/****************************************************************************** * * (c) Copyright 2010-2013 Xilinx, Inc. All rights reserved. * * This file contains confidential and proprietary information of Xilinx, Inc. * and is protected under U.S. and international copyright and other * intellectual property laws. * * DISCLAIMER * This disclaimer is not a license and does not grant any rights to the * materials distributed herewith. Except as otherwise provided in a valid * license issued to you by Xilinx, and to the maximum extent permitted by * applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL * FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, * IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF * MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; * and (2) Xilinx shall not be liable (whether in contract or tort, including * negligence, or under any other theory of liability) for any loss or damage * of any kind or nature related to, arising under or in connection with these * materials, including for any direct, or any indirect, special, incidental, * or consequential loss or damage (including loss of data, profits, goodwill, * or any type of loss or damage suffered as a result of any action brought by * a third party) even if such damage or loss was reasonably foreseeable or * Xilinx had been advised of the possibility of the same. * * CRITICAL APPLICATIONS * Xilinx products are not designed or intended to be fail-safe, or for use in * any application requiring fail-safe performance, such as life-support or * safety devices or systems, Class III medical devices, nuclear facilities, * applications related to the deployment of airbags, or any other applications * that could lead to death, personal injury, or severe property or * environmental damage (individually and collectively, "Critical * Applications"). Customer assumes the sole risk and liability of any use of * Xilinx products in Critical Applications, subject only to applicable laws * and regulations governing limitations on product liability. * * THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE * AT ALL TIMES. * ******************************************************************************/ /*****************************************************************************/ /** * * @file xaxidma_poll_multi_pkts.c * * This file demonstrates how to use the xaxidma driver on the Xilinx AXI * DMA core (AXIDMA) to transfer multiple packets in polling mode when the * AXI DMA core is configured in Scatter Gather Mode. * * This code assumes a loopback hardware widget is connected to the AXI DMA * core for data packet loopback. * * To see the debug print, you need a Uart16550 or uartlite in your system, * and please set "-DDEBUG" in your compiler options. You need to rebuild your * software executable. * * Make sure that MEMORY_BASE is defined properly as per the HW system. The * h/w system built in Area mode has a maximum DDR memory limit of 64MB. In * throughput mode, it is 512MB. These limits are need to ensured for * proper operation of this code. * * *
 * MODIFICATION HISTORY:
 *
 * Ver   Who  Date     Changes
 * ----- ---- -------- -------------------------------------------------------
 * 1.00a jz   05/17/10 First release
 * 2.00a jz   08/10/10 Second release, added in xaxidma_g.c, xaxidma_sinit.c,
 *		       updated tcl file, added xaxidma_porting_guide.h, removed
 *		       workaround for endianness
 * 4.00a rkv  02/22/11 Name of the file has been changed for naming consistency
 * 5.00a srt  03/06/12 Added Flushing and Invalidation of Caches to fix CRs
 *		       648103, 648701.
 *		       Added V7 DDR Base Address to fix CR 649405.
 * 6.00a srt  03/27/12 Changed API calls to support MCDMA driver.
 * 7.00a srt  06/18/12 API calls are reverted back for backward compatibility.
 * 7.02a srt  03/01/13 Updated DDR base address for IPI designs (CR 703656). 
