/****************************************************************************** * * Copyright (C) 2005 - 2014 Xilinx, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * Use of the Software is limited solely to applications: * (a) running on a Xilinx device, or * (b) that interact with a Xilinx device through a bus or interconnect. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Except as contained in this notice, the name of the Xilinx shall not be used * in advertising or otherwise to promote the sale, use or other dealings in * this Software without prior written authorization from Xilinx. * ******************************************************************************/ /****************************************************************************/ /** * * @file xcan_intr_example.c * * Contains an example of how to use the XCan driver directly. The example here * shows using the driver/device in interrupt mode. * * @note * * This code assumes that Xilinx interrupt controller (XIntc) is used in the * system to forward the CAN device interrupt output to the processor and no * operating system is being used. * * The Baud Rate Prescaler Register (BRPR) and Bit Timing Register (BTR) * are setup such that CAN baud rate equals 40Kbps, assuming that the * the CAN clock is 24MHz. The user needs to modify these values based on * the desired baud rate and the CAN clock frequency. For more information * see the CAN 2.0A, CAN 2.0B, ISO 11898-1 specifications. * *
* MODIFICATION HISTORY:
*
* Ver   Who	Date	 Changes
* ----- -----  -------- -----------------------------------------------
* 1.00a xd/sv	01/12/09 First release
* 2.00a ktn	10/22/09 Updated to use the HAL APIs/macros.
*			 The macros have been renamed to remove _m from the
*			 name.
* 2.00a bss	01/11/11 Updated the example to be used with the SCUGIC in
*			 Zynq.
* 2.00a bss	01/16/12 Updated the example to fix CR 694533,
*			 replaced INTC_DEVID with INTC_DEVICE_ID.
* 
* ******************************************************************************/ /***************************** Include Files *********************************/ #include "xcan.h" #include "xparameters.h" #include "xstatus.h" #include "xil_exception.h" #ifdef XPAR_INTC_0_DEVICE_ID #include "xintc.h" #include #else /* SCU GIC */ #include "xscugic.h" #include "xil_printf.h" #endif /************************** Constant Definitions *****************************/ /* * The following constants map to the XPAR parameters created in the * xparameters.h file. They are defined here such that a user can easily * change all the needed parameters in one place. */ #define CAN_DEVICE_ID XPAR_CAN_0_DEVICE_ID #define CAN_INTR_VEC_ID XPAR_INTC_0_CAN_0_VEC_ID #ifdef XPAR_INTC_0_DEVICE_ID #define INTC_DEVICE_ID XPAR_INTC_0_DEVICE_ID #else #define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID #endif /* XPAR_INTC_0_DEVICE_ID */ /* Maximum CAN frame length in word */ #define XCAN_MAX_FRAME_SIZE_IN_WORDS (XCAN_MAX_FRAME_SIZE / sizeof(u32)) #define FRAME_DATA_LENGTH 8 /* Frame Data field length */ /* * Message Id Constant. */ #define TEST_MESSAGE_ID 2650 /* * The Baud Rate Prescaler Register (BRPR) and Bit Timing Register (BTR) * are setup such that CAN baud rate equals 40Kbps, assuming that the * the CAN clock is 24MHz. The user needs to modify these values based on * the desired baud rate and the CAN clock frequency. For more information * see the CAN 2.0A, CAN 2.0B, ISO 11898-1 specifications. */ #define TEST_BRPR_BAUD_PRESCALAR 29 #define TEST_BTR_SYNCJUMPWIDTH 3 #define TEST_BTR_SECOND_TIMESEGMENT 2 #define TEST_BTR_FIRST_TIMESEGMENT 15 #ifdef XPAR_INTC_0_DEVICE_ID #define INTC XIntc #define INTC_HANDLER XIntc_InterruptHandler #else #define INTC XScuGic #define INTC_HANDLER XScuGic_InterruptHandler #endif /* XPAR_INTC_0_DEVICE_ID */ /**************************** Type Definitions *******************************/ /***************** Macros (Inline Functions) Definitions *********************/ /************************** Function Prototypes ******************************/ static int XCanIntrExample(u16 DeviceId); static void Config(XCan *InstancePtr); static void SendFrame(XCan *InstancePtr); static void SendHandler(void *CallBackRef); static void RecvHandler(void *CallBackRef); static void ErrorHandler(void *CallBackRef, u32 ErrorMask); static void EventHandler(void *CallBackRef, u32 Mask); static int SetupInterruptSystem(XCan *InstancePtr); /************************** Variable Definitions *****************************/ /* * Allocate an instance of the XCan driver */ static XCan Can; /* * Buffers to hold frames to send and receive. These are declared as global so * that they are