/****************************************************************************** * * (c) Copyright 2010-2013 Xilinx, Inc. All rights reserved. * * This file contains confidential and proprietary information of Xilinx, Inc. * and is protected under U.S. and international copyright and other * intellectual property laws. * * DISCLAIMER * This disclaimer is not a license and does not grant any rights to the * materials distributed herewith. Except as otherwise provided in a valid * license issued to you by Xilinx, and to the maximum extent permitted by * applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL * FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, * IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF * MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; * and (2) Xilinx shall not be liable (whether in contract or tort, including * negligence, or under any other theory of liability) for any loss or damage * of any kind or nature related to, arising under or in connection with these * materials, including for any direct, or any indirect, special, incidental, * or consequential loss or damage (including loss of data, profits, goodwill, * or any type of loss or damage suffered as a result of any action brought by * a third party) even if such damage or loss was reasonably foreseeable or * Xilinx had been advised of the possibility of the same. * * CRITICAL APPLICATIONS * Xilinx products are not designed or intended to be fail-safe, or for use in * any application requiring fail-safe performance, such as life-support or * safety devices or systems, Class III medical devices, nuclear facilities, * applications related to the deployment of airbags, or any other applications * that could lead to death, personal injury, or severe property or * environmental damage (individually and collectively, "Critical * Applications"). Customer assumes the sole risk and liability of any use of * Xilinx products in Critical Applications, subject only to applicable laws * and regulations governing limitations on product liability. * * THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE * AT ALL TIMES. * ******************************************************************************/ /*****************************************************************************/ /** * * @file xaxidma_example_simple_intr.c * * This file demonstrates how to use the xaxidma driver on the Xilinx AXI * DMA core (AXIDMA) to transfer packets.in interrupt mode when the AXIDMA core * is configured in simple mode * * This code assumes a loopback hardware widget is connected to the AXI DMA * core for data packet loopback. * * To see the debug print, you need a Uart16550 or uartlite in your system, * and please set "-DDEBUG" in your compiler options. You need to rebuild your * software executable. * * Make sure that MEMORY_BASE is defined properly as per the HW system. The * h/w system built in Area mode has a maximum DDR memory limit of 64MB. In * throughput mode, it is 512MB. These limits are need to ensured for * proper operation of this code. * * *
* MODIFICATION HISTORY: * * Ver Who Date Changes * ----- ---- -------- ------------------------------------------------------- * 4.00a rkv 02/22/11 New example created for simple DMA, this example is for * simple DMA,Added interrupt support for Zynq. * 4.00a srt 08/04/11 Changed a typo in the RxIntrHandler, changed * XAXIDMA_DMA_TO_DEVICE to XAXIDMA_DEVICE_TO_DMA * 5.00a srt 03/06/12 Added Flushing and Invalidation of Caches to fix CRs * 648103, 648701. * Added V7 DDR Base Address to fix CR 649405. * 6.00a srt 03/27/12 Changed API calls to support MCDMA driver. * 7.00a srt 06/18/12 API calls are reverted back for backward compatibility. * 7.01a srt 11/02/12 Buffer sizes (Tx and Rx) are modified to meet maximum * DDR memory limit of the