iA XI LI NX Standalone (v.5.1)

ALL PROGRAMMABLE.
UG647 June 24, 2015

Summary Standalone is the lowest layer of software modules used to access processor specific
functions. Standalone is used when an application accesses board/processor features directly
and is below the operating system layer.

This document contains the following sections:

e MicroBlaze Processor API

e Cortex A9 Processor API

e Xilinx Hardware Abstraction Layer
e Program Profiling

e Configuring the Standalone OS

e MicroBlaze MMU Example

MicroBlaze The following list is a summary of the MicroBlaze™ processor API sections. You can click on a
Processor API link to go directly to the function section.

e MicroBlaze Processor Interrupt Handling

o MicroBlaze Processor Exception Handling

e MicroBlaze Processor Instruction Cache Handling

e MicroBlaze Processor Data Cache Handling

e MicroBlaze Processor Fast Simplex Link (FSL) Interface Macros

e MicroBlaze Processor FSL Macro Flags

e MicroBlaze Processor Pseudo-asm Macro Summary

¢ MicroBlaze Processor Version Register (PVR) Access Routine and Macros
e MicroBlaze Processor File Handling

e MicroBlaze Processor Errno

MicroBlaze Processor Interrupt Handling

The interrupt handling functions help manage interrupt handling on MicroBlaze processor
devices. To use these functions, include the header file mb_interface.hin your source code.

MicroBlaze Processor Interrupt Handling Function Descriptions

void microblaze_enable interrupts (void)

Enable interrupts on the MicroBlaze processor. When the MicroBlaze processor starts up,
interrupts are disabled. Interrupts must be explicitly turned on using this function.

©2013-2015 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, SDK, Vivado, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. All other trademarks are the property of their respective owners.

UG647 June 24, 2015 www.xilinx.com [send Feedback | 1

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=1

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE.

void microblaze_disable_interrupts (void)

Disable interrupts on the MicroBlaze processor. This function can be called when entering a
critical section of code where a context switch is undesirable.

void microblaze_register_handler (XInterruptHandler
Handler, void *DataPtr)

Register the interrupt handler for the MicroBlaze processor. This handler is invoked in turn, by
the first level interrupt handler that is present in Standalone.

The first level interrupt handler saves and restores registers, as necessary for interrupt
handling, so that the function you register with this handler can be dedicated to the other
aspects of interrupt handling, without the overhead of saving and restoring registers.

MicroBlaze Processor Exception Handling

This section describes the exception handling functionality available on the MicroBlaze
processor. This feature and the corresponding interfaces are not available on versions of the
MicroBlaze processor older than v3.00.a.

Note: These functions work correctly only when the parameters that determine hardware exception
handling are configured appropriately in the MicroBlaze Microprocessor Hardware Specification (MHS)
hardware block. For example, you can register a handler for divide by zero exceptions only if hardware
divide by zero exceptions are enabled on the MicroBlaze processor. Refer to the MicroBlaze Processor
Reference Guide (UG081) for information on how to configure these cache parameters. A link to that
document can be found in “MicroBlaze Processor API,” page 1.

MicroBlaze Processor Exception Handler Function Descriptions

The following functions help manage exceptions on the MicroBlaze processor. You must
include the mb_interface.h header file in your source code to use these functions.

void microblaze disable exceptions (void)

Disable hardware exceptions from the MicroBlaze processor. This routine clears the
appropriate “exceptions enable” bit in the model-specific register (MSR) of the processor.

void microblaze enable exceptions (void)

Enable hardware exceptions from the MicroBlaze processor. This routine sets the appropriate
“exceptions enable” bit in the MSR of the processor.

void microblaze register exception handler (u8
Exceptionld, XExceptionHandler Handler, void *DataPtr)

Register a handler for the specified exception type. Handler is the function that handles the
specified exception.

DataPtr is a callback data value that is passed to the exception handler at run-time. By default
the exception ID of the corresponding exception is passed to the handler.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 2

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=2

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE.

Table 1 describes the valid exception IDs, which are defined in the
microblaze_exceptions_i.h file.

Table 1: Valid Exception IDs

Exception ID Value Description
XEXC_ID_FSL 0 FSL bus exceptions.
XEXC_ID_UNALIGNED_ACCESS 1 Unaligned access exceptions.
XEXC_ID_ILLEGAL_OPCODE 2 Exception due to an attempt to execute an

illegal opcode.
XEXC_ID_M_AXI_I_EXCEPTION (1) 3 Exception due to a timeout from the
Instruction side system bus.
XEXC_ID_M_AXI_D_EXCEPTION(1) 4 Exception due to a timeout on the Data side
system bus.
XEXC_ID_DIV_BY_ZERO 5 Divide by zero exceptions from the hardware
divide.
XEXC_ID_FPU 6 Exceptions from the floating point unit on the

MicroBlaze processor.

Note: This exception is valid only on v4.0 and
later versions of the MicroBlaze processor.

XEXC_ID_MMU 7 Exceptions from the MicroBlaze processor
MMU. All possible MMU exceptions are
vectored to the same handler.

Note: This exception is valid only on v7.00.a
and later versions of the MicroBlaze processor.

By default, Standalone provides empty, no-op handlers for all the exceptions except unaligned
exceptions. A default, fast, unaligned access exception handler is provided by Standalone.

An unaligned exception can be handled by making the corresponding aligned access to the
appropriate bytes in memory. Unaligned access is transparently handled by the default handler.
However, software that makes a significant amount of unaligned accesses will see the
performance effects of this at run-time. This is because the software exception handler takes
much longer to satisfy the unaligned access request as compared to an aligned access.

In some cases you might want to use the provision for unaligned exceptions to just trap the
exception, and to be aware of what software is causing the exception. In this case, you should
set breakpoints at the unaligned exception handler, to trap the dynamic occurrence of such an
exception or register your own custom handler for unaligned exceptions.

Note: The lowest layer of exception handling, always provided by Standalone, stores volatile and
temporary registers on the stack; consequently, your custom handlers for exceptions must take into
consideration that the first level exception handler will have saved some state on the stack, before invoking
your handler.

Nested exceptions are allowed by the MicroBlaze processor. The exception handler, in its
prologue, re-enables exceptions. Thus, exceptions within exception handlers are allowed and
handled. When the predecode_fpu_exceptions parameter is set to true, it causes the
low-level exception handler to:

e Decode the faulting floating point instruction
e Determine the operand registers
e Store their values into two global variables

UG647 June 24, 2015

www.xilinx.com | Send Feedback | °

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=3

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE.

You can register a handler for floating point exceptions and retrieve the values of the operands
from the global variables. You can use the microblaze_getfpex_operand_a () and
microblaze_getfpex operand_b () macros.

Note: These macros return the operand values of the last floating point (FP) exception. If there are
nested exceptions, you cannot retrieve the values of outer exceptions. An FP instruction might have one
of the source registers being the same as the destination operand. In this case, the faulting instruction
overwrites the input operand value and it is again irrecoverable.

MicroBlaze Processor Instruction Cache Handling

The following functions help manage instruction caches on the MicroBlaze processor. You must
include the xi1_cache.h header file in your source code to use these functions.

