metalsvm/drivers/net/rtl8139.c

468 lines
14 KiB
C
Raw Permalink Normal View History

/*
* Copyright 2010 Stefan Lankes, Chair for Operating Systems,
* RWTH Aachen University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of MetalSVM.
*
* This code based mostly on the online manual http://www.lowlevel.eu/wiki/RTL8139
*/
#include <metalsvm/stddef.h>
#include <metalsvm/stdio.h>
#include <metalsvm/string.h>
#include <metalsvm/processor.h>
#include <metalsvm/mailbox.h>
#include <metalsvm/page.h>
#include <asm/io.h>
#include <asm/irq.h>
#if defined(CONFIG_LWIP) && defined(CONFIG_PCI)
#include <asm/pci.h>
#include <lwip/sys.h>
#include <lwip/stats.h>
#include <lwip/netif.h>
#include <lwip/tcpip.h>
#include <netif/etharp.h>
#include <net/rtl8139.h>
2011-09-17 00:55:47 +02:00
#define RX_BUF_LEN 8192
#define TX_BUF_LEN 4096
#define MIN(a, b) (a) < (b) ? (a) : (b)
2011-09-17 00:55:47 +02:00
/*
* To set the RTL8139 to accept only the Transmit OK (TOK) and Receive OK (ROK)
* interrupts, we would have the TOK and ROK bits of the IMR high and leave the
* rest low. That way when a TOK or ROK IRQ happens, it actually will go through
* and fire up an IRQ.
*/
#define INT_MASK (ISR_ROK|ISR_TOK|ISR_RXOVW|ISR_TER|ISR_RER)
// Beside Receive OK (ROK) interrupt, this mask enable all other interrupts
#define INT_MASK_NO_ROK (ISR_TOK|ISR_RXOVW|ISR_TER|ISR_RER)
typedef struct {
char *vendor_str;
char *device_str;
uint32_t vendor;
uint32_t device;
} board_t;
static board_t board_tbl[] =
{
{"RealTek", "RealTek RTL8139", 0x10ec, 0x8139},
{"RealTek", "RealTek RTL8129 Fast Ethernet", 0x10ec, 0x8129},
{"RealTek", "RealTek RTL8139B PCI", 0x10ec, 0x8138},
{"SMC", "SMC1211TX EZCard 10/100 (RealTek RTL8139)", 0x1113, 0x1211},
{"D-Link", "D-Link DFE-538TX (RTL8139)", 0x1186, 0x1300},
{"LevelOne", "LevelOne FPC-0106Tx (RTL8139)", 0x018a, 0x0106},
{"Compaq", "Compaq HNE-300 (RTL8139c)", 0x021b, 0x8139},
{NULL,},
};
static struct netif* mynetif = NULL;
/*
* @return error code
* - ERR_OK: packet transferred to hardware
* - ERR_CONN: no link or link failure
* - ERR_IF: could not transfer to link (hardware buffer full?)
*/
static err_t rtl8139if_output(struct netif* netif, struct pbuf* p)
{
rtl1839if_t* rtl8139if = netif->state;
uint8_t transmitid = rtl8139if->tx_queue % 4;
uint32_t i;
struct pbuf *q;
if (BUILTIN_EXPECT((rtl8139if->tx_queue - rtl8139if->tx_complete) > 3, 0)) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_output: too many packets at once\n"));
return ERR_IF;
}
if (BUILTIN_EXPECT(p->tot_len > 1792, 0)) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_output: packet is longer than 1792 bytes\n"));
return ERR_IF;
}
if (rtl8139if->tx_inuse[transmitid] == 1) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_output: %i already inuse\n", transmitid));
return ERR_IF;
}
if (inportb(rtl8139if->iobase + MSR) & MSR_LINKB) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_output: link failure\n"));
return ERR_CONN;
}
rtl8139if->tx_queue++;
rtl8139if->tx_inuse[transmitid] = 1;
#if ETH_PAD_SIZE
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif
/*
* q traverses through linked list of pbuf's
* This list MUST consist of a single packet ONLY
*/
for (q = p, i = 0; q != 0; q = q->next) {
memcpy(rtl8139if->tx_buffer[transmitid] + i, q->payload, q->len);
i += q->len;
}
// send the packet
outportl(rtl8139if->iobase + TSD0 + (4 * transmitid), p->tot_len);//|0x3A0000);
#if ETH_PAD_SIZE
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif
LINK_STATS_INC(link.xmit);
return ERR_OK;
}