h/w system built with Area mode * 7.02a srt 03/01/13 Updated DDR base address for IPI designs (CR 703656). * ** * *************************************************************************** */ /***************************** Include Files *********************************/ #include "xaxidma.h" #include "xparameters.h" #include "xil_exception.h" #include "xdebug.h" #ifdef XPAR_UARTNS550_0_BASEADDR #include "xuartns550_l.h" /* to use uartns550 */ #endif #ifdef XPAR_INTC_0_DEVICE_ID #include "xintc.h" #else #include "xscugic.h" #endif /************************** Constant Definitions *****************************/ /* * Device hardware build related constants. */ #define DMA_DEV_ID XPAR_AXIDMA_0_DEVICE_ID #ifdef XPAR_V6DDR_0_S_AXI_BASEADDR #define DDR_BASE_ADDR XPAR_V6DDR_0_S_AXI_BASEADDR #elif XPAR_S6DDR_0_S0_AXI_BASEADDR #define DDR_BASE_ADDR XPAR_S6DDR_0_S0_AXI_BASEADDR #elif XPAR_AXI_7SDDR_0_S_AXI_BASEADDR #define DDR_BASE_ADDR XPAR_AXI_7SDDR_0_S_AXI_BASEADDR #elif XPAR_MIG7SERIES_0_BASEADDR #define DDR_BASE_ADDR XPAR_MIG7SERIES_0_BASEADDR #endif #ifndef DDR_BASE_ADDR #warning CHECK FOR THE VALID DDR ADDRESS IN XPARAMETERS.H, \ DEFAULT SET TO 0x01000000 #define MEM_BASE_ADDR 0x01000000 #else #define MEM_BASE_ADDR (DDR_BASE_ADDR + 0x1000000) #endif #ifdef XPAR_INTC_0_DEVICE_ID #define RX_INTR_ID XPAR_INTC_0_AXIDMA_0_S2MM_INTROUT_VEC_ID #define TX_INTR_ID XPAR_INTC_0_AXIDMA_0_MM2S_INTROUT_VEC_ID #else #define RX_INTR_ID XPAR_FABRIC_AXIDMA_0_S2MM_INTROUT_VEC_ID #define TX_INTR_ID XPAR_FABRIC_AXIDMA_0_MM2S_INTROUT_VEC_ID #endif #define TX_BUFFER_BASE (MEM_BASE_ADDR + 0x00100000) #define RX_BUFFER_BASE (MEM_BASE_ADDR + 0x00300000) #define RX_BUFFER_HIGH (MEM_BASE_ADDR + 0x004FFFFF) #ifdef XPAR_INTC_0_DEVICE_ID #define INTC_DEVICE_ID XPAR_INTC_0_DEVICE_ID #else #define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID #endif #ifdef XPAR_INTC_0_DEVICE_ID #define INTC XIntc #define INTC_HANDLER XIntc_InterruptHandler #else #define INTC XScuGic #define INTC_HANDLER XScuGic_InterruptHandler #endif /* Timeout loop counter for reset */ #define RESET_TIMEOUT_COUNTER 10000 #define TEST_START_VALUE 0xC /* * Buffer and Buffer Descriptor related constant definition */ #define MAX_PKT_LEN 0x100 #define NUMBER_OF_TRANSFERS 10 /* The interrupt coalescing threshold and delay timer threshold * Valid range is 1 to 255 * * We set the coalescing threshold to be the total number of packets. * The receive side will only get one completion interrupt for this example. */ /**************************** Type Definitions *******************************/ /***************** Macros (Inline Functions) Definitions *********************/ /************************** Function Prototypes ******************************/ #ifndef DEBUG extern void xil_printf(const char *format, ...); #endif #ifdef XPAR_UARTNS550_0_BASEADDR static void Uart550_Setup(void); #endif static int CheckData(int Length, u8 StartValue); static void TxIntrHandler(void *Callback); static void RxIntrHandler(void *Callback); static int SetupIntrSystem(INTC * IntcInstancePtr, XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId); static void DisableIntrSystem(INTC * IntcInstancePtr, u16 TxIntrId, u16 RxIntrId); /************************** Variable Definitions *****************************/ /* * Device instance definitions */ static XAxiDma AxiDma; /* Instance of the XAxiDma */ static INTC Intc; /* Instance of the Interrupt Controller */ /* * Flags interrupt handlers use to notify the application context the events. */ volatile int TxDone; volatile int RxDone; volatile int Error; /*****************************************************************************/ /** * * Main function * * This function is the main entry of the interrupt test. It does the following: * Set up the output terminal if UART16550 is in the hardware build * Initialize