Note: These functions work correctly only when the parameters that determine the caching system are
configured appropriately in the MicroBlaze Microprocessor Hardware Specification (MHS) hardware
block. Refer to the MicroBlaze Reference Guide (UG081) for information on how to configure these cache
parameters. “MicroBlaze Processor API,” page 1 contains a link to this document.

MicroBlaze Processor Instruction Cache Handling Function Descriptions

void Xil ICacheEnable (void)

Enable the instruction cache on the MicroBlaze processor. When the MicroBlaze processor
starts up, the instruction cache is disabled. The instruction cache must be explicitly turned on
using this function.

void Xil ICacheDisable (void)

Disable the instruction cache on the MicroBlaze processor.

void Xil ICacheInvalidate ()
Invalidate the instruction icache.

Note: For MicroBlaze processors prior to version v7.20.a, the cache and interrupts are disabled before
invalidation starts and restored to their previous state after invalidation.

void Xil_ICacheInvalidateRange (unsigned int cache_addr,
unsigned int cache_size)

UG647 June 24, 2015

www.Xxilinx.com 4

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=4

& XILINX

ALL PROGRAMMABLE.

MicroBlaze Processor API

MicroBlaze Processor Data Cache Handling

The following functions help manage data caches on the MicroBlaze processor. You must
include the header file xi1_cache.h in your source code to use these functions.

Note: These functions work correctly only when the parameters that determine the caching system are
configured appropriately in the MicroBlaze MHS hardware block. Refer to the MicroBlaze Processor
Reference Guide (UG081) for information on how to configure these cache parameters. “MicroBlaze
Processor API,” page 1 contains a link to this document.

Data Cache Handling Functions

void Xil DCacheEnable (void)

Enable the data cache on the MicroBlaze processor. When the MicroBlaze processor starts up,
the data cache is disabled. The data cache must be explicitly turned on using this function.

void Xil DCache Disable(void)

Disable the data cache on the MicroBlaze processor. If writeback caches are enabled in the
MicroBlaze processor hardware, this function also flushes the dirty data in the cache back to
external memory and invalidates the cache. For write through caches, this function does not do
any extra processing other than disabling the cache.

If the L2 cache system is present in the hardware, this function flushes the L2 cache before
disabling the DCache.

void Xil DCacheFlush/()

Flush the entire data cache. This function can be used when write-back caches are turned on
in the MicroBlaze processor hardware. Executing this function ensures that the dirty data in the
cache is written back to external memory and the contents invalidated.

If the L2 cache system is present in the hardware, this function flushes the L2 cache first, before
flushing the L1 cache.

void Xil_DCacheFlushRange (unsigned int cache_addr,
unsigned int cache_len)

Flush the specified data cache range. This function can be used when write-back caches are
enabled in the MicroBlaze processor hardware. Executing this function ensures that the dirty
data in the cache range is written back to external memory and the contents of the cache range
are invalidated. Note that cache lines will be flushed starting from the cache line to which
cache_addr belongs and ending at the cache line containing the address (cache_addr +
cache_size -1).

If the L2 cache system is present in the hardware, this function flushes the relevant L2 cache
range first, before flushing the L1 cache range.

For example, Xi1_DCacheFlushRange (0x00000300, 0x100) flushes the data cache
region from 0x300 to 0x3ff (0x100 bytes of cache memory is flushed starting from 0x300).

UG647 June 24, 2015 www.xilinx.com I Send Feedback I 5

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=5

& XILINX

MicroBlaze Processor API ALL PROGRAMMABLE.

void Xil DCacheInvalidate()
Invalidate the data cache.

If the L2 cache system is present in the hardware, this function invalidates the L2 cache first,
before invalidating the L1 cache.

Note: For MicroBlaze processors prior to version v7.20.a, the cache and interrupts are disabled before
invalidation starts and restored to their previous state after invalidation.

void Xil_DCacheInvalidateRange (unsigned int cache_addr,
unsigned int cache_size

Invalidate the data cache. This function can be used for invalidating all or part of the data cache.
The parameter cache_addr indicates the beginning of the cache location and cache_size
represents the size from cache_addr to invalidate.

Note that cache lines will be invalidated starting from the cache line to which cache_addr
belongs and ending at the cache line containing the address (cache_addr +
cache_size -1).

If the L2 cache system is present in the hardware, this function invalidates the relevant L2
cache range first, before invalidating the L1 cache range.

Note: For MicroBlaze processors prior to version v7.20.a, the cache and interrupts are disabled before
invalidation starts and restored to their previous state after invalidation.

For example, Xxi1_DCacheInvalidateRange (0x00000300, 0x100) invalidates the data
cache region from 0x300 to 0x3ff (0x100 bytes of cache memory is cleared starting from
0x300).

Software Sequence for Initializing Instruction and Data Caches

Typically, before using the cache, your program must perform a particular sequence of cache
operations to ensure that invalid/dirty data in the cache is not being used by the processor. This
would typically happen during repeated program downloads and executions.

The following example snippets show the necessary software sequence for initializing
instruction and data caches in your program.

/* Initialize ICache *//

Xil_ICacheInvalidate ();
Xil_ICacheEnable ();

/* Initialize DCache */
Xil_DCacheInvalidate ();
Xil_DCacheEnable () ;

At the end of your program, you should also put in a.3(5.6r)-1.49.1(f8b0038 ,i4.5(itia)4.w()-6(a)5.13.9(

UG647 June 24, 2015 www.Xxilinx.com 6

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=6

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE.

MicroBlaze Processor Fast Simplex Link (FSL) Interface Macros

Standalone includes macros to provide convenient access to accelerators connected to the
MicroBlaze Fast Simplex Link (FSL) Interfaces.

MicroBlaze Processor Fast Simplex Link (FSL) Interface Macro Summary

The following is a list of the available macros. Click on a macro name to go to the description of
the active macros.

getfsix(val,id,flags) putdfsix(val,id,flags)
putfsix(val,id,flags) tgetdfsix(val,id,flags)
tgetfsix(val,id,flags) tputdfsix(val,id,flags)
getd fslx(val,id,flags) fsl_isinvalid(invalid)

fsl_iserror(error)

MicroBlaze Processor FSL Macro Descriptions

The following macros provide access to all of the functionality of the MicroBlaze FSL feature in
one simple and parameterized interface. Some capabilities are available on MicroBlaze v7.00.a
and later only, as noted in the descriptions.

In the macro descriptions, val refers to a variable in your program that can be the source or
sink of the FSL operation.

Note: id must be an integer literal in the basic versions of the macro (getfslx, putfslx,
tgetfslx, tputfslx)andcanbe aninteger literal or an integer variable in the dynamic versions of the
macros (getdfslx, putdfslx, tgetdfslx, tputdfslx.)

You must include £s1 .h in your source files to make these macros available.

getfslx(val,id,flags)

Performs a get function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is a literal in the range of 0 to 7 (0 to 15 for MicroBlaze v7.00.a and later). The semantics
of the instruction is determined by the valid FSL macro flags, which are listed in Table 2,
page 9.

putfslx(val,id,flags)

Performs a put function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is a literal in the range of 0 to 7 (0 to 15 for MicroBlaze processor v7.00.a and later).