 *
 * 
* * *************************************************************************** */ /***************************** Include Files *********************************/ #include "xaxidma.h" #include "xparameters.h" #include "xdebug.h" #if defined(XPAR_UARTNS550_0_BASEADDR) #include "xuartns550_l.h" /* to use uartns550 */ #endif #ifndef DEBUG extern void xil_printf(const char *format, ...); #endif /******************** Constant Definitions **********************************/ /*********************** TEMPORARY ******************************************/ /* * Device hardware build related constants. */ #define DMA_BASE_ADDR XPAR_AXIDMA_0_BASEADDR #define DMA_DEV_ID XPAR_AXIDMA_0_DEVICE_ID #ifdef XPAR_V6DDR_0_S_AXI_BASEADDR #define DDR_BASE_ADDR XPAR_V6DDR_0_S_AXI_BASEADDR #elif XPAR_S6DDR_0_S0_AXI_BASEADDR #define DDR_BASE_ADDR XPAR_S6DDR_0_S0_AXI_BASEADDR #elif XPAR_AXI_7SDDR_0_S_AXI_BASEADDR #define DDR_BASE_ADDR XPAR_AXI_7SDDR_0_S_AXI_BASEADDR #elif XPAR_MIG7SERIES_0_BASEADDR #define DDR_BASE_ADDR XPAR_MIG7SERIES_0_BASEADDR #endif #ifndef DDR_BASE_ADDR #warning CHECK FOR THE VALID DDR ADDRESS IN XPARAMETERS.H, \ DEFAULT SET TO 0x01000000 #define MEM_BASE_ADDR 0x01000000 #else #define MEM_BASE_ADDR (DDR_BASE_ADDR + 0x1000000) #endif #define TX_BD_SPACE_BASE (MEM_BASE_ADDR) #define TX_BD_SPACE_HIGH (MEM_BASE_ADDR + 0x00000FFF) #define RX_BD_SPACE_BASE (MEM_BASE_ADDR + 0x00001000) #define RX_BD_SPACE_HIGH (MEM_BASE_ADDR + 0x00001FFF) #define TX_BUFFER_BASE (MEM_BASE_ADDR + 0x00020000) #define RX_BUFFER_BASE (MEM_BASE_ADDR + 0x00030000) #define RX_BUFFER_HIGH (MEM_BASE_ADDR + 0x0003FFFF) #define MAX_PKT_LEN 0x200 #define NUMBER_OF_PACKETS 0x10 #define TEST_START_VALUE 0xC /**************************** Type Definitions *******************************/ /***************** Macros (Inline Functions) Definitions *********************/ /************************** Function Prototypes ******************************/ #if defined(XPAR_UARTNS550_0_BASEADDR) static void Uart550_Setup(void); #endif static int RxSetup(XAxiDma * AxiDmaInstPtr); static int TxSetup(XAxiDma * AxiDmaInstPtr); static int SendPackets(XAxiDma * AxiDmaInstPtr); static int CheckData(void); static int CheckDmaResult(XAxiDma * AxiDmaInstPtr); /************************** Variable Definitions *****************************/ /* * Device instance definitions */ XAxiDma AxiDma; /* * Buffer for transmit packet. */ u32 *Packet = (u32 *) TX_BUFFER_BASE; static XAxiDma_Bd *LastRxBdPtr = NULL; /*****************************************************************************/ /** * * Main function * * This function is the main entry of the tests on DMA core. It sets up * DMA engine to be ready to receive and send packets, then a packet is * transmitted and will be verified after it is received via the DMA loopback * widget. * * @param None * * @return - XST_SUCCESS if test pass, * - XST_FAILURE if test fails * * @note None. * ******************************************************************************/ int main(void) { int Status; XAxiDma_Config *Config; #if defined(XPAR_UARTNS550_0_BASEADDR) Uart550_Setup(); #endif xil_printf("\r\n--- Entering main() --- \r\n"); Config = XAxiDma_LookupConfig(DMA_DEV_ID); if (!Config) { xil_printf("No config found for %d\r\n", DMA_DEV_ID); return XST_FAILURE; } /* Initialize DMA engine */ Status = XAxiDma_CfgInitialize(&AxiDma, Config); if (Status != XST_SUCCESS) { xil_printf("Initialization failed %d\r\n", Status); return XST_FAILURE; } if(!XAxiDma_HasSg(&AxiDma)) { xil_printf("Device configured as simple mode \r\n"); return XST_FAILURE; } Status = TxSetup(&AxiDma); if (Status != XST_SUCCESS) { return