not on the stack. * These buffers need to be 32-bit aligned */ static u32 TxFrame[XCAN_MAX_FRAME_SIZE_IN_WORDS]; static u32 RxFrame[XCAN_MAX_FRAME_SIZE_IN_WORDS]; /* * Shared variables used to test the callbacks. */ volatile static int LoopbackError; /* Asynchronous error occurred */ volatile static int RecvDone; /* Received a frame */ volatile static int SendDone; /* Frame was sent successfully */ /*****************************************************************************/ /** * * This function is the main function of the Can interrupt example. * * @param None. * * @return * - XST_SUCCESS if the example has completed successfully. * - XST_FAILURE if the example has failed. * * @note None. * *****************************************************************************/ int main() { /* * Run the Can interrupt example. */ if (XCanIntrExample(CAN_DEVICE_ID)) { return XST_FAILURE; } return XST_SUCCESS; } /*****************************************************************************/ /** * * The main entry point for showing the XCan driver in interrupt mode. * The example configures the device for internal loopback mode, then * sends a CAN frame and receives the same CAN frame. * * @param DeviceId contains the CAN device ID. * * @return XST_SUCCESS if successful, otherwise driver-specific error code. * * @note If the device is not working correctly, this function may enter * an infinite loop and will never return to the caller. * ******************************************************************************/ static int XCanIntrExample(u16 DeviceId) { int Status; /* * Initialize the XCan driver. */ Status = XCan_Initialize(&Can, DeviceId); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Run self-test on the device, which verifies basic sanity of the * device and the driver. */ Status = XCan_SelfTest(&Can); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Configure the CAN device. */ Config(&Can); /* * Set interrupt handlers. */ XCan_SetHandler(&Can, XCAN_HANDLER_SEND, (void *)SendHandler, (void *)&Can); XCan_SetHandler(&Can, XCAN_HANDLER_RECV, (void *)RecvHandler, (void *)&Can); XCan_SetHandler(&Can, XCAN_HANDLER_ERROR, (void *)ErrorHandler, (void *)&Can); XCan_SetHandler(&Can, XCAN_HANDLER_EVENT, (void *)EventHandler, (void *)&Can); /* * Initialize flags. */ SendDone = FALSE; RecvDone = FALSE; LoopbackError = FALSE; /* * Connect to the interrupt controller. */ Status = SetupInterruptSystem(&Can); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Enable all interrupts in CAN device. */ XCan_InterruptEnable(&Can, XCAN_IXR_ALL); /* * Enter Loop Back Mode. */ XCan_EnterMode(&Can, XCAN_MODE_LOOPBACK); while(XCan_GetMode(&Can) != XCAN_MODE_LOOPBACK); /* * Loop back a frame. The RecvHandler is expected to handle * the frame reception. */ SendFrame(&Can); /* Send a frame */ /* * Wait here until both sending and reception have been completed. */ while ((SendDone != TRUE) || (RecvDone != TRUE)); /* * Check for errors found in the callbacks. */ if (LoopbackError == TRUE) { return XST_LOOPBACK_ERROR; } return XST_SUCCESS; } /*****************************************************************************/ /** * * This function configures CAN device. Baud Rate Prescaler Register (BRPR) and * Bit Timing Register (BTR) are set in this function. * * @param InstancePtr is a pointer to the driver instance * * @return None. * * @note If the CAN device is not working correctly, this function may * enter an infinite loop and will never return to the caller. * ******************************************************************************/ static void Config(XCan *InstancePtr) { /* * Enter Configuration Mode if the device is not currently in * Configuration Mode. */ XCan_EnterMode(InstancePtr, XCAN_MODE_CONFIG); while(XCan_GetMode(InstancePtr) != XCAN_MODE_CONFIG); /* * Setup Baud Rate Prescaler Register (BRPR) and * Bit Timing Register (BTR) such that CAN baud rate equals 40Kbps, * given the CAN clock frequency equal to 24MHz. */ XCan_SetBaudRatePrescaler(InstancePtr, TEST_BRPR_BAUD_PRESCALAR); XCan_SetBitTiming(InstancePtr, TEST_BTR_SYNCJUMPWIDTH, TEST_BTR_SECOND_TIMESEGMENT, TEST_BTR_FIRST_TIMESEGMENT); } /*****************************************************************************/ /** * * Send a CAN frame. * * @param InstancePtr is a pointer to the driver instance. * * @return None. * * @note None. * ******************************************************************************/ static void SendFrame(XCan *InstancePtr) { u8 *FramePtr; int Index; int Status; /* * Create correct values for Identifier and Data Length Code Register. */ TxFrame[0] = XCan_CreateIdValue(TEST_MESSAGE_ID, 0, 0, 0, 