The semantics of the instruction is determined by the valid FSL macro flags, which are listed in
Table 2, page 9.

tgetfslx(val,id,flags)

Performs a test get function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is a literal in the ranging of 0 to 7 (0 to 15 for MicroBlaze v7.00.a and later). This macro can
be used to test reading a single value from the FSL. The semantics of the instruction is
determined by the valid FSL macro flags, which are listed in Table 2, page 9.

tputfslx(val,id,flags)

Performs a put function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is a literal in the range of 0 to 7 (0 to 15 for MicroBlaze processor v7.00.a and later). This
macro can be used to test writing a single value to the FSL.The semantics of the put instruction
is determined by the valid FSL macro flags, which are listed in Table 2, page 9.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | !

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=7

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE.

getd fslx(val,id,flags)

Performs a get function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is an integer value or variable in the range of 0 to 15. The semantics of the instruction is
determined by the valid FSL macro flags, which are listed in Table 2, page 9. This macro is
available on MicroBlaze processor v7.00.a and later only.

putdfslx(val,id,flags)

Performs a put function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is an integer value or variable in the range of 0 to 15. The semantics of the instruction is
determined by the valid FSL macro flags, which are listed in Table 2, page 9. This macro is
available on MicroBlaze processor v7.00.a and later only.

tgetdfslx(val,id,flags)

Performs a test get function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is an integer or variable in the range of 0 to 15. This macro can be used to test reading a
single value from the FSL. The semantics of the instruction is determined by the valid FSL
macro flags, listed in Table 2. This macro is available on MicroBlaze processor v7.00.a and
later only.

tputdfslx(val,id,flags)

Performs a put function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is an integer or variable in the range of 0 to 15. This macro can be used to test writing a
single value to the FSL.The semantics of the instruction is determined by the valid FSL macro
flags, listed in Table 2. This macro is available on MicroBlaze processor v7.00.a and later only.

fsl isinvalid(invalid)

Checks if the last FSL operation returned valid data. This macro is applicable after invoking a
non-blocking FSL put or get instruction. If there was no data on the FSL channel on a get, or if
the FSL channel was full on a put, invalid is set to 1; otherwise, it is set to 0.

fsl iserror (error)

This macro is used to check if the last FSL operation set an error flag. This macro is applicable
after invoking a control FSL put or get instruction. If the control bit was set €rror is setto 1;
otherwise, it is set to 0.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 8

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=8

& XILINX

MicroBlaze Processor API ALL PROGRAMMABLE.

MicroBlaze Processor FSL Macro Flags

Table 2 lists the available FSL Macro flags.

Deprecated MicroBlaze Processor Fast Simplex Link (FSL) Macros

The following macros are deprecated:

getfsl (val,id) (deprecated)

Performs a blocking data get function on an input FSL of the MicroBlaze processor;

UG647 June 24, 2015 www.Xxilinx.com 9

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=9

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE.

ngetfsl (val,id) (deprecated)

Performs a non-blocking data get function on an input FSL of the MicroBlaze processor; id is
the FSL identifier in the range of 0 to 7.

nputfsl (val,i1d) (deprecated)

Performs a non-blocking data put function on an output FSL of the MicroBlaze processor; id is
the FSL identifier in the range of 0 to 7.

cgetfsl (val, 1d) (deprecated)

Performs a blocking control get function on an input FSL of the MicroBlaze processor; id is the
FSL identifier in the range of 0 to 7. This macro is uninterruptible.

cputfsl (val, 1d) (deprecated)

Performs a blocking control put function on an output FSL of the MicroBlaze processor; id is
the FSL identifier in the range of 0 to 7. This macro is uninterruptible.

ncgetfsl (val, 1d) (deprecated)

Performs a non-blocking control get function on an input FSL of the MicroBlaze processor; id
is the FSL identifier in the range of 0 to 7.

ncputfsl (val, 1d) (deprecated)

Performs a non-blocking control put function on an output FSL of the MicroBlaze processor; id
is the FSL identifier in the range of 0 to 7.

getfsl interruptible(val, 1d) (deprecated)

Performs repeated non-blocking data get operations on an input FSL of the MicroBlaze
processor until valid data is actually fetched; id is the FSL identifier in the range of 0 to 7.
Because the FSL access is non-blocking, interrupts will be serviced by the processor.

putfsl_interruptible(val, id) (deprecated)

Performs repeated non-blocking data put operations on an output FSL of the MicroBlaze
processor until valid data is sent out; id is the FSL identifier in the range of 0 to 7. Because the
FSL access is non-blocking, interrupts will be serviced by the processor.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 10

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=10

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE.

cgetfsl interruptible(val, 1d) (deprecated)

Performs repeated non-blocking control get operations on an input FSL of the MicroBlaze
processor until valid data is actually fetched; id is the FSL identifier in the range of 0 to 7.
Because the FSL access is non-blocking, interrupts are serviced by the processor.

cputfsl_ interruptible(val, 1d) (deprecated)

Performs repeated non-blocking control put operations on an output FSL of the MicroBlaze
processor until valid data is sent out; id is the FSL identifier in the range of 0 to 7. Because the
FSL access is non-blocking, interrupts are serviced by the processor.

MicroBlaze Processor Pseudo-asm Macros

Standalone includes macros to provide convenient access to various registers in the
MicroBlaze processor. Some of these macros are very useful within exception handlers for
retrieving information about the exception. To use these macros, you must include the
mb_interface.h header file in your source code.

MicroBlaze Processor Pseudo-asm Macro Summary

The following is a summary of the MicroBlaze processor pseudo-asm macros. Click on the
macro name to go to the description.

mfgpr(rn)

mfmsr()

mfesr()

mfear()

mffsr()

mtmsr(v)

mtgpr(rn,v)
microblaze_getfpex_operand_a()
microblaze_getfpex_operand_b()
clz(v)

mbar(mask)

mb_swapb(v)

mb_swaph(v)

mb_sleep

MicroBlaze Processor Pseudo-asm Macro Descriptions

mfgpxr (Irn)

Return value from the general purpose register (GPR) rn.

mfmsxr ()

Return the current value of the MSR.

mfesxr()

Return the current value of the Exception Status Register (ESR).

mfear()

Return the current value of the Exception Address Register (EAR).

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 1

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=11

& XILINX

ALL PROGRAMMABLE.

MicroBlaze Processor API

mffsr()

Return the current value of the Floating Point Status (FPS).

mtmsrxr (V)

Move the value v to MSR.

mtgpr (rn,Vv)

Move the value v to GPR rn.

microblaze getfpex operand a()

Return the saved value of operand A of the last faulting floating point instruction.

microblaze getfpex operand b()
Return the saved value of operand B of the last faulting floating point instruction.

Note: Because of the way some of these macros have been written, they cannot be used as parameters
to function calls and other such constructs.

clz (v)

Counts the number of leading zeros in the data specified by v

mbar (mask)

This instruction ensures that outstanding memory accesses on memory interfaces are
completed before any subsequent instructions are executed. mask value of 1 specifies data
side barrier, mask value of 2 specifies instruction side barrier and mask value of 16 specifies to
put the processor in sleep.

mb_swapb (V)

Swaps the bytes in the data specified bv v. This converts the bytes in the data from little endian
to big endian or vice versa. So v contains a value of 0x12345678, the macro will return a value
of 0x78563412.

mb_swaph (v)

Swaps the half words in the data specified bv v. So if v has a value of 0x12345678, the macro
will return a value of 0x56781234.

mb_sleep

Puts the processor in sleep.