static void rtl_rx_inthandler(struct netif* netif)
{
rtl1839if_t* rtl8139if = netif->state;
uint16_t header;
uint16_t length, i;
uint8_t cmd;
struct pbuf *p = NULL;
struct pbuf* q;
cmd = inportb(rtl8139if->iobase + CR);
while(!(cmd & CR_BUFE)) {
header = *((uint16_t*) (rtl8139if->rx_buffer+rtl8139if->rx_pos));
2011-09-17 00:55:47 +02:00
rtl8139if->rx_pos = (rtl8139if->rx_pos + 2) % RX_BUF_LEN;
if (header & ISR_ROK) {
length = *((uint16_t*) (rtl8139if->rx_buffer+rtl8139if->rx_pos)) - 4; // copy packet (but not the CRC)
2011-09-17 00:55:47 +02:00
rtl8139if->rx_pos = (rtl8139if->rx_pos + 2) % RX_BUF_LEN;
#if ETH_PAD_SIZE
length += ETH_PAD_SIZE; /* allow room for Ethernet padding */
#endif
p = pbuf_alloc(PBUF_RAW, length, PBUF_POOL);
if (p) {
#if ETH_PAD_SIZE
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif
for (q=p; q!=NULL; q=q->next) {
i = MIN(q->len, RX_BUF_LEN - rtl8139if->rx_pos);
memcpy((uint8_t*) q->payload, rtl8139if->rx_buffer + rtl8139if->rx_pos, i);
if (i < q->len) // wrap around to end of RxBuffer
memcpy((uint8_t*) q->payload + i, rtl8139if->rx_buffer, q->len - i);
rtl8139if->rx_pos = (rtl8139if->rx_pos + q->len) % RX_BUF_LEN;
}
#if ETH_PAD_SIZE
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif
LINK_STATS_INC(link.recv);
2011-09-18 18:05:05 +02:00
// forward packet to LwIP
netif->input(p, netif);
} else {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_rx_inthandler: not enough memory!\n"));
2011-09-17 00:55:47 +02:00
rtl8139if->rx_pos += (rtl8139if->rx_pos + length) % RX_BUF_LEN;
LINK_STATS_INC(link.memerr);
LINK_STATS_INC(link.drop);
}
// packets are dword aligned
2011-09-17 00:55:47 +02:00
rtl8139if->rx_pos = ((rtl8139if->rx_pos + 4 + 3) & ~0x3) % RX_BUF_LEN;
outportw(rtl8139if->iobase + CAPR, rtl8139if->rx_pos - 0x10);
} else {
2011-09-17 00:55:47 +02:00
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_rx_inthandler: invalid header 0x%x, rx_pos %d\n", (uint32_t) header, rtl8139if->rx_pos));
LINK_STATS_INC(link.drop);
break;
}
cmd = inportb(rtl8139if->iobase + CR);
}
rtl8139if->polling = 0;
// enable all known interrupts
outportw(rtl8139if->iobase + IMR, INT_MASK);
}
static void rtl_tx_inthandler(struct netif* netif)
{
rtl1839if_t* rtl8139if = netif->state;
uint32_t checks = rtl8139if->tx_queue - rtl8139if->tx_complete;
uint32_t txstatus;
uint8_t tmp8;
while(checks > 0)
{
tmp8 = rtl8139if->tx_complete % 4;
txstatus = inportl(rtl8139if->iobase + TSD0 + tmp8 * 4);
if (!(txstatus & (TSD_TOK|TSD_TUN|TSD_TABT)))
return;
if (txstatus & (TSD_TABT | TSD_OWC)) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139_tx_inthandler: major error\n"));
continue;
}
if (txstatus & TSD_TUN) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139_tx_inthandler: transmit underrun\n"));
}
if (txstatus & TSD_TOK) {
rtl8139if->tx_inuse[tmp8] = 0;
rtl8139if->tx_complete++;
checks--;
}
}
}
/* this function is called in the context of the tcpip thread or the irq handler (by using NO_SYS) */
static void rtl8139if_poll(void* ctx)
{
rtl_rx_inthandler(mynetif);
}
static void rtl8139if_handler(struct state* s)
{
rtl1839if_t* rtl8139if = mynetif->state;
uint16_t isr_contents;
// disable all interrupts
outportw(rtl8139if->iobase + IMR, 0x00);
while (1) {
2011-07-31 19:17:42 +02:00
isr_contents = inportw(rtl8139if->iobase + ISR);
if (isr_contents == 0)
break;
if ((isr_contents & ISR_ROK) && !rtl8139if->polling) {
#if NO_SYS
rtl8139if_poll(NULL);
#else
if (tcpip_callback_with_block(rtl8139if_poll, NULL, 0) == ERR_OK) {
rtl8139if->polling = 1;