0); TxFrame[1] = XCan_CreateDlcValue(FRAME_DATA_LENGTH); /* * Now fill in the data field with known values so we can verify them * on receive. */ FramePtr = (u8 *)(&TxFrame[2]); for (Index = 0; Index < FRAME_DATA_LENGTH; Index++) { *FramePtr++ = (u8)Index; } /* * Now wait until the TX FIFO is not full and send the frame. */ while (XCan_IsTxFifoFull(InstancePtr) == TRUE); Status = XCan_Send(InstancePtr, TxFrame); if (Status != XST_SUCCESS) { /* The frame could not be sent successfully */ LoopbackError = TRUE; SendDone = TRUE; RecvDone = TRUE; } } /*****************************************************************************/ /** * * Callback function (called from interrupt handler) to handle confirmation of * transmit events when in interrupt mode. * * @param CallBackRef is the callback reference passed from the interrupt * handler, which in our case is a pointer to the driver instance. * * @return None. * * @note This function is called by the driver within interrupt context. * ******************************************************************************/ static void SendHandler(void *CallBackRef) { /* * The frame was sent successfully. Notify the task context. */ SendDone = TRUE; } /*****************************************************************************/ /** * * Callback function (called from interrupt handler) to handle frames received in * interrupt mode. This function is called once per frame received. * The driver's receive function is called to read the frame from RX FIFO. * * @param CallBackRef is the callback reference passed from the interrupt * handler, which in our case is a pointer to the device instance. * * @return None. * * @note This function is called by the driver within interrupt context. * ******************************************************************************/ static void RecvHandler(void *CallBackRef) { XCan *CanPtr = (XCan *)CallBackRef; int Status; int Index; u8 *FramePtr; Status = XCan_Recv(CanPtr, RxFrame); if (Status != XST_SUCCESS) { LoopbackError = TRUE; RecvDone = TRUE; return; } /* * Verify Identifier and Data Length Code. */ if (RxFrame[0] != XCan_CreateIdValue(TEST_MESSAGE_ID, 0, 0, 0, 0)) { LoopbackError = TRUE; RecvDone = TRUE; return; } if (RxFrame[1] != XCan_CreateDlcValue(FRAME_DATA_LENGTH)) { LoopbackError = TRUE; RecvDone = TRUE; return; } /* * Verify Data field contents. */ FramePtr = (u8 *)(&RxFrame[2]); for (Index = 0; Index < FRAME_DATA_LENGTH; Index++){ if (*FramePtr++ != (u8)Index) { LoopbackError = TRUE; break; } } RecvDone = TRUE; } /*****************************************************************************/ /** * * Callback function (called from interrupt handler) to handle error interrupt. * Error code read from Error Status register is passed into this function * * @param CallBackRef is the callback reference passed from the interrupt * handler, which in our case is a pointer to the driver instance. * @param ErrorMask is a bit mask indicating the cause of the error. Its * value equals 'OR'ing one or more XCAN_ESR_* defined in xcan_l.h * * @return None. * * @note This function is called by the driver within interrupt context. * ******************************************************************************/ static void ErrorHandler(void *CallBackRef, u32 ErrorMask) { XCan *CanPtr = (XCan *)CallBackRef; if(ErrorMask & XCAN_ESR_ACKER_MASK) { /* * ACK Error handling code should be put here. */ } if(ErrorMask & XCAN_ESR_BERR_MASK) { /* * Bit Error handling code should be put here. */ } if(ErrorMask & XCAN_ESR_STER_MASK) { /* * Stuff Error handling code should be put here. */ } if(ErrorMask & XCAN_ESR_FMER_MASK) { /* * Form Error handling code should be put here. */ } if(ErrorMask & XCAN_ESR_CRCER_MASK) { /* * CRC Error handling code should be put here. */ } /* * Set the shared variables. */ LoopbackError = TRUE; RecvDone = TRUE; SendDone = TRUE; } /*****************************************************************************/ /** * * Callback function (called from interrupt handler) to handle the following * interrupts: * - XCAN_IXR_BSOFF_MASK: Bus Off Interrupt * - XCAN_IXR_RXOFLW_MASK: RX FIFO Overflow Interrupt * - XCAN_IXR_RXUFLW_MASK: RX FIFO Underflow Interrupt * - XCAN_IXR_TXBFLL_MASK: TX High Priority Buffer Full Interrupt * - XCAN_IXR_TXFLL_MASK: TX FIFO Full Interrupt * - XCAN_IXR_WKUP_MASK: Wake up Interrupt * - XCAN_IXR_SLP_MASK: Sleep Interrupt * - XCAN_IXR_ARBLST_MASK: Arbitration Lost Interrupt * * Please feel free to change this function to meet specific application needs. * * @param CallBackRef is the callback reference passed from the interrupt * handler, which in our case is a pointer to the driver