UG647 June 24, 2015 www.xilinx.com I Send Feedback I 12

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=12

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE.

MicroBlaze Processor Version Register (PVR) Access Routine and
Macros

MicroBlaze processor v5.00.a and later versions have configurable Processor Version
Registers (PVRs). The contents of the PVR are captured using the pvr_t data structure, which
is defined as an array of 32-bit words, with each word corresponding to a PVR register on
hardware. The number of PVR words is determined by the number of PVRs configured in the

hardware. You should not attempt to access PVR registers that are not present in hardware, as
the pvr_t data structure is resized to hold only as many PVRs as are present in hardware.

To access information in the PVR:

1. Usethemicroblaze_get_pvr () function to populate the PVR data into a pvr_t data
structure.

2. In subsequent steps, you can use any one of the PVR access macros list to get individual
data stored in the PVR.

Note: The PVR access macros take a parameter, which must be of type pvr_t.

PVR Access Routine

The following routine is used to access the PVR. You must include pvr . h file to make this
routine available.

int microblaze_get_pvr (pvr_t *pvr)

Populate the PVR data structure to which pvr points with the values of the hardware PVR
registers. This routine populates only as many PVRs as are present in hardware and the rest
are zeroed. This routine is not available if C_PVR is set to NONE in hardware.

PVR Macros

The following processor macros are used to access the PVR. You must include pvr . h file to
make these macros available.

Table 3 lists the MicroBlaze processor PVR macros and descriptions.
Table 3: PVR Access Macros

Macro Description

MICROBLAZE_PVR_IS_FULL (pvr) Return non-zero integer if PVR is of type
FULL, O if basic.

MICROBLAZE_PVR_USE_BARREL (pvr) Return non-zero integer if hardware barrel
shifter present.

MICROBLAZE_PVR_USE_DIV (pvr) Return non-zero integer if hardware divider
present.

MICROBLAZE_PVR_USE_HW_MUL (pvr) Return non-zero integer if hardware multiplier
present.

MICROBLAZE_PVR_USE_FPU (pvr) Return non-zero integer if hardware floating

point unit (FPU) present.

MICROBLAZE_PVR_USE_FPU2 (pvr) Return non-zero integer if hardware floating
point conversion and square root instructions
are present.

MICROBLAZE_PVR_USE_TICACHE (pvr) Return non-zero integer if I-cache present.

MICROBLAZE_PVR_USE_DCACHE (pvr) Return non-zero integer if D-cache present.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 13

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=13

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE-

Table 3: PVR Access Macros (Contd)

Macro

Description

MICROBLAZE_ PVR_MICROBLAZE_ VERSION
(pvr)

Return MicroBlaze processor version
encoding. Refer to the MicroBlaze Processor
Reference Guide (UG081) for mappings from
encodings to actual hardware versions.
“MicroBlaze Processor API,” page 1
contains a link to this document.

MICROBLAZE_PVR_USERI (pvr)

Return the USER1 field stored in the PVR.

MICROBLAZE_PVR_USER2 (pvr)

Return the USER?2 field stored in the PVR.

MICROBLAZE_PVR_INTERCONNECT (pvr)

Return non-zero if MicroBlaze processor has
PLB interconnect; otherwise return zero.

MICROBLAZE_PVR_D_PLB (pvr)

Return non-zero integer if Data Side PLB
interface is present.

MICROBLAZE_PVR_D_OPB(pvr)

Return non-zero integer if Data Side On-chip
Peripheral Bus (OPB) interface present.

MICROBLAZE_PVR_D_LMB(pvr)

Return non-zero integer if Data Side Local
Memory Bus (LMB) interface present.

MICROBLAZE_PVR_I_PLB (pvr)

Return non-zero integer if Instruction Side
PLB interface is present.

MICROBLAZE_PVR_I_OPB(pvr)

Return non-zero integer if Instruction side
OPB interface present.

MICROBLAZE_PVR_I_LMB(pvr)

Return non-zero integer if Instruction side
LMB interface present.

MICROBLAZE_PVR_INTERRUPT IS EDGE
(pvr)

Return non-zero integer if interrupts are
configured as edge-triggered.

MICROBLAZE_PVR_EDGE_IS POSITIVE
(pvr)

Return non-zero integer if interrupts are
configured as positive edge triggered.

MICROBLAZE_PVR_USE_MUL64 (pvr)

Return non-zero integer if MicroBlaze
processor supports 64-bit products for
multiplies.

MICROBLAZE_PVR_OPCODE_OxO_ILLEGAL
(pvr)

Return non-zero integer if opcode 0x0 is
treated as an illegal opcode.

MICROBLAZE_PVR_UNALIGNED_EXCEPTION

(pvr)

Return non-zero integer if unaligned
exceptions are supported.

MICROBLAZE_PVR_ILL_OPCODE_
EXCEPTION (pvr)

Return non-zero integer if illegal opcode
exceptions are supported.

MICROBLAZE_PVR_TIOPB_EXCEPTION (pvr)

Return non-zero integer if I-OPB exceptions
are supported.

MICROBLAZE_PVR_DOPB_EXCEPTION (pvr)

Return non-zero integer if D-OPB exceptions
are supported.

MICROBLAZE_PVR_IPLB_EXCEPTION (pvr)

Return non-zero integer if I-PLB exceptions
are supported.

MICROBLAZE_PVR_DPLB_EXCEPTION (pvr)

Return non-zero integer if D-PLB exceptions
are supported.

MICROBLAZE_ PVR_DIV_ZERO_EXCEPTION
(pvr)

Return non-zero integer if divide by zero
exceptions are supported.

UG647 June 24, 2015

www.Xxilinx.com

l Send Feedback I 14

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=14

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE-

Table 3: PVR Access Macros (Contd)

Macro

Description

MICROBLAZE_PVR_FPU_EXCEPTION (pvr)

Return non-zero integer if FPU exceptions are
supported.

MICROBLAZE_PVR_FSIL_EXCEPTION (pvr)

Return non-zero integer if FSL exceptions are
present.

MICROBLAZE_PVR_DEBUG_ENABLED (pvr)

Return non-zero integer if debug is enabled.

MICROBLAZE_PVR_NUM_PC_BRK (pvr)

Return the number of hardware PC
breakpoints available.

MICROBLAZE_ PVR_NUM_RD_ADDR_BRK
(pvr)

Return the number of read address hardware
watchpoints supported.

MICROBLAZE_ PVR_NUM_WR_ADDR_BRK
(pvr)

Return the number of write address hardware
watchpoints supported.

MICROBLAZE_PVR_FSL_LINKS (pvr)

Return the number of FSL links present.

MICROBLAZE_ PVR_ICACHE_BASEADDR
(pvr)

Return the base address of the I-cache.

MICROBLAZE_PVR_ICACHE_HIGHADDR
(pvr)

Return the high address of the I-cache.