} else {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: unable to send a poll request to the tcpip thread\n"));
}
#endif
}
if (isr_contents & ISR_TOK)
rtl_tx_inthandler(mynetif);
if (isr_contents & ISR_RER) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: RX error detected!\n"));
}
if (isr_contents & ISR_TER) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: TX error detected!\n"));
}
if (isr_contents & ISR_RXOVW) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: RX overflow detected!\n"));
}
outportw(rtl8139if->iobase + ISR, isr_contents & (ISR_RXOVW|ISR_TER|ISR_RER|ISR_TOK|ISR_ROK));
}
if (rtl8139if->polling) // now, the tcpip thread will check for incoming messages
outportw(rtl8139if->iobase + IMR, INT_MASK_NO_ROK);
else
outportw(rtl8139if->iobase + IMR, INT_MASK); // enable interrupts
}
err_t rtl8139if_init(struct netif* netif)
{
rtl1839if_t* rtl8139if;
uint32_t tmp32;
uint16_t tmp16, speed;
uint8_t tmp8;
static uint8_t num = 0;
pci_info_t pci_info;
LWIP_ASSERT("netif != NULL", (netif != NULL));
tmp8 = 0;
while (board_tbl[tmp8].vendor_str) {
if (pci_get_device_info(board_tbl[tmp8].vendor, board_tbl[tmp8].device, &pci_info) == 0)
break;
tmp8++;
}
if (!board_tbl[tmp8].vendor_str)
return ERR_ARG;
rtl8139if = kmalloc(sizeof(rtl1839if_t));
if (!rtl8139if) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_init: out of memory\n"));
return ERR_MEM;
}
memset(rtl8139if, 0x00, sizeof(rtl1839if_t));
rtl8139if->iobase = pci_info.base[0];
rtl8139if->irq = pci_info.irq;
/* allocate the receive buffer */
rtl8139if->rx_buffer = mem_allocation(RX_BUF_LEN + 16 /* header size */, MAP_KERNEL_SPACE|MAP_NO_CACHE);
if (!(rtl8139if->rx_buffer)) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_init: out of memory\n"));
kfree(rtl8139if, sizeof(rtl1839if_t));
return ERR_MEM;
}
2011-09-17 00:55:47 +02:00
memset(rtl8139if->rx_buffer, 0x00, RX_BUF_LEN);
/* allocate the send buffers */
2011-09-17 00:55:47 +02:00
rtl8139if->tx_buffer[0] = mem_allocation(4*TX_BUF_LEN, MAP_KERNEL_SPACE|MAP_NO_CACHE);
if (!(rtl8139if->tx_buffer[0])) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_init: out of memory\n"));
2011-09-17 00:55:47 +02:00
kfree(rtl8139if->rx_buffer, RX_BUF_LEN);
kfree(rtl8139if, sizeof(rtl1839if_t));
return ERR_MEM;
}
2011-09-17 00:55:47 +02:00
memset(rtl8139if->tx_buffer[0], 0x00, 4*TX_BUF_LEN);
rtl8139if->tx_buffer[1] = rtl8139if->tx_buffer[0] + TX_BUF_LEN;
rtl8139if->tx_buffer[2] = rtl8139if->tx_buffer[1] + TX_BUF_LEN;
rtl8139if->tx_buffer[3] = rtl8139if->tx_buffer[2] + TX_BUF_LEN;
netif->state = rtl8139if;
mynetif = netif;
tmp32 = inportl(rtl8139if->iobase + TCR);
if (tmp32 == 0xFFFFFF) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_init: ERROR\n"));
kfree(rtl8139if, sizeof(rtl1839if_t));
return ERR_ARG;
}
// determine the hardware revision
//tmp32 = (tmp32 & TCR_HWVERID) >> TCR_HWOFFSET;
irq_install_handler(rtl8139if->irq+32, rtl8139if_handler);
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_init: Found %s at iobase 0x%x (irq %u)\n", board_tbl[tmp8].device_str,
rtl8139if->iobase, rtl8139if->irq));
// determine the mac address of this card
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_init: MAC address "));
for (tmp8=0; tmp8<6; tmp8++) {
mynetif->hwaddr[tmp8] = inportb(rtl8139if->iobase + IDR0 + tmp8);
LWIP_DEBUGF(NETIF_DEBUG, ("%02x ", mynetif->hwaddr[tmp8]));
}
LWIP_DEBUGF(NETIF_DEBUG, ("\n"));
// Software reset
outportb(rtl8139if->iobase + CR, CR_RST);
/*
* The RST bit must be checked to make sure that the chip has finished the reset.