instance. * @param IntrMask is a bit mask indicating pending interrupts. Its value * equals 'OR'ing one or more of the XCAN_IXR_*_MASK value(s) * mentioned above. * * @return None. * * @note This function is called by the driver within interrupt context. * ******************************************************************************/ static void EventHandler(void *CallBackRef, u32 IntrMask) { XCan *CanPtr = (XCan *)CallBackRef; if (IntrMask & XCAN_IXR_BSOFF_MASK) { /* Enter Bus off status */ /* * Entering Bus off status interrupt requires * the CAN device be reset and re-configurated. */ XCan_Reset(CanPtr); Config(CanPtr); return; } if(IntrMask & XCAN_IXR_RXOFLW_MASK) { /* RX FIFO Overflow Interrupt */ /* * Code to handle RX FIFO Overflow * Interrupt should be put here. */ } if(IntrMask & XCAN_IXR_RXUFLW_MASK) { /* RX FIFO Underflow Interrupt */ /* * Code to handle RX FIFO Underflow * Interrupt should be put here. */ } if(IntrMask & XCAN_IXR_TXBFLL_MASK) { /* TX High Priority Full Intr */ /* * Code to handle TX High Priority Buffer Full * Interrupt should be put here. */ } if(IntrMask & XCAN_IXR_TXFLL_MASK) { /* TX FIFO Full Interrupt */ /* * Code to handle TX FIFO Full * Interrupt should be put here. */ } if (IntrMask & XCAN_IXR_WKUP_MASK) { /* Wake up from sleep mode */ /* * Code to handle Wake up from sleep mode * Interrupt should be put here. */ } if (IntrMask & XCAN_IXR_SLP_MASK) { /* Enter sleep mode */ /* * Code to handle Enter sleep mode * Interrupt should be put here. */ } if (IntrMask & XCAN_IXR_ARBLST_MASK) { /* Lost bus arbitration */ /* * Code to handle Lost bus arbitration * Interrupt should be put here. */ } } /*****************************************************************************/ /** * * This function sets up the interrupt system so interrupts can occur for the * CAN. This function is application-specific since the actual system may or * may not have an interrupt controller. The CAN could be directly connected * to a processor without an interrupt controller. The user should modify this * function to fit the application. * * @para InstancePtr is a pointer to the instance of the CAN * which is going to be connected to the interrupt controller. * * @return XST_SUCCESS if successful, otherwise XST_FAILURE. * * @note None. * ****************************************************************************/ static int SetupInterruptSystem(XCan *InstancePtr) { static INTC InterruptController; int Status; #ifdef XPAR_INTC_0_DEVICE_ID /* * Initialize the interrupt controller driver so that it's ready to use. * INTC_DEVICE_ID specifies the XINTC device ID that is generated in * xparameters.h. */ Status = XIntc_Initialize(&InterruptController, INTC_DEVICE_ID); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Connect the device driver handler that will be called when an interrupt * for the device occurs, the device driver handler performs the specific * interrupt processing for the device. */ Status = XIntc_Connect(&InterruptController, CAN_INTR_VEC_ID, (XInterruptHandler)XCan_IntrHandler, InstancePtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Start the interrupt controller so interrupts are enabled for all * devices that cause interrupts. Specify real mode so that the CAN * can cause interrupts through the interrupt controller. */ Status = XIntc_Start(&InterruptController, XIN_REAL_MODE); if (Status != XST_SUCCESS){ return XST_FAILURE; } /* * Enable the interrupt for the CAN. */ XIntc_Enable(&InterruptController, CAN_INTR_VEC_ID); #else /* SCUGIC */ XScuGic_Config *IntcConfig; /* * Initialize the interrupt controller driver so that it is ready to * use. */ IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID); if (NULL == IntcConfig) { return XST_FAILURE; } Status = XScuGic_CfgInitialize(&InterruptController, IntcConfig, IntcConfig->CpuBaseAddress); if (Status != XST_SUCCESS) { return XST_FAILURE; } XScuGic_SetPriorityTriggerType(&InterruptController, CAN_INTR_VEC_ID, 0xA0, 0x3); /* * Connect the interrupt handler that will be called when an * interrupt occurs for the device. */ Status = XScuGic_Connect(&InterruptController, CAN_INTR_VEC_ID, (Xil_ExceptionHandler)XCan_IntrHandler, InstancePtr); if (Status != XST_SUCCESS) { return Status; } /* * Enable the interrupt for the Can device. */ XScuGic_Enable(&InterruptController, CAN_INTR_VEC_ID); #endif /* * Initialize the exception table. */ Xil_ExceptionInit(); /* * Register the interrupt controller handler with the exception table. */ Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT, (Xil_ExceptionHandler)INTC_HANDLER, &InterruptController); /* * Enable exceptions. */ Xil_ExceptionEnable(); return XST_SUCCESS; }