MICROBLAZE_PVR_ICACHE_ADDR_TAG_
BITS (pvr)

Return the number of address tag bits for the
I-cache.

MICROBLAZE_PVR_ICACHE_USE_FSL (pvr)

Return non-zero if I-cache uses FSL links.

MICROBLAZE_ PVR_ICACHE ALLOW_WR
(pvr)

Return non-zero if writes to I-caches are
allowed.

MICROBLAZE PVR_ICACHE_LINE_LEN
(pvr)

Return the length of each I-cache line in
bytes.

MICROBLAZE_ PVR_ICACHE_BYTE_SIZE
(pvr)

Return the size of the D-cache in bytes.

MICROBLAZE_ PVR_DCACHE_BASEADDR
(pvr)

Return the base address of the D-cache.

MICROBLAZE_PVR_DCACHE_HIGHADDR
(pvr)

Return the high address of the D-cache.

MICROBLAZE_PVR_DCACHE_ADDR_TAG_
BITS (pvr)

Return the number of address tag bits for the
D-cache.

MICROBLAZE_PVR_DCACHE_USE_FSL (pvr)

Return non-zero if the D-cache uses FSL
links.

MICROBLAZE_ PVR_DCACHE_ALLOW_WR
(pvr)

Return non-zero if writes to D-cache are
allowed.

MICROBLAZE_ PVR_DCACHE_LINE_LEN
(pvr)

Return the length of each line in the
D-cache in bytes.

MICROBLAZE_PVR_DCACHE_BYTE_SIZE
(pvr)

Return the size of the D-cache in bytes.

MICROBLAZE_PVR_TARGET_FAMILY (pvr)

Return the encoded target family identifier.

UG647 June 24, 2015

www.Xxilinx.com

| Send Feedback I 15

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=15

MicroBlaze Processor API

& XILINX

ALL PROGRAMMABLE.

Table 3: PVR Access Macros (Contd)

Macro Description

MICROBLAZE_PVR_MSR_RESET VALUE Refer to the MicroBlaze Processor Reference
Guide (UG081) for mappings from encodings
to target family name strings. “MicroBlaze
Processor API,” page 1 contains alink to this
document.

MICROBLAZE_PVR_MMU_TYPE (pvr) Returns the value of C_USE_MMU. Refer to
the MicroBlaze Processor Reference Guide
(UG081) for mappings from MMU type values
to MMU function. “MicroBlaze Processor
API,” page 1 contains a link to this document.

MicroBlaze Processor File Handling

The following routine is included for file handling:

int fentl(int fd, int cmd, long arg) ;

A dummy implementation of fcntl (), which always returns 0, is provided. fentl is
intended to manipulate file descriptors according to the command specified by cmd . Because
Standalone does not provide a file system, this function is included for completeness only.

MicroBlaze Processor Errno

The following routine provides the error number value:

int errno();

Return the global value of errno as set by the last C library call.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 10

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=16

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

Cortex A9
Processor API

Standalone BSP contains boot code, cache, exception handling, file and memory
management, configuration, time and processor-specific include functions. It supports gcc
compilers.

The following lists the Cortex A9 Processor API sections.You can click on a link to go directly to
the function section.

e Cortex A9 Processor Boot Code

e Cortex A9 Processor Cache Functions

o Cortex A9 Processor Exception Handling

e Cortex A9 Processor File Support

e Cortex A9 gcc Errno Function

o Cortex A9 gcc Memory Management

e Cortex A9 gcc Process Functions

e Cortex A9 Processor-Specific Include Files
e Cortex A9 Time Functions

The following subsections describe the functions by type.

Cortex A9 Processor Boot Code

The boot.S file contains a minimal set of code for transferring control from the processor's reset
location to the start of the application. It performs the following tasks.

e Invalidate L1 caches, TLBs, Branch Predictor Array, etc.

¢ Invalidate L2 caches and initialize L2 Cache Controller

e Enable caches and MMU

e Load MMU translation table base address into the TTB registers
e Enable NEON coprocessor

The boot code also starts the Cycle Counter and initializes the Static Memory Controller.

Cortex A9 Processor Cache Functions

The xil_cache.c file and the corresponding xil_cache.h header file provide access to the
following cache and cache-related operations.

Cache Function Summary

The following are links to the function descriptions. Click on the name to go to that function.
void Xil_DCacheEnable(void)

void Xil_DCachelnvalidate(void)

void Xil_DCachelnvalidateLine(unsigned int adr)

void Xil_DCachelnvalidateRange(unsigned int adr, unsigned len)

void Xil_DCacheFlush(void)

void Xil_DCacheFlushLine(unsigned int adr)

UG647 June 24, 2015

www.Xxilinx.com 17

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=17

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE-

void Xil_ICachelnvalidate(void)

void Xil_ICachelnvalidateLine(unsigned int adr)

void Xil_ICachelnvalidateRange(unsigned int adr, unsigned len)
void Xil_L1DCacheEnable(void)

void Xil_L1DCacheDisable(void)

void Xil_L1DCachelnvalidate(void)

void Xil_L1DCachelnvalidateLine(unsigned int adr)

void Xil_L2CachelnvalidateRange(unsigned int adr, unsigned len)
void Xil_L1DCacheFlush(void)

void Xil_L1DCacheFlushLine(unsigned int adr)

void Xil_L1DCacheFlushRange(unsigned int adr, unsigned len)
void Xil_L1DCacheStoreLine(unsigned int adr)

void Xil_L1ICacheEnable(void)

void Xil_ICacheDisable(void)

void Xil_ICachelnvalidate(void)

void Xil_L1ICachelnvalidateLine(unsigned int adr)

void Xil_L1lCachelnvalidateRange(unsigned int adr, unsigned len)
void Xil_L2CacheEnable(void)

void Xil_L2CacheDisable(void)

void Xil_L2Cachelnvalidate(void)

void Xil_L2CachelnvalidateLine(unsigned int adr)

void Xil_L2CachelnvalidateRange(unsigned int adr, unsigned len)
void Xil_L2CacheFlush(void)

void Xil_L2CacheFlushLine(unsigned int adr)

void Xil_L2CacheFlushRange(unsigned int adr, unsigned len)

void Xil_L2CacheStoreLine(unsigned int adr)

Cache Function Descriptions

void Xil DCacheEnable (void)

Enable the data caches.

void Xil DCacheInvalidate (void)

Invalidate the entire data cache.

void Xil DCacheInvalidateLine (unsigned int adr)

Invalidate a data cache line. If the byte specified by adr is cached by the data cache, the
cacheline containing that byte is invalidated. If the cacheline is modified (dirty), the modified
contents are lost and are not written to system memory before the line is invalidated. A
subsequent data access to this address results in a cache miss and a cache line refill.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 18

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=18

Cortex A9 Processor API

ALL PROGRAMMA

UG647 June 24, 2015

www.Xxilinx.com

19

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=19

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

void Xil ICacheInvalidateRange (unsigned int adr, unsigned
len)

Invalidate the instruction cache for the given address range. If the bytes specified by the adr are
cached by the data cache, the cacheline containing that byte is invalidated. If the cacheline is
modified (dirty), the modified contents are lost and are not written to system memory before the
line is invalidated.