* If the RST bit is high (1), then the reset is still in operation.
*/
udelay(10000);
tmp16 = 10000;
while ((inportb(rtl8139if->iobase + CR) & CR_RST) && tmp16 > 0) {
tmp16--;
}
if (!tmp16) {
2011-07-31 19:17:42 +02:00
// it seems not to work
kprintf("RTL8139 reset failed\n");
kfree(rtl8139if, sizeof(rtl1839if_t));
return ERR_ARG;
}
// Enable Receive and Transmitter
outportb(rtl8139if->iobase + CR, CR_TE|CR_RE); // Sets the RE and TE bits high
// lock config register
outportb(rtl8139if->iobase + CR9346, CR9346_EEM1 | CR9346_EEM0);
// clear all of CONFIG1
outportb(rtl8139if->iobase + CONFIG1, 0);
// disable driver loaded and lanwake bits, turn driver loaded bit back on
outportb(rtl8139if->iobase + CONFIG1,
(inportb(rtl8139if->iobase + CONFIG1) & ~(CONFIG1_DVRLOAD | CONFIG1_LWACT)) | CONFIG1_DVRLOAD);
2011-07-31 19:17:42 +02:00
// unlock config register
outportb(rtl8139if->iobase + CR9346, 0);
/*
* configure receive buffer
* AB - Accept Broadcast: Accept broadcast packets sent to mac ff:ff:ff:ff:ff:ff
* AM - Accept Multicast: Accept multicast packets.
* APM - Accept Physical Match: Accept packets send to NIC's MAC address.
* AAP - Accept All Packets. Accept all packets (run in promiscuous mode).
*/
outportl(rtl8139if->iobase + RCR, RCR_MXDMA2|RCR_MXDMA1|RCR_MXDMA0|RCR_AB|RCR_AM|RCR_APM|RCR_AAP); // The WRAP bit isn't set!
// set the transmit config register to
// be the normal interframe gap time
// set DMA max burst to 64bytes
outportl(rtl8139if->iobase + TCR, TCR_IFG|TCR_MXDMA0|TCR_MXDMA1|TCR_MXDMA2);
// register the receive buffer
2011-02-24 10:15:58 +01:00
outportl(rtl8139if->iobase + RBSTART, virt_to_phys((size_t) rtl8139if->rx_buffer));
// set each of the transmitter start address descriptors
2011-02-24 10:15:58 +01:00
outportl(rtl8139if->iobase + TSAD0, virt_to_phys((size_t) rtl8139if->tx_buffer[0]));
outportl(rtl8139if->iobase + TSAD1, virt_to_phys((size_t) rtl8139if->tx_buffer[1]));
outportl(rtl8139if->iobase + TSAD2, virt_to_phys((size_t) rtl8139if->tx_buffer[2]));
outportl(rtl8139if->iobase + TSAD3, virt_to_phys((size_t) rtl8139if->tx_buffer[3]));
// Enable all known interrupts by setting the interrupt mask.
outportw(rtl8139if->iobase + IMR, INT_MASK);
outportw(rtl8139if->iobase + BMCR, BMCR_ANE);
tmp16 = inportw(rtl8139if->iobase + BMCR);
if (tmp16 & BMCR_SPD1000)
speed = 1000;
else if (tmp16 & BMCR_SPD100)
speed = 100;
else
speed = 10;
// Enable Receive and Transmitter
outportb(rtl8139if->iobase + CR, CR_TE|CR_RE); // Sets the RE and TE bits high
kprintf("RTL8139: CR = 0x%x, ISR = 0x%x, speed = %u mbps\n",
inportb(rtl8139if->iobase + CR), inportw(rtl8139if->iobase + ISR), speed);
/*
* Initialize the snmp variables and counters inside the struct netif.
* The last argument should be replaced with your link speed, in units
* of bits per second.
*/
NETIF_INIT_SNMP(netif, snmp_ifType_ethernet_csmacd, speed);
/* administrative details */
netif->name[0] = 'e';
netif->name[1] = 'n';
netif->num = num;
num++;
/* downward functions */
netif->output = etharp_output;
netif->linkoutput = rtl8139if_output;
/* maximum transfer unit */
netif->mtu = 1500;
/* broadcast capability */
netif->flags |= NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP;
/* hardware address length */
netif->hwaddr_len = 6;
rtl8139if->ethaddr = (struct eth_addr *)netif->hwaddr;
return ERR_OK;
}
#endif