Merge branch 'vogel' into x64_paging

This commit is contained in:
Steffen Vogel 2013-11-26 17:25:53 +01:00
commit edf178f39a
27 changed files with 1079 additions and 635 deletions

View file

@ -128,17 +128,20 @@ qemu: newlib tools $(NAME).elf
$(QEMU) -monitor stdio -serial tcp::12346,server,nowait -smp $(SMP) -net nic,model=rtl8139 -net user,hostfwd=tcp::12345-:4711 -kernel metalsvm.elf -initrd tools/initrd.img
qemudbg: newlib tools $(NAME).elf
$(QEMU) -s -S -monitor stdio -serial tcp::12346,server -smp $(SMP) -net nic,model=rtl8139 -net user,hostfwd=tcp::12345-:4711 -kernel metalsvm.elf -initrd tools/initrd.img
$(QEMU) -s -S -nographic -monitor stdio -serial tcp::12346,server -smp $(SMP) -net nic,model=rtl8139 -net user,hostfwd=tcp::12345-:4711 -kernel metalsvm.elf -initrd tools/initrd.img
gdb: $(NAME).elf
$(GDB) -q -x script.gdb
debug: newlib tools $(NAME).elf
killall $(QEMU) || true
killall $(GDB) || true
sleep 1
gnome-terminal --working-directory=$(TOPDIR) \
--tab --title=Debug --command="bash -c 'sleep 1 && telnet localhost 12346'" \
--tab --title=Shell --command="bash -c 'sleep 1 && telnet localhost 12345'" \
--tab --title=QEmu --command="make qemudbg" \
--tab --title=GDB --command="make gdb"
--tab --title=GDB --command="make gdb" \
--tab --title=Debug --command="bash -c 'sleep 1 && telnet localhost 12346'"
clean:
$Q$(RM) $(NAME).elf $(NAME).sym *~

View file

@ -1,4 +1,4 @@
C_source := tests.c echo.c netio.c jacobi.c laplace.c gfx_client.c gfx_generic.c paging.c
C_source := tests.c echo.c netio.c jacobi.c laplace.c gfx_client.c gfx_generic.c memory.c
MODULE := apps
include $(TOPDIR)/Makefile.inc