void Xil Ll1lDCacheEnable (void)

Enable the level 1 data cache.

void Xil Ll1DCacheDisable (void)

Disable the level 1 data cache.

void Xil LlDCacheInvalidate (void)

Invalidate the level 1 data cache.

void Xil LilDCacheInvalidateLine (unsigned int adr)

Invalidate a level 1 data cache line. If the byte specified by the adr is cached by the data cache,
the cacheline containing that byte is invalidated.If the cacheline is modified (dirty), the modified
contents are lost and are not written to system memory before the line is invalidated.

void Xil LlDCacheInvalidateRange (unsigned int adr,
unsigned len)

Invalidate the level 1 data cache for the given address range. If the bytes specified by the adr
are cached by the sata cache, the cacheline containing that byte is invalidated. If the cacheline
is modified (dirty), the modified contents are lost and are not written to system memory before
the line is invalidated.

void Xil_Ll1DCacheFlush (void)

Flush the level 1 data cache.

void Xil LilDCacheFlushLine (unsigned int adr)

Flush a level 1 data cache line. If the byte specified by the adr is cached by the data cache, the
cacheline containing that byte is invalidated. If the cacheline is modified (dirty), the entire
contents of the cacheline are written to system memory before the line is invalidated.

void Xil LlDCacheFlushRange (unsigned int adr, unsigned
len)

Flush the level 1 data cache for the given address range. If the bytes specified by the adr are
cached by the data cache, the cacheline containing that byte is invalidated. If the cacheline is
modified (dirty), the written to system memory first before the before the line is invalidated.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 20

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=20

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

void Xil LilDCacheStoreLine (unsigned int adr)

Store a level 1 data cache line. If the byte specified by the adr is cached by the data cache and
the cacheline is modified (dirty), the entire contents of the cacheline are written to system
memory. After the store completes, the cacheline is marked as unmodified (not dirty).

void Xil LlICacheEnable(void)

Enable the level 1 instruction cache.

void Xil LlICacheDisable (void)

Disable level 1 the instruction cache.

void Xil LlICacheInvalidate (void)

Invalidate the entire level 1 instruction cache.

void Xil LlICacheInvalidateLine (unsigned int adr)

Invalidate a level 1 instruction cache line. If the instruction specified by the parameter adr is
cached by the instruction cache, the cacheline containing that instruction is invalidated.

void Xil LlICacheInvalidateRange (unsigned int adr,
unsigned len)

Invalidate the level 1 instruction cache for the given address range. If the bytes specified by the
adr are cached by the data cache, the cacheline containing that byte is invalidated. If the
cacheline is modified (dirty), the modified contents are lost and are not written to system
memory before the line is invalidated.

void Xil L2CacheEnable (void)
Enable the L2 cache.

void Xil L2CacheDisable (void)
Disable the L2 cache.

void Xil L2CacheInvalidate (void)

Invalidate the L2 cache. If the byte specified by the adr is cached by the data cache, the
cacheline containing that byte is invalidated. If the cacheline is modified (dirty), the modified
contents are lost and are not written to system memory before the line is invalidated.

void Xil L2CacheInvalidateLine (unsigned int adr)

Invalidate a level 2 cache line. If the byte specified by the adr is cached by the Data cache, the
cacheline containing that byte is invalidated. If the cacheline is modified (dirty), the modified
contents are lost and are not written to system memory before the line is invalidated.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 21

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=21

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

void Xil L2CacheInvalidateRange (unsigned int adr, unsigned
len)

Invalidate the level 2 cache for the given address range. If the bytes specified by the adr are
cached by the data cache, the cacheline containing that byte is invalidated.If the cacheline is
modified (dirty), the modified contents are lost and are not written to system memory before the
line is invalidated.

void Xil L2CacheFlush (void)

Flush the L2 cache. If the byte specified by the adr is cached by the data cache, the cacheline
containing that byte is invalidated. If the cacheline is modified (dirty), the entire contents of the
cacheline are written to system memory before the line is invalidated.

void Xil L2CacheFlushLine (unsigned int adr)

Flush a level 1 cache line. If the byte specified by the adr is cached by the data cache, the
cacheline containing that byte is invalidated. If the cacheline is modified (dirty), the entire
contents of the cacheline are written to system memory before the line is invalidated.

void Xil_L2CacheFlushRange

UG647 June 24, 2015

www.Xxilinx.com 22

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=22

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

Cortex A9 Processor MMU Handling

The standalone BSP MMU handling API is implemented in file xi1_mmu.c and the
corresponding header file xil_mmu.h.

MMU Handling Function Summary
The following function describes the available MMU handling API.

void Xil_SetTlbAttributes (u32 addr, u32 attrib)

This function changes the MMU attribute of the 1 MB address range in which the passed
memory address "addr" falls.

The new MMU attribute is passed as an argument "attrib" to this API.
This API can be used to change attributes such as cache-ability and share-ability of a specified
memory region.

Cortex A9 Processor Exception Handling

The Standalone BSP provides an exception handling API. For details about the exceptions and
interrupts on ARM Cortex-A9 processor, refer to "Exceptions” under the chapter "The System
Level Programmers' Model" in the ARM Architecture Reference Manual ARMv7-A and ARMv-
7R edition.

The exception handling API is implemented in a set of the files - asm_vectors.S, vectors.c,
xil_exception.c, and the corresponding header files vectors.h and xil_exception.h.

Exception Handling Function Summary
The following are links to the function descriptions. Click on the name to go to that function.
void Xil_Exceptionlnit(void)

void Xil_ExceptionRegisterHandler (u8 Exceptionld, XExceptionHandler Handler, void
*DataPtr)

void Xil_ExceptionRemoveHandler (u8 Exceptionld)
void Xil_ExceptionEnableMask(Mask)

void Xil_ExceptionEnable(void)

void Xil_ExceptionDisableMask(Mask)

void Xil_ExceptionDisable(void)

Exception Handling Function Descriptions

void Xil ExceptionInit (void)

Sets up the interrupt vector table and registers a "do nothing" function for each exception. This
function has no parameters and does not return a value. This function must be called before
registering any exception handlers or enabling any interrupts.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 28

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=23

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

void Xil_ExceptionRegisterHandler (u8 ExceptionId,
XExceptionHandler Handler, void *DataPtr)

Registers an exception handler for a specific exception; does not return a value. Refer to Table
1, for a list of exception types and their values.

The parameters are:

o Exceptionld is of parameter type u8, and is the exception to which this handler should be
registered. The type and the values are defined in the xil_exception.h header file.

o Handler is an Xil_ExceptionHandler parameter that is the pointer to the exception
handling function.

The function provided as the Handler parameter must have the following function
prototype:

typedef void (*Xil_ExceptionHandler)(void * DataPtr);
This prototype is declared in the xil_exception.h header file.

e DataPtr is of parameter type void * and is the user value to be passed when the Handler is
called.

When this Handler function is called, the parameter DataPtr contains the same value
provided, when the Handler was registered.