XST_FAILURE; } Status = RxSetup(&AxiDma); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* Send packets */ Status = SendPackets(&AxiDma); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* Check DMA transfer result */ Status = CheckDmaResult(&AxiDma); xil_printf("Test %s\r\n", (Status == XST_SUCCESS)? "passed":"failed"); xil_printf("--- Exiting main() --- \r\n"); if (Status != XST_SUCCESS) { return XST_FAILURE; } return XST_SUCCESS; } #if defined(XPAR_UARTNS550_0_BASEADDR) /*****************************************************************************/ /* * * Uart16550 setup routine, need to set baudrate to 9600 and data bits to 8 * * @param None * * @return None * * @note None. * ******************************************************************************/ static void Uart550_Setup(void) { /* Set the baudrate to be predictable */ XUartNs550_SetBaud(XPAR_UARTNS550_0_BASEADDR, XPAR_XUARTNS550_CLOCK_HZ, 9600); XUartNs550_SetLineControlReg(XPAR_UARTNS550_0_BASEADDR, XUN_LCR_8_DATA_BITS); } #endif /*****************************************************************************/ /** * * This function sets up RX channel of the DMA engine to be ready for packet * reception * * @param AxiDmaInstPtr is the pointer to the instance of the DMA engine. * * @return - XST_SUCCESS if the setup is successful * - XST_FAILURE if setup is failure * * @note None. * ******************************************************************************/ static int RxSetup(XAxiDma * AxiDmaInstPtr) { XAxiDma_BdRing *RxRingPtr; int Delay = 0; int Coalesce = 1; int Status; XAxiDma_Bd BdTemplate; XAxiDma_Bd *BdPtr; XAxiDma_Bd *BdCurPtr; u32 BdCount; u32 FreeBdCount; u32 RxBufferPtr; int i; RxRingPtr = XAxiDma_GetRxRing(&AxiDma); /* Disable all RX interrupts before RxBD space setup */ XAxiDma_BdRingIntDisable(RxRingPtr, XAXIDMA_IRQ_ALL_MASK); /* Set delay and coalescing */ XAxiDma_BdRingSetCoalesce(RxRingPtr, Coalesce, Delay); /* Setup Rx BD space */ BdCount = XAxiDma_BdRingCntCalc(XAXIDMA_BD_MINIMUM_ALIGNMENT, RX_BD_SPACE_HIGH - RX_BD_SPACE_BASE + 1); Status = XAxiDma_BdRingCreate(RxRingPtr, RX_BD_SPACE_BASE, RX_BD_SPACE_BASE, XAXIDMA_BD_MINIMUM_ALIGNMENT, BdCount); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Setup an all-zero BD as the template for the Rx channel. */ XAxiDma_BdClear(&BdTemplate); Status = XAxiDma_BdRingClone(RxRingPtr, &BdTemplate); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* Attach buffers to RxBD ring so we are ready to receive packets */ FreeBdCount = XAxiDma_BdRingGetFreeCnt(RxRingPtr); Status = XAxiDma_BdRingAlloc(RxRingPtr, FreeBdCount, &BdPtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } BdCurPtr = BdPtr; RxBufferPtr = RX_BUFFER_BASE; for (i = 0; i < FreeBdCount; i++) { Status = XAxiDma_BdSetBufAddr(BdCurPtr, RxBufferPtr); if (Status != XST_SUCCESS) { xil_printf("Rx set buffer addr %x on BD %x failed %d\r\n", (unsigned int)RxBufferPtr, (unsigned int)BdCurPtr, Status); return XST_FAILURE; } Status = XAxiDma_BdSetLength(BdCurPtr, MAX_PKT_LEN, RxRingPtr->MaxTransferLen); if (Status != XST_SUCCESS) { xil_printf("Rx set length %d on BD %x failed %d\r\n", MAX_PKT_LEN, (unsigned int)BdCurPtr, Status); return XST_FAILURE; } /* Receive BDs do not need to set anything for the control * The hardware will set the SOF/EOF bits per stream status */ XAxiDma_BdSetCtrl(BdPtr, 0); XAxiDma_BdSetId(BdCurPtr, RxBufferPtr); RxBufferPtr += MAX_PKT_LEN; if (i == (FreeBdCount - 1)) { LastRxBdPtr = BdCurPtr; } BdCurPtr = XAxiDma_BdRingNext(RxRingPtr, BdCurPtr); } Status = XAxiDma_BdRingToHw(RxRingPtr, FreeBdCount, BdPtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* Start RX DMA