View file

@ -23,11 +23,14 @@
#include <metalsvm/mmu.h>
#include <metalsvm/time.h>
#include <metalsvm/tasks.h>
#include <metalsvm/vma.h>
#include <metalsvm/malloc.h>
#include <asm/page.h>
#include <asm/processor.h>
#define PAGE_COUNT 10
#define SIZE (PAGE_COUNT*PAGE_SIZE)
#define VIRT_FROM_ADDR 0x100000000000
#define VIRT_TO_ADDR 0x200000000000
@ -51,6 +54,16 @@ static void test(size_t expr, char *fmt, ...)
abort();
}
/** @brief Linear feedback shift register PRNG */
static uint16_t rand()
{
static uint16_t lfsr = 0xACE1u;
static uint16_t bit;
bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5) ) & 1;
return lfsr = (lfsr >> 1) | (bit << 15);
}
/** @brief BSD sum algorithm ('sum' Unix command) and used by QEmu */
uint16_t checksum(size_t start, size_t end) {
size_t addr;
@ -168,12 +181,102 @@ static void paging(void)
//sleep(3);
}
/** @brief Test of the VMA allocator */
static void vma(void)
{
int ret;
// vma_alloc
size_t a1 = vma_alloc(SIZE, VMA_HEAP);
test(a1, "vma_alloc(0x%x, 0x%x) = 0x%lx", SIZE, VMA_HEAP, a1);
vma_dump();
size_t a2 = vma_alloc(SIZE, VMA_HEAP|VMA_USER);
test(a2 != 0, "vma_alloc(0x%x, 0x%x) = 0x%lx", SIZE, VMA_HEAP|VMA_USER, a2);
vma_dump();
// vma_add
ret = vma_add(VIRT_FROM_ADDR, VIRT_FROM_ADDR+SIZE, VMA_HEAP|VMA_USER);
test(ret >= 0, "vma_add(0x%lx, 0x%lx, 0x%x) = %u", VIRT_FROM_ADDR, VIRT_FROM_ADDR+SIZE, VMA_HEAP|VMA_USER, ret);
vma_dump();
ret = vma_add(VIRT_FROM_ADDR+SIZE, VIRT_FROM_ADDR+2*SIZE, VMA_HEAP|VMA_USER);
test(ret >= 0, "vma_add(0x%lx, 0x%lx, 0x%x) = %u", VIRT_FROM_ADDR+SIZE, VIRT_FROM_ADDR+2*SIZE, VMA_HEAP|VMA_USER, ret);
vma_dump();
ret = vma_add(VIRT_FROM_ADDR-SIZE, VIRT_FROM_ADDR, VMA_HEAP|VMA_USER);
test(ret >= 0, "vma_add(0x%lx, 0x%lx, 0x%x) = %u", VIRT_FROM_ADDR-SIZE, VIRT_FROM_ADDR, VMA_HEAP|VMA_USER, ret);
vma_dump();
// vma_free
ret = vma_free(VIRT_FROM_ADDR-SIZE, VIRT_FROM_ADDR);
test(ret >= 0, "vma_free(0x%lx, 0x%lx) = %u", VIRT_FROM_ADDR-SIZE, VIRT_FROM_ADDR, ret);
vma_dump();
ret = vma_free(VIRT_FROM_ADDR+SIZE, VIRT_FROM_ADDR+2*SIZE);
test(ret >= 0, "vma_free(0x%lx, 0x%lx) = %u", VIRT_FROM_ADDR+SIZE, VIRT_FROM_ADDR+2*SIZE, ret);
vma_dump();
ret = vma_free(VIRT_FROM_ADDR, VIRT_FROM_ADDR+SIZE);
test(ret >= 0, "vma_free(0x%lx, 0x%lx) = %u", VIRT_FROM_ADDR, VIRT_FROM_ADDR+SIZE, ret);
vma_dump();
}
/** @brief Test of the kernel malloc allocator */
static void malloc(void)
{
int i;
int* p[20];
int* a;
// kmalloc() test
buddy_dump();
a = kmalloc(SIZE);
test(a != NULL, "kmalloc(%lu) = %p", SIZE, a);
buddy_dump();
// simple write/read test
for (i=0; i<SIZE/sizeof(int); i++)
a[i] = i;
for (i=0; i<SIZE/sizeof(int); i++) {
if (a[i] != i)
test(0, "data mismatch: *(%p) != %lu", &a[i], i);
}
test(1, "data is equal");
// kfree() test
kfree(a);
test(1, "kfree(%p)", a);
buddy_dump();
// some random malloc/free patterns to stress the buddy system
for (i=0; i<20; i++) {
uint16_t sz = rand();
p[i] = kmalloc(sz);
test(p[i] != NULL, "kmalloc(%u) = %p", sz, p[i]);
}
buddy_dump();
for (i=0; i<20; i++) {
kfree(p[i]);
test(1, "kfree(%p)", p[i]);
}
buddy_dump();
}
/** @brief This is a simple procedure to test memory management subsystem */
int memory(void* arg)
{
kprintf("======== PAGING: test started...\n");
paging();
kprintf("======== VMA: test started...\n");
vma();
kprintf("======== MALLOC: test started...\n");
malloc();
kprintf("======== All tests finished successfull...\n");
return 0;

View file

@ -35,9 +35,11 @@
#ifdef CONFIG_MULTIBOOT
/* are there modules to do something with? */
/// Does the bootloader provide mem_* fields?
#define MULTIBOOT_INFO_MEM 0x00000001
/// Does the bootloader provide a list of modules?
#define MULTIBOOT_INFO_MODS 0x00000008
/* is there a full memory map? */
/// Does the bootloader provide a full memory map?
#define MULTIBOOT_INFO_MEM_MAP 0x00000040
typedef uint16_t multiboot_uint16_t;
@ -114,7 +116,6 @@ struct multiboot_info
multiboot_uint16_t vbe_interface_off;
multiboot_uint16_t vbe_interface_len;
};
typedef struct multiboot_info multiboot_info_t;
struct multiboot_mmap_entry