Table 4: Registered Exception Types and Values

Exception Type Value
XIL_EXCEPTION_ID_RESET 0
XIL_EXCEPTION_ID_UNDEFINED_INT 1

XIL_EXCEPTION_ID_SWI_INT
XIL_EXCEPTION_ID_PREFETCH_ABORT_INT
XIL_EXCEPTION_ID_DATA_ABORT_INT
XIL_EXCEPTION_ID_IRQ_INT
XIL_EXCEPTION_ID_FIQ_INT

o O b~ W|N

void Xil_ ExceptionRemoveHandler (u8 ExceptionId)

De-register a handler function for a given exception. For possible values of parameter
Exceptionld, refer to Table 1.

void Xil ExceptionEnableMask (Mask)

Enable exceptions specified by Mask. The parameter Mask is a bitmask for exceptions to be
enabled. The Mask parameter can have the values XIL_EXCEPTION_IRQ,
XIL_EXCEPTION_FIQ, or XIL_EXCEPTION_ALL.

void Xil ExceptionEnable (void)
Enable the IRQ exception.

These macros must be called after initializing the vector table with function Xil_exceptionlInit
and registering exception handlers with function Xil_ExceptionRegisterHandler.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 24

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=24

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

void Xil_ExceptionDisableMask (Mask)

Disable exceptions specified by Mask. The parameter Mask is a bitmask for exceptions to be
disabled. The Mask parameter can have the values XIL_EXCEPTION_IRQ,
XIL_EXCEPTION_FIQ, or XIL_EXCEPTION_ALL.

void Xil_ExceptionDisable (void)

Disable the IRQ exception.

Cortex A9 Processor and pl310 Errata Support

Various ARM errata are handled in the standalone BSP. The implementation for errata handling
follows ARM guidelines and is based on the open source Linux support for these errata. The
errata conditions handled in the standalone BSP are listed below.

e ARM erratum number 742230 (DMB operation may be faulty)

e ARM erratum number 743622 (Faulty hazard checking in the Store Buffer may lead to data
corruption)

e ARM erratum number 775420 (A data cache maintenance operation which aborts, might
lead to deadlock)

e ARM erratum number 794073 (Speculative instruction fetches with MMU disabled might
not comply with architectural requirements)

e ARM erratum number 588369 (Clean & Invalidate maintenance operations do not
invalidate clean lines)

e ARM PL310 erratum number 727915 (Background Clean and Invalidate by Way operation
can cause data corruption)

e ARM PL310 erratum number 753970 (Cache sync operation may be faulty)

For further information on these errata items, please refer to the appropriate ARM
documentation at ARM the information center.

The BSP file xi1_errata.h defines macros for these errata. The handling of the errata are
enabled by default. To disable handling of all the errata globally, un-define the macro
ENABLE_ARM ERRATA in xil_errata.h. To disable errata on a per-erratum basis, un-define
relevant macros in xil_errata.h.

Cortex A9 Processor File Support

The following links take you directly to the gcc file support function.

int read(int fd, char *buf, int nbytes)
int write(int fd, char *buf, int nbytes)
int isatty(int fd)

int fentl (int fd, int cmd, long arg)

File support is limited to the stdin and stdout streams. Consequently, the following functions
are not necessary:

gcc

° open() (in gcc/open.c)

. close() (in gcc/close.c)

. fstat() (in gcc/fstat.c)

. unlink() (in gcc/unlink.c)
) lseek() (in gcc/lseek.c)

These files are included for completeness and because they are referenced by the C library.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 28

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=25

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

Cortex A9 gcc File Support Function Descriptions

int read(int fd, char *buf, int nbytes)

The read() function in gcc/read.c reads nbytes bytes from the standard input by calling
inbyte(). It blocks until all characters are available, or the end of line character is read. The
read() function returns the number of characters read. The fd parameter is ignored.

int write(int fd, char *buf, int nbytes)

Writes nbytes bytes to the standard output by calling outbyte(). It blocks until all characters
have been written. The write() function returns the number of characters written. The fd
parameter is ignored.

int isatty(int £d)

Reports if a file is connected to a tty. This function always returns 1, because only the stdin and
stdout streams are supported.

int fentl (int fd, int cmd, long arg)

A dummy implementation of fcntl, which always returns 0. fcntl is intended to manipulate file
descriptors according to the command specified by cmd. Because Standalone does not
provide a file system, this function is not used.

Cortex A9 gcc Errno Function

int errno()

Returns the global value of errno as set by the last C library call.

Cortex A9 gcc Memory Management

char *sbrk(int nbytes)

Allocates nbytes of heap and returns a pointer to that piece of memory. This function is called
from the memory allocation functions of the C library.

Cortex A9 gcc Process Functions

The functions getpid() in getpid.c and kill() in kill.c are included for completeness and because
they are referenced by the C library.

Cortex A9 Processor-Specific Include Files

The xreg_cortexa9.h include file contains the register numbers and the register bits for the
ARM Cortex-A9 processor.

The xpseudo_asm.h include file contains the definitions for the most often used inline
assembler instructions, available as macros. These can be very useful for tasks such as setting
or getting special purpose registers, synchronization, or cache manipulation. These inline
assembler instructions can be used from drivers and user applications written in C.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 2

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=26

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

Cortex A9 Time Functions

The xtime_l.c file and corresponding xtime_l.h include file provide access to the 64-bit Global
Counter in the PMU. This counter increases by one at every 2 processor cycles. The sleep.c file
and corresponding sleep.h include file implement sleep functions. Sleep functions are
implemented as busy loops.

Cortex A9 Time Function Summary

UG647 June 24, 2015

www.Xxilinx.com 27

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=27

Cortex A9 Processor API

& XILINX

ALL PROGRAMMABLE.

Cortex A9 Event Counters

xpm_counter.c and xpm_counter . h provide APIs for configuring and controlling the
Cortex-A9

Performance Monitor Events. Cortex-A9 Performance Monitor has 6 event counters which can
be used to count a variety of events described in Cortex-A9 TRM.

xpm_counter.h defines configurations (XPM_CNTRCFGx) which specifies the event
counters to count a set of events.

Cortex A9 Event Counters Function Summary

The Event Counters functions are summarized below. Click on the function name to go to the
description.

void Xpm_SetEvents(int PmcrCfg)
void Xpm_GetEventCounters(u32 *PmCtrValue)

Cortex A9 Event Counters Function Description

void Xpm_SetEvents (int PmcrCfg)

This function configures the Cortex A9 event counters controller, with the event codes, in a
configuration selected by the user and enables the counters.

PmcrCfg is configuration value based on which the event counters are configured.

Use XPM_CNTRCFG* values defined in xpm_counter.h to define a configuration which specify
the event counters to count a set of events.

void Xpm_ GetEventCounters (u32 *PmCtrValue)
This function disables the event counters and returns the counter values.

PmCtrValue returns the counter values.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | 28

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=28

Xilinx Hardware Abstraction Layer

& XILINX

ALL PROGRAMMABLE-

Xilinx Hardware The following sections describe the Xilinx® Hardware Abstraction Layer API. It contains the
Abstraction following sections:

Layer .