the DMA engine * Set up Tx and Rx channels * Set up the interrupt system for the Tx and Rx interrupts * Submit a transfer * Wait for the transfer to finish * Check transfer status * Disable Tx and Rx interrupts * Print test status and exit * * @param None * * @return * - XST_SUCCESS if example finishes successfully * - XST_FAILURE if example fails. * * @note None. * ******************************************************************************/ int main(void) { int Status; XAxiDma_Config *Config; int Tries = NUMBER_OF_TRANSFERS; int Index; u8 *TxBufferPtr; u8 *RxBufferPtr; u8 Value; TxBufferPtr = (u8 *)TX_BUFFER_BASE ; RxBufferPtr = (u8 *)RX_BUFFER_BASE; /* Initial setup for Uart16550 */ #ifdef XPAR_UARTNS550_0_BASEADDR Uart550_Setup(); #endif xil_printf("\r\n--- Entering main() --- \r\n"); Config = XAxiDma_LookupConfig(DMA_DEV_ID); if (!Config) { xil_printf("No config found for %d\r\n", DMA_DEV_ID); return XST_FAILURE; } /* Initialize DMA engine */ Status = XAxiDma_CfgInitialize(&AxiDma, Config); if (Status != XST_SUCCESS) { xil_printf("Initialization failed %d\r\n", Status); return XST_FAILURE; } if(XAxiDma_HasSg(&AxiDma)){ xil_printf("Device configured as SG mode \r\n"); return XST_FAILURE; } /* Set up Interrupt system */ Status = SetupIntrSystem(&Intc, &AxiDma, TX_INTR_ID, RX_INTR_ID); if (Status != XST_SUCCESS) { xil_printf("Failed intr setup\r\n"); return XST_FAILURE; } /* Disable all interrupts before setup */ XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK, XAXIDMA_DMA_TO_DEVICE); XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK, XAXIDMA_DEVICE_TO_DMA); /* Enable all interrupts */ XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK, XAXIDMA_DMA_TO_DEVICE); XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK, XAXIDMA_DEVICE_TO_DMA); /* Initialize flags before start transfer test */ TxDone = 0; RxDone = 0; Error = 0; Value = TEST_START_VALUE; for(Index = 0; Index < MAX_PKT_LEN; Index ++) { TxBufferPtr[Index] = Value; Value = (Value + 1) & 0xFF; } /* Flush the SrcBuffer before the DMA transfer, in case the Data Cache * is enabled */ Xil_DCacheFlushRange((u32)TxBufferPtr, MAX_PKT_LEN); /* Send a packet */ for(Index = 0; Index < Tries; Index ++) { Status = XAxiDma_SimpleTransfer(&AxiDma,(u32) RxBufferPtr, MAX_PKT_LEN, XAXIDMA_DEVICE_TO_DMA); if (Status != XST_SUCCESS) { return XST_FAILURE; } Status = XAxiDma_SimpleTransfer(&AxiDma,(u32) TxBufferPtr, MAX_PKT_LEN, XAXIDMA_DMA_TO_DEVICE); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Wait TX done and RX done */ while (!TxDone && !RxDone && !Error) { /* NOP */ } if (Error) { xil_printf("Failed test transmit%s done, " "receive%s done\r\n", TxDone? "":" not", RxDone? "":" not"); goto Done; } /* * Test finished, check data */ Status = CheckData(MAX_PKT_LEN, 0xC); if (Status != XST_SUCCESS) { xil_printf("Data check failed\r\n"); goto Done; } } xil_printf("AXI DMA interrupt example test passed\r\n"); /* Disable TX and RX Ring interrupts and return success */ DisableIntrSystem(&Intc, TX_INTR_ID, RX_INTR_ID); Done: xil_printf("--- Exiting main() --- \r\n"); return XST_SUCCESS; } #ifdef XPAR_UARTNS550_0_BASEADDR /*****************************************************************************/ /* * * Uart16550 setup routine, need to set baudrate to 9600 and data bits to 8 * * @param None * * @return None * * @note None. * ******************************************************************************/ static void Uart550_Setup(void) { XUartNs550_SetBaud(XPAR_UARTNS550_0_BASEADDR, XPAR_XUARTNS550_CLOCK_HZ, 9600); XUartNs550_SetLineControlReg(XPAR_UARTNS550_0_BASEADDR, XUN_LCR_8_DATA_BITS); } #endif /*****************************************************************************/ /* * * This function checks data buffer after the DMA transfer is finished. * * We use the static tx/rx buffers. * * @param