View file

@ -273,7 +273,7 @@ int ipi_tlb_flush(void);
/** @brief Flush a specific page entry in TLB
* @param addr The (virtual) address of the page to flush
*/
static inline void tlb_flush_one_page(uint32_t addr)
static inline void tlb_flush_one_page(size_t addr)
{
asm volatile("invlpg (%0)" : : "r"(addr) : "memory");
#if MAX_CORES > 1
@ -293,7 +293,7 @@ static inline void tlb_flush_one_page(uint32_t addr)
*/
static inline void tlb_flush(void)
{
uint32_t val = read_cr3();
size_t val = read_cr3();
if (val)
write_cr3(val);

View file

@ -37,7 +37,7 @@ void kb_init(size_t size, tid_t tid) {
}
void kb_finish(void) {
kfree(kb_buffer.buffer, (kb_buffer.maxsize * sizeof(char)));
kfree(kb_buffer.buffer);
kb_buffer.buffer = NULL;
kb_buffer.size = 0;
kb_buffer.maxsize = 0;

View file

@ -150,6 +150,7 @@ int create_page_map(task_t* task, int copy)
}
memset(pgt, 0x00, sizeof(page_map_t));
// copy kernel tables
spinlock_lock(&kslock);
for(i=0; i<MAP_ENTRIES; i++) {
@ -611,7 +612,7 @@ int print_paging_tree(size_t viraddr)
} else
kputs("invalid page directory\n");
/* convert physical address to virtual */
// convert physical address to virtual
if (paging_enabled && pgt)
pgt = (page_map_t*) (KERNEL_SPACE - 1024*PAGE_SIZE + index1*PAGE_SIZE);
@ -688,11 +689,11 @@ int arch_paging_init(void)
page_map_t* pgt;
size_t viraddr;
// uninstall default handler and install our own
// replace default pagefault handler
irq_uninstall_handler(14);
irq_install_handler(14, pagefault_handler);
// Create a page table to reference to the other page tables
// create a page table to reference to the other page tables
pgt = &pgt_container;
// map this table at the end of the kernel space
@ -714,8 +715,8 @@ int arch_paging_init(void)
}
/*
* Set the page table and page directory entries for the kernel. We map the kernel's physical address
* to the same virtual address.
* Set the page table and page directory entries for the kernel.
* We map the kernel's physical address to the same virtual address.
*/
npages = ((size_t) &kernel_end - (size_t) &kernel_start) >> PAGE_SHIFT;
if ((size_t)&kernel_end & (PAGE_SIZE-1))
@ -723,7 +724,7 @@ int arch_paging_init(void)
map_region((size_t)&kernel_start, (size_t)&kernel_start, npages, MAP_KERNEL_SPACE);
#if MAX_CORES > 1
// Reserve page for smp boot code
// reserve page for smp boot code
if (!map_region(SMP_SETUP_ADDR, SMP_SETUP_ADDR, 1, MAP_KERNEL_SPACE|MAP_NO_CACHE)) {
kputs("could not reserve page for smp boot code\n");
return -ENOMEM;
@ -741,9 +742,7 @@ int arch_paging_init(void)
map_region((size_t) mb_info & PAGE_MASK, (size_t) mb_info & PAGE_MASK, 1, MAP_KERNEL_SPACE);
#if 0
/*
* Map reserved memory regions into the kernel space
*/
// map reserved memory regions into the kernel space
if (mb_info && (mb_info->flags & MULTIBOOT_INFO_MEM_MAP)) {
multiboot_memory_map_t* mmap = (multiboot_memory_map_t*) mb_info->mmap_addr;
multiboot_memory_map_t* mmap_end = (void*) ((size_t) mb_info->mmap_addr + mb_info->mmap_length);
@ -818,10 +817,7 @@ int arch_paging_init(void)
bootinfo->addr = viraddr;
#endif
/*
* we turned on paging
* => now, we are able to register our task
*/
// we turned on paging => now, we are able to register our task
register_task();
// APIC registers into the kernel address space