channel */ Status = XAxiDma_BdRingStart(RxRingPtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } return XST_SUCCESS; } /*****************************************************************************/ /** * * This function sets up the TX channel of a DMA engine to be ready for packet * transmission * * @param AxiDmaInstPtr is the instance pointer to the DMA engine. * * @return - XST_SUCCESS if the setup is successful * - XST_FAILURE if setup is failure * * @note None. * ******************************************************************************/ static int TxSetup(XAxiDma * AxiDmaInstPtr) { XAxiDma_BdRing *TxRingPtr; XAxiDma_Bd BdTemplate; int Delay = 0; int Coalesce = 1; int Status; u32 BdCount; TxRingPtr = XAxiDma_GetTxRing(&AxiDma); /* Disable all TX interrupts before Tx BD space setup */ XAxiDma_BdRingIntDisable(TxRingPtr, XAXIDMA_IRQ_ALL_MASK); /* Set TX delay and coalesce */ XAxiDma_BdRingSetCoalesce(TxRingPtr, Coalesce, Delay); /* Setup Tx BD space */ BdCount = XAxiDma_BdRingCntCalc(XAXIDMA_BD_MINIMUM_ALIGNMENT, TX_BD_SPACE_HIGH - TX_BD_SPACE_BASE + 1); Status = XAxiDma_BdRingCreate(TxRingPtr, TX_BD_SPACE_BASE, TX_BD_SPACE_BASE, XAXIDMA_BD_MINIMUM_ALIGNMENT, BdCount); if (Status != XST_SUCCESS) { xil_printf("failed create BD ring in txsetup\r\n"); return XST_FAILURE; } /* * We create an all-zero BD as the template. */ XAxiDma_BdClear(&BdTemplate); Status = XAxiDma_BdRingClone(TxRingPtr, &BdTemplate); if (Status != XST_SUCCESS) { xil_printf("failed bdring clone in txsetup %d\r\n", Status); return XST_FAILURE; } /* Start the TX channel */ Status = XAxiDma_BdRingStart(TxRingPtr); if (Status != XST_SUCCESS) { xil_printf("failed start bdring txsetup %d\r\n", Status); return XST_FAILURE; } return XST_SUCCESS; } /*****************************************************************************/ /** * * This function transmits packets non-blockingly through the DMA engine. * * @param AxiDmaInstPtr points to the DMA engine instance * * @return - XST_SUCCESS if the DMA accepts the packet successfully, * - XST_FAILURE if failure. * * @note None. * ******************************************************************************/ static int SendPackets(XAxiDma * AxiDmaInstPtr) { XAxiDma_BdRing *TxRingPtr; u8 *TxPacket; u8 Value; XAxiDma_Bd *BdPtr; int Status; int i; u32 BufAddr; XAxiDma_Bd *CurBdPtr; /* Create pattern in the packet to transmit */ TxPacket = (u8 *) Packet; Value = TEST_START_VALUE; for(i = 0; i < MAX_PKT_LEN * NUMBER_OF_PACKETS; i ++) { TxPacket[i] = Value; Value = (Value + 1) & 0xFF; } /* Flush the SrcBuffer before the DMA transfer, in case the Data Cache * is enabled */ Xil_DCacheFlushRange((u32)TxPacket, MAX_PKT_LEN * NUMBER_OF_PACKETS); TxRingPtr = XAxiDma_GetTxRing(AxiDmaInstPtr); /* Allocate BDs */ Status = XAxiDma_BdRingAlloc(TxRingPtr, NUMBER_OF_PACKETS, &BdPtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* Set up the BDs using the information of the packet to transmit */ BufAddr = (u32)Packet; CurBdPtr = BdPtr; for (i = 0; i < NUMBER_OF_PACKETS; i++) { u32 CrBits = 0; Status = XAxiDma_BdSetBufAddr(CurBdPtr, BufAddr); if (Status != XST_SUCCESS) { xil_printf("Tx set buffer addr %x on BD %x failed %d\r\n", (unsigned int)BufAddr, (unsigned int)CurBdPtr, Status); return XST_FAILURE; } Status = XAxiDma_BdSetLength(CurBdPtr, MAX_PKT_LEN, TxRingPtr->MaxTransferLen); if (Status != XST_SUCCESS) { xil_printf("Tx set length %d on BD %x failed %d\r\n", MAX_PKT_LEN, (unsigned int)CurBdPtr, Status); return XST_FAILURE; } if (i == 0) { CrBits |= XAXIDMA_BD_CTRL_TXSOF_MASK; #if (XPAR_AXIDMA_0_SG_INCLUDE_STSCNTRL_STRM == 1) /* The first BD has total transfer length set in * the last APP word, this is for the loopback widget */ Status = XAxiDma_BdSetAppWord(CurBdPtr, XAXIDMA_LAST_APPWORD, MAX_PKT_LEN * NUMBER_OF_PACKETS); if (Status != XST_SUCCESS) { xil_printf("Set app word failed with %d\r\n", Status); } #endif } if (i == (NUMBER_OF_PACKETS - 1)) { CrBits |= XAXIDMA_BD_CTRL_TXEOF_MASK; XAxiDma_BdSetCtrl(CurBdPtr, XAXIDMA_BD_CTRL_TXEOF_MASK); } XAxiDma_BdSetCtrl(CurBdPtr, CrBits); XAxiDma_BdSetId(CurBdPtr, BufAddr); BufAddr += MAX_PKT_LEN; CurBdPtr = XAxiDma_BdRingNext(TxRingPtr, CurBdPtr); } /* Give the BD to DMA to kick off the transmission. */ Status = XAxiDma_BdRingToHw(TxRingPtr, NUMBER_OF_PACKETS, BdPtr); if (Status != XST_SUCCESS) { xil_printf("to hw failed %d\r\n", Status); return XST_FAILURE; } return XST_SUCCESS; } /*****************************************************************************/ /** * * This function checks data buffer after the DMA transfer is finished. * * @param None * * @return - XST_SUCCESS if validation is successful * - XST_FAILURE if validation is failure. * * @note None. * ******************************************************************************/ static int CheckData(void) { u8 *RxPacket; int i = 0; u8 Value; RxPacket = (u8 *) RX_BUFFER_BASE; Value = TEST_START_VALUE; /* Invalidate the DestBuffer before receiving the data, in case the * Data Cache is enabled */ Xil_DCacheInvalidateRange((u32)RxPacket, MAX_PKT_LEN * NUMBER_OF_PACKETS); for(i = 0; i < MAX_PKT_LEN * NUMBER_OF_PACKETS; i++) { if (RxPacket[i] != Value) { xil_printf("Data error %d: %x/%x\r\n", i, (unsigned int)RxPacket[i], (unsigned int)Value); return XST_FAILURE; } Value = (Value + 1) & 0xFF; } return XST_SUCCESS; } /*****************************************************************************/ /** * * This function delays until the DMA transaction is finished, checks data, * and cleans up. * * @param AxiDmaInstPtr points to the DMA engine instance * * @return - XST_SUCCESS if DMA transfer is successful and data is correct * - XST_FAILURE if failure * * @note None. * ******************************************************************************/ static int CheckDmaResult(XAxiDma * AxiDmaInstPtr) { XAxiDma_BdRing *TxRingPtr; XAxiDma_BdRing *RxRingPtr; XAxiDma_Bd *BdPtr; u32 ProcessedBdCount = 0; u32 FreeBdCount; int Status; TxRingPtr = XAxiDma_GetTxRing(AxiDmaInstPtr); RxRingPtr = XAxiDma_GetRxRing(AxiDmaInstPtr); /* Wait until the TX transactions are done */ while (ProcessedBdCount < NUMBER_OF_PACKETS) { ProcessedBdCount += XAxiDma_BdRingFromHw(TxRingPtr, XAXIDMA_ALL_BDS, &BdPtr); } /* Free all processed TX BDs for future transmission */ Status = XAxiDma_BdRingFree(TxRingPtr, ProcessedBdCount, BdPtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* Wait until the data has been received by the Rx channel */ ProcessedBdCount = 0; while (ProcessedBdCount < NUMBER_OF_PACKETS) { ProcessedBdCount += XAxiDma_BdRingFromHw(RxRingPtr, XAXIDMA_ALL_BDS, &BdPtr); } /* Check received data */ if (CheckData() != XST_SUCCESS) { return XST_FAILURE; } /* Free all processed RX BDs for future transmission */ Status = XAxiDma_BdRingFree(RxRingPtr, ProcessedBdCount, BdPtr); if (Status != XST_SUCCESS) { xil_printf("free bd failed\r\n"); return XST_FAILURE; } /* Return processed BDs to RX channel so we are ready to receive new * packets: * - Allocate all free RX BDs * - Pass the BDs to RX channel */ FreeBdCount = XAxiDma_BdRingGetFreeCnt(RxRingPtr); Status = XAxiDma_BdRingAlloc(RxRingPtr, FreeBdCount, &BdPtr); if (Status != XST_SUCCESS) { xil_printf("bd alloc failed\r\n"); return XST_FAILURE; } Status = XAxiDma_BdRingToHw(RxRingPtr, FreeBdCount, BdPtr); return Status; }