Length is the length to check * @param StartValue is the starting value of the first byte * * @return * - XST_SUCCESS if validation is successful * - XST_FAILURE if validation is failure. * * @note None. * ******************************************************************************/ static int CheckData(int Length, u8 StartValue) { u8 *RxPacket; int Index = 0; u8 Value; RxPacket = (u8 *) RX_BUFFER_BASE; Value = StartValue; /* Invalidate the DestBuffer before receiving the data, in case the * Data Cache is enabled */ Xil_DCacheInvalidateRange((u32)RxPacket, Length); for(Index = 0; Index < Length; Index++) { if (RxPacket[Index] != Value) { xil_printf("Data error %d: %x/%x\r\n", Index, RxPacket[Index], Value); return XST_FAILURE; } Value = (Value + 1) & 0xFF; } return XST_SUCCESS; } /*****************************************************************************/ /* * * This is the DMA TX Interrupt handler function. * * It gets the interrupt status from the hardware, acknowledges it, and if any * error happens, it resets the hardware. Otherwise, if a completion interrupt * is present, then sets the TxDone.flag * * @param Callback is a pointer to TX channel of the DMA engine. * * @return None. * * @note None. * ******************************************************************************/ static void TxIntrHandler(void *Callback) { u32 IrqStatus; int TimeOut; XAxiDma *AxiDmaInst = (XAxiDma *)Callback; /* Read pending interrupts */ IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DMA_TO_DEVICE); /* Acknowledge pending interrupts */ XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DMA_TO_DEVICE); /* * If no interrupt is asserted, we do not do anything */ if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) { return; } /* * If error interrupt is asserted, raise error flag, reset the * hardware to recover from the error, and return with no further * processing. */ if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) { Error = 1; /* * Reset should never fail for transmit channel */ XAxiDma_Reset(AxiDmaInst); TimeOut = RESET_TIMEOUT_COUNTER; while (TimeOut) { if (XAxiDma_ResetIsDone(AxiDmaInst)) { break; } TimeOut -= 1; } return; } /* * If Completion interrupt is asserted, then set the TxDone flag */ if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) { TxDone = 1; } } /*****************************************************************************/ /* * * This is the DMA RX interrupt handler function * * It gets the interrupt status from the hardware, acknowledges it, and if any * error happens, it resets the hardware. Otherwise, if a completion interrupt * is present, then it sets the RxDone flag. * * @param Callback is a pointer to RX channel of the DMA engine. * * @return None. * * @note None. * ******************************************************************************/ static void RxIntrHandler(void *Callback) { u32 IrqStatus; int TimeOut; XAxiDma *AxiDmaInst = (XAxiDma *)Callback; /* Read pending interrupts */ IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DEVICE_TO_DMA); /* Acknowledge pending interrupts */ XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DEVICE_TO_DMA); /* * If no interrupt is asserted, we do not do anything */ if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) { return; } /* * If error interrupt is asserted, raise error flag, reset the * hardware to recover from the error, and return with no further * processing. */ if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) { Error = 1; /* Reset could fail and hang * NEED a way to handle this or do not call it?? */ XAxiDma_Reset(AxiDmaInst); TimeOut = RESET_TIMEOUT_COUNTER; while (TimeOut) { if(XAxiDma_ResetIsDone(AxiDmaInst)) { break; } TimeOut -= 1; } return; } /* * If completion interrupt is asserted, then set RxDone flag */ if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) { RxDone = 1; } } /*****************************************************************************/ /* * * This function setups the interrupt system so interrupts can occur for the * DMA, it assumes INTC component exists in the hardware system. * * @param IntcInstancePtr is a pointer to the instance of the INTC. * @param AxiDmaPtr is a pointer to the instance of the DMA engine * @param TxIntrId is the TX channel Interrupt ID. * @param RxIntrId is the RX channel Interrupt ID. * * @return * - XST_SUCCESS if successful, * - XST_FAILURE.if not succesful * * @note None. * ******************************************************************************/ static int SetupIntrSystem(INTC * IntcInstancePtr, XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId) { int Status; #ifdef XPAR_INTC_0_DEVICE_ID /* Initialize the interrupt controller and connect the ISRs */ Status = XIntc_Initialize(IntcInstancePtr, INTC_DEVICE_ID); if (Status != XST_SUCCESS) { xil_printf("Failed init intc\r\n"); return XST_FAILURE; } Status = XIntc_Connect(IntcInstancePtr, TxIntrId, (XInterruptHandler) TxIntrHandler, AxiDmaPtr); if (Status != XST_SUCCESS) { xil_printf("Failed tx connect intc\r\n"); return XST_FAILURE; } Status = XIntc_Connect(IntcInstancePtr, RxIntrId, (XInterruptHandler) RxIntrHandler, AxiDmaPtr); if (Status != XST_SUCCESS) { xil_printf("Failed rx connect intc\r\n"); return XST_FAILURE; } /* Start the interrupt controller */ Status = XIntc_Start(IntcInstancePtr, XIN_REAL_MODE); if (Status != XST_SUCCESS) { xil_printf("Failed to start intc\r\n"); return XST_FAILURE; } XIntc_Enable(IntcInstancePtr, TxIntrId); XIntc_Enable(IntcInstancePtr, RxIntrId); #else XScuGic_Config *IntcConfig; /* * Initialize the interrupt controller driver so that it is ready to * use. */ IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID); if (NULL == IntcConfig) { return XST_FAILURE; } Status = XScuGic_CfgInitialize(IntcInstancePtr, IntcConfig, IntcConfig->CpuBaseAddress); if (Status != XST_SUCCESS) { return XST_FAILURE; } XScuGic_SetPriorityTriggerType(IntcInstancePtr, TxIntrId, 0xA0, 0x3); XScuGic_SetPriorityTriggerType(IntcInstancePtr, RxIntrId, 0xA0, 0x3); /* * Connect the device driver handler that will be called when an * interrupt for the device occurs, the handler defined above performs * the specific interrupt processing for the device. */ Status = XScuGic_Connect(IntcInstancePtr, TxIntrId, (Xil_InterruptHandler)TxIntrHandler, AxiDmaPtr); if (Status != XST_SUCCESS) { return Status; } Status = XScuGic_Connect(IntcInstancePtr, RxIntrId, (Xil_InterruptHandler)RxIntrHandler, AxiDmaPtr); if (Status != XST_SUCCESS) { return Status; } XScuGic_Enable(IntcInstancePtr, TxIntrId); XScuGic_Enable(IntcInstancePtr, RxIntrId); #endif /* Enable interrupts from the hardware */ Xil_ExceptionInit(); Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT, (Xil_ExceptionHandler)INTC_HANDLER, (void *)IntcInstancePtr); Xil_ExceptionEnable(); return XST_SUCCESS; } /*****************************************************************************/ /** * * This function disables the interrupts for DMA engine. * * @param IntcInstancePtr is the pointer to the INTC component instance * @param TxIntrId is interrupt ID associated w/ DMA TX channel * @param RxIntrId is interrupt ID associated w/ DMA RX channel * * @return None. * * @note None. * ******************************************************************************/ static void DisableIntrSystem(INTC * IntcInstancePtr, u16 TxIntrId, u16 RxIntrId) { #ifdef XPAR_INTC_0_DEVICE_ID /* Disconnect the interrupts for the DMA TX and RX channels */ XIntc_Disconnect(IntcInstancePtr, TxIntrId); XIntc_Disconnect(IntcInstancePtr, RxIntrId); #else XScuGic_Disconnect(IntcInstancePtr, TxIntrId); XScuGic_Disconnect(IntcInstancePtr, RxIntrId); #endif }