View file

@ -407,91 +407,6 @@ int change_page_permissions(size_t start, size_t end, uint32_t flags)
return -EINVAL;
}
/*
* Use the first fit algorithm to find a valid address range
*
* TODO: O(n) => bad performance, we need a better approach
*/
size_t vm_alloc(uint32_t npages, uint32_t flags)
{
task_t* task = per_core(current_task);
size_t viraddr, i, j, ret = 0;
size_t start, end;
page_map_t* pdpt, * pgd, * pgt;
uint16_t index_pml4, index_pdpt;
uint16_t index_pgd, index_pgt;
if (BUILTIN_EXPECT(!task || !task->page_map || !paging_enabled, 0))
return 0;
if (flags & MAP_KERNEL_SPACE) {
start = (((size_t) &kernel_end) + 10*PAGE_SIZE) & PAGE_MASK;
end = (KERNEL_SPACE - PAGE_SIZE) & PAGE_MASK;
} else {
start = KERNEL_SPACE & PAGE_MASK;
end = PAGE_MASK;
}
if (BUILTIN_EXPECT(!npages, 0))
return 0;
if (flags & MAP_KERNEL_SPACE)
spinlock_lock(&kslock);
else
spinlock_irqsave_lock(&task->page_lock);
viraddr = i = start;
j = 0;
do {
index_pml4 = (viraddr >> 39) & 0x1FF;
index_pdpt = (viraddr >> 30) & 0x1FF;
index_pgd = (viraddr >> 21) & 0x1FF;
index_pgt = (viraddr >> 12) & 0x1FF;
// Currently, we allocate pages only in kernel space.
// => physical address of the page table is identical of the virtual address
pdpt = (page_map_t*) (task->page_map->entries[index_pml4] & PAGE_MASK);
if (!pdpt) {
i += (size_t)PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES*PAGE_SIZE;
j += PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES;
continue;
}
pgd = (page_map_t*) (pdpt->entries[index_pdpt] & PAGE_MASK);
if (!pgd) {
i += PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES*PAGE_SIZE;
j += PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES;
continue;
}
pgt = (page_map_t*) (pgd->entries[index_pgd] & PAGE_MASK);
if (!pgt) {
i += PAGE_MAP_ENTRIES*PAGE_SIZE;
j += PAGE_MAP_ENTRIES;
continue;
}
if (!(pgt->entries[index_pgt])) {
i += PAGE_SIZE;
j++;
} else {
// restart search
j = 0;
viraddr = i + PAGE_SIZE;
i = i + PAGE_SIZE;
}
} while((j < npages) && (i<=end));
if ((j >= npages) && (viraddr < end))
ret = viraddr;
if (flags & MAP_KERNEL_SPACE)
spinlock_unlock(&kslock);
else
spinlock_irqsave_unlock(&task->page_lock);
return ret;
}
int unmap_region(size_t viraddr, uint32_t npages)
{
@ -517,7 +432,7 @@ int unmap_region(size_t viraddr, uint32_t npages)
index_pgd = (viraddr >> 21) & 0x1FF;
index_pgt = (viraddr >> 12) & 0x1FF;
// Currently, we allocate pages only in kernel space.
// currently, we allocate pages only in kernel space.
// => physical address of the page table is identical of the virtual address
pdpt = (page_map_t*) (task->page_map->entries[index_pml4] & PAGE_MASK);
if (!pdpt) {
@ -560,70 +475,6 @@ int unmap_region(size_t viraddr, uint32_t npages)
return 0;
}
int vm_free(size_t viraddr, uint32_t npages)
{
task_t* task = per_core(current_task);
page_map_t* pdpt, * pgd, * pgt;
size_t i;
uint16_t index_pml4, index_pdpt;
uint16_t index_pgd, index_pgt;
if (BUILTIN_EXPECT(!task || !task->page_map || !paging_enabled, 0))
return -EINVAL;
if (viraddr <= KERNEL_SPACE)
spinlock_lock(&kslock);
else
spinlock_irqsave_lock(&task->page_lock);
i = 0;
while(i<npages)
{
index_pml4 = (viraddr >> 39) & 0x1FF;
index_pdpt = (viraddr >> 30) & 0x1FF;
index_pgd = (viraddr >> 21) & 0x1FF;
index_pgt = (viraddr >> 12) & 0x1FF;
// Currently, we allocate pages only in kernel space.
// => physical address of the page table is identical of the virtual address
