{
//pad left
for (j = 0; j < offset; j++)
{
pHscL2Data->coeff[i][j] = 0;
}
//pad right
for (j = (num_taps+offset); j < XV_HSCALER_MAX_H_TAPS; j++)
{
pHscL2Data->coeff[i][j] = 0;
}
}
}
}
/*****************************************************************************/
/**
* This function programs the computed filter coefficients and phase data into
* core registers
*
* @param InstancePtr is a pointer to the core instance to be worked on.
* @param HCoeff is the array that holds computed coefficients
*
* @return None
*
* @Note This version of driver does not make use of computed coefficients.
* Pre-computed coefficients are stored in a local table which are used
* to overwrite any computed coefficients before being programmed into
* the core registers. Control flow still computes the coefficients to
* maintain the sw latency for driver version which would eventually use
* computed coefficients
******************************************************************************/
static void XV_HScalerSetCoeff(XV_hscaler *InstancePtr,
XV_hscaler_l2 *pHscL2Data)
{
int num_phases = XV_HSCALER_MAX_H_PHASES;
int num_taps = XV_HSCALER_MAX_H_TAPS/2;
int val,i,j;
u32 baseAddr;
baseAddr = XV_hscaler_Get_HwReg_hfltCoeff_BaseAddress(InstancePtr);
for (i = 0; i < num_phases; i++)
{
for(j=0; j< num_taps; j++)
{
val = (pHscL2Data->coeff[i][(j*2)+1] << 16) | (pHscL2Data->coeff[i][j*2] & XMASK_LOW_16BITS);
Xil_Out32(baseAddr+((i*num_taps+j)*4), val);
}
}
//program phases
baseAddr = XV_hscaler_Get_HwReg_phasesH_V_BaseAddress(InstancePtr);
for (i = 0; i < (HSC_MAX_WIDTH/HSC_SAMPLES_PER_CLOCK); i++)
{
Xil_Out32(baseAddr+(i*4), pHscL2Data->phasesH[i]);
}
}
/*****************************************************************************/
/**
* This function configures the scaler core registers with the specified
* configuration parameters of the axi stream
*
* @param InstancePtr is a pointer to the core instance to be worked on.
* @param HeightIn is the input stream height
* @param WidthIn is the input stream width
* @param WidthOut is the output stream width
* @param cformat is the input stream color format
*
* @return None
*
******************************************************************************/
void XV_HScalerSetup(XV_hscaler *InstancePtr,
XV_hscaler_l2 *pHscL2Data,
u32 HeightIn,
u32 WidthIn,
u32 WidthOut,
u32 PixPerClk,
u32 cformat)
{
u32 PixelRate;
/*
* Assert validates the input arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(pHscL2Data != NULL);
PixelRate = (u32) ((float)((WidthIn * STEP_PRECISION) + (WidthOut/2))/(float)WidthOut);
/* Compute Phase for 1 line */
CalculatePhases(pHscL2Data, WidthIn, WidthOut, PixelRate);
if(pHscL2Data->ScalerType == XV_HSCALER_POLYPHASE)
{
if(!pHscL2Data->UseExtCoeff) //No predefined coefficients
{
/* Generate coefficients for horizontal scaling ratio */
XV_HScalerGetCoeff(InstancePtr,
pHscL2Data,
WidthIn,
WidthOut,
PixPerClk);
}
/* Program generated coefficients into the IP register bank */
XV_HScalerSetCoeff(InstancePtr, pHscL2Data);
}
XV_hscaler_Set_HwReg_Height(InstancePtr, HeightIn);
XV_hscaler_Set_HwReg_WidthIn(InstancePtr, WidthIn);
XV_hscaler_Set_HwReg_WidthOut(InstancePtr, WidthOut);
XV_hscaler_Set_HwReg_ColorMode(InstancePtr, cformat);
XV_hscaler_Set_HwReg_PixelRate(InstancePtr, PixelRate);
}
/*****************************************************************************/
/**
*
* This function prints H Scaler status on the console
*
* @param InstancePtr is the instance pointer to the core instance.
*
* @return None
*
******************************************************************************/
void XV_HScalerDbgReportStatus(XV_hscaler *InstancePtr)
{
XV_hscaler *pHsc = InstancePtr;
u32 done, idle, ready, ctrl;
u32 widthin, widthout, heightin, pixrate, cformat;
u32 type = 3; //hard-coded to polyphase for now
u32 baseAddr, taps, phases;
int val,i,j;
/*
* Assert validates the input arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
xil_printf("\r\n\r\n----->H SCALER IP STATUS<----\r\n");
done = XV_hscaler_IsDone(pHsc);
idle = XV_hscaler_IsIdle(pHsc);
ready = XV_hscaler_IsReady(pHsc);
ctrl = XV_hscaler_ReadReg(pHsc->Ctrl_BaseAddress, XV_HSCALER_CTRL_ADDR_AP_CTRL);
heightin = XV_hscaler_Get_HwReg_Height(pHsc);
widthin = XV_hscaler_Get_HwReg_WidthIn(pHsc);
widthout = XV_hscaler_Get_HwReg_WidthOut(pHsc);
// type = XV_hscaler_Get_Hwreg_scaletype_v(pHsc);
cformat = XV_hscaler_Get_HwReg_ColorMode(pHsc);
pixrate = XV_hscaler_Get_HwReg_PixelRate(pHsc);
taps = XV_HSCALER_MAX_H_TAPS/2;
phases = XV_HSCALER_MAX_H_PHASES;
xil_printf("IsDone: %d\r\n", done);
xil_printf("IsIdle: %d\r\n", idle);
xil_printf("IsReady: %d\r\n", ready);
xil_printf("Ctrl: 0x%x\r\n\r\n", ctrl);
xil_printf("Input Height: %d\r\n",heightin);
xil_printf("Input Width: %d\r\n",widthin);
xil_printf("Output Width: %d\r\n",widthout);
// xil_printf("Scaler Type: %d\r\n",type);
xil_printf("Color Format: %d\r\n",cformat);
xil_printf("Pixel Rate: %d\r\n",pixrate);
xil_printf("Num Phases: %d\r\n",phases);
xil_printf("Num Taps: %d\r\n",taps*2);
if(type == 3)
{
short lsb, msb;
xil_printf("\r\nCoefficients:");
baseAddr = XV_hscaler_Get_HwReg_hfltCoeff_BaseAddress(pHsc);
for(i = 0; i < phases; i++)
{
xil_printf("\r\nPhase %2d: ",i);
for(j=0; j< taps; j++)
{
val = Xil_In32(baseAddr+((i*taps+j)*4));
//coefficients are 12-bits
lsb = (short)(val & XMASK_LOW_16BITS);
msb = (short)((val & XMASK_HIGH_16BITS)>>16);
xil_printf("%5d %5d ", lsb, msb);
}
}
}
}