Types (xil_types)

Register 10 (xil_io)

Exception (xil_exception)

Cache (xil_cache)

Assert (xil_assert)

Extra Header File

Test Memory (xil_testmem)

Test Register 10 (xil_testio)

Test Cache (xil_testcache)

Hardware Abstraction Layer Migration Tips

Types (xil_types)

Header File

#include "xil_types.h"

Typedef

typedef unsigned char u8
typedef unsigned short ulé6
typedef unsigned long u32
typedef unsigned long long u64
typedef char s8

typedef short sl6

typedef long s32

typedef long long s64

Macros

Macro Value
#define TRUE 1
#define FALSE 0
#define NULL 0
#define XIL_COMPONENT_IS_READY ox11111111
#define XIL_COMPONENT_IS_STARTED 0x22222222

UG647 June 24, 2015

www.Xxilinx.com

| Send Feedback I 29

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=29

& XILINX

ALL PROGRAMMABLE-

Xilinx Hardware Abstraction Layer

Register 10 (xil_io)

Header File

#include "xil_io.h"
Common API

The following is a linked summary of register 1O functions. They can run on MicroBlaze and
Cortex A9 processors.

u8 Xil_In8(u32 Addr)

u16 Xil_EndianSwap16 (u16 Data)

u16 Xil_Htons(u16 Data)

u16 Xil_In16(u32 Addr)

u16 Xil_In16BE(u32 Addr)

u16 Xil_In16LE(u32 Addr)

u16 Xil_Ntohs(u16 Data)

u32 Xil_EndianSwap32 u32 Data)

u32 Xil_Htonl(u32 Data)

u32 Xil_In32(u32 Addr)

u32 Xil_In32BE(u32 Addr)

u32 Xil_In32LE(u32 Addr)

u32 Xil_Ntohs(u32 Data)

void Xil_Out8(u32 Addr, u8 Value)

void Xil_Out16(u32 Addr, u16 Value)
void Xil_Out16BE(u32 Addr, u16 Value)
void Xil_Out16LE(u32 Addr, u16 Value)
void Xil_Out32(u32 Addr, u32 Value)
void Xil_Out32BE(u32 Addr, u32 Value)
void Xil_Out32LE(u32 Addr, u32 Value)

u8 Xil In8 (u32 Addr)

Perform an input operation for an 8-bit memory location by reading from the specified address
and returning the value read from that address.

Parameters:
Addr contains the address at which to perform the input operation.
Returns:

The value read from the specified input address.

ul6é Xil EndianSwapl6é (ul6 Data)
Perform a 16-bit endian swapping.
Parameters:

Data contains the value to be swapped.
Returns:

Endian swapped value.

UGB47 June 24, 2015 www.xilinx.com [send Feedback J 30

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=30

& XILINX

ALL PROGRAMMABLE.

Xilinx Hardware Abstraction Layer

ulé Xil Htons (ul6 Data)
Convert a 16-bit number from host byte order to network byte order.
Parameters:
Data the 16-bit number to be converted.
Returns:

The converted 16-bit number in network byte order.

ul6é Xil _Inlé6 (u32 Addr)

Perform an input operation for a 16-bit memory location by reading from the specified address
and returning the value read from that address.

Parameters:
Addr contains the address at which to perform the input operation.
Returns:

The value read from the specified input address.

ul6é Xil_ Inl6BE (u32 Addr)

Perform an big-endian input operation for a 16-bit memory location by reading from the
specified address and returning the value read from that address.

Parameters:
Addr contains the address at which to perform the input operation.
Returns:

The value read from the specified input address with the proper endianness. The return
value has the same endianness as that of the processor. For example, if the processor is
little-endian, the return value is the byte-swapped value read from the address.

ul6é Xil_ Inl6LE (u32 Addr)

Perform a little-endian input operation for a 16-bit memory location by reading from the
specified address and returning the value read from that address.

Parameters:
Addr contains the address at which to perform the input operation.
Returns:

The value read from the specified input address with the proper endianness. The return
value has the same endianness as that of the processor. For example, if the processor is

UG647 June 24, 2015 www.xilinx.com I Send Feedback I 31

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=31

Xilinx Hardware Abstraction Layer

& XILINX

ALL PROGRAMMABLE.

ulé Xil Ntohs (ul6 Data)
Convert a 16-bit number from network byte order to host byte order.
Parameters:
Data the 16-bit number to be converted.
Returns:

The converted 16-bit number in host byte order.

u32 Xil EndianSwap32 (u32 Data)
Perform a 32-bit endian swapping.
Parameters:

Data contains the value to be swapped.
Returns:

Endian swapped value.

u32 Xil_ Htonl (u32 Data)
Convert a 32-bit number from host byte order to network byte order.
Parameters:
Data the 32-bit number to be converted.
Returns:

The converted 32-bit number in network byte order.

u32 Xil_In32(u32 Addr)

Perform an input operation for a 32-bit memory location by reading from the specified address
and returning the value read from that address.

Parameters:
Addr contains the address at which to perform the input operation.
Returns:

The value read from the specified input address.

u32 Xil_In32BE(u32 Addr)

Perform a big-endian input operation for a 32-bit memory location by reading from the specified
address and returning the value read from that address.

Parameters:
Addr contains the address at which to perform the input operation.
Returns:

The value read from the specified input address with the proper endianness. The return
value has the same endianness as that of the processor. For example, if the processor is
little-endian, the return value is the byte-swapped value read from the address.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | %

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=32

Xilinx Hardware Abstraction Layer

& XILINX

ALL PROGRAMMABLE.

u32 Xil_ In32LE(u32 Addr)

Perform a little-endian input operation for a 32-bit memory location by reading from the
specified address and returning the value read from that address.

Parameters:
Addr contains the address at which to perform the input operation.
Returns:

The value read from the specified input address with the proper endianness. The return
value has the same endianness as that of the processor. For example, if the processor is
big-endian, the return value is the byte-swapped value read from the address.

u32 Xil_Ntohs (u32 Data)
Convert a 32-bit number from network byte order to host byte order.
Parameters:
Data the 32-bit number to be converted.
Returns:

The converted 32-bit number in host byte order.

void Xil Out8 (u32 Addr, u8 Value)

Perform an output operation for an 8-bit memory location by writing the specified value to the
specified address.

Parameters:

Addr contains the address at which to perform the output operation.
Value contains the value to be output at the specified address.

void Xil Outl6 (u32 Addr, ul6 Value)

Perform an output operation for a 16-bit memory location by writing the specified value to the
specified address.

Parameters:

Addr contains the address at which to perform the output operation.
Value contains the value to be output at the specified address.

void Xil Outl6BE (u32 Addr, ulé value)

Perform a big-endian output operation for a 16-bit memory location by writing the specified
value to the specified address.

Parameters:

Addr contains the address at which to perform the output operation.

Value contains the value to be output at the specified address. The value has the same
endianness as that of the processor. For example, if the processor is little-endian, the byte-
swapped value is written to the address.

UG647 June 24, 2015

www.xilinx.com | Send Feedback | %

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=33

& XILINX

ALL PROGRAMMABLE-

Xilinx Hardware Abstraction Layer

void

UGB47 June 24, 2015 www.xilinx.com [send Feedback J 34

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG647&Title=Standalone%20%28v.5.1%29&releaseVersion=&docPage=34

& XILINX

Xilinx Hardware Abstraction Layer ALL PRO