pdpt = (page_map_t*) (task->page_map->entries[index_pml4] & PAGE_MASK);
if (!pdpt) {
viraddr += (size_t) PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES*PAGE_SIZE;
i += PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES;
continue;
}
pgd = (page_map_t*) (pdpt->entries[index_pdpt] & PAGE_MASK);
if (!pgd) {
viraddr += PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES*PAGE_SIZE;
i += PAGE_MAP_ENTRIES*PAGE_MAP_ENTRIES;
continue;
}
pgt = (page_map_t*) (pgd->entries[index_pgd] & PAGE_MASK);
if (!pgt) {
viraddr += PAGE_MAP_ENTRIES*PAGE_SIZE;
i += PAGE_MAP_ENTRIES;
continue;
}
if (pgt->entries[index_pgt])
pgt->entries[index_pgt] = 0;
viraddr +=PAGE_SIZE;
i++;
tlb_flush_one_page(viraddr);
}
if (viraddr <= KERNEL_SPACE)
spinlock_unlock(&kslock);
else
spinlock_irqsave_unlock(&task->page_lock);
return 0;
}
static void pagefault_handler(struct state *s)
{
task_t* task = per_core(current_task);
@ -646,8 +497,10 @@ static void pagefault_handler(struct state *s)
kprintf("Could not map 0x%x at 0x%x\n", phyaddr, viraddr);
put_page(phyaddr);
}
// handle missing paging structures for userspace
// all kernel space paging structures have been initialized in entry64.asm
/*
* handle missing paging structures for userspace
* all kernel space paging structures have been initialized in entry64.asm
*/
else if (viraddr >= PAGE_PGT) {
kprintf("map_region: missing paging structure at: 0x%lx (%s)\n", viraddr, map_to_lvlname(viraddr));
@ -685,7 +538,7 @@ int arch_paging_init(void)
{
uint32_t i, npages;
// uninstall default handler and install our own
// replace default pagefault handler
irq_uninstall_handler(14);
irq_install_handler(14, pagefault_handler);
@ -695,7 +548,7 @@ int arch_paging_init(void)
*/
#if MAX_CORES > 1
// Reserve page for smp boot code
// reserve page for smp boot code
if (!map_region(SMP_SETUP_ADDR, SMP_SETUP_ADDR, 1, MAP_KERNEL_SPACE|MAP_NO_CACHE)) {
kputs("could not reserve page for smp boot code\n");
return -ENOMEM;
@ -704,9 +557,7 @@ int arch_paging_init(void)
#ifdef CONFIG_MULTIBOOT
#if 0
/*
* Map reserved memory regions into the kernel space
*/
// map reserved memory regions into the kernel space
if (mb_info && (mb_info->flags & MULTIBOOT_INFO_MEM_MAP)) {
multiboot_memory_map_t* mmap = (multiboot_memory_map_t*) mb_info->mmap_addr;
multiboot_memory_map_t* mmap_end = (void*) ((size_t) mb_info->mmap_addr + mb_info->mmap_length);
@ -742,10 +593,7 @@ int arch_paging_init(void)
}
#endif
/*
* we turned on paging
* => now, we are able to register our task
*/
// we turned on paging => now, we are able to register our task
register_task();
// APIC registers into the kernel address space

View file

@ -70,7 +70,7 @@ static ssize_t socket_write(fildes_t* file, uint8_t* buffer, size_t size)
return -ENOMEM;
memcpy(tmp, buffer, size);
ret = lwip_write(file->offset, tmp, size);
kfree(tmp, size);
kfree(tmp);
#endif
if (ret < 0)
ret = -errno;
@ -147,7 +147,7 @@ int socket_init(vfs_node_t* node, const char* name)
} while(blist);
kfree(new_node, sizeof(vfs_node_t));
kfree(new_node);
return -ENOMEM;
}

View file

@ -153,7 +153,7 @@ int null_init(vfs_node_t* node, const char* name)
} while(blist);
kfree(new_node, sizeof(vfs_node_t));
kfree(new_node);
return -ENOMEM;
}
@ -212,7 +212,7 @@ int stdin_init(vfs_node_t* node, const char* name)
} while(blist);
kfree(new_node, sizeof(vfs_node_t));
kfree(new_node);
return -ENOMEM;
}
@ -271,7 +271,7 @@ int stdout_init(vfs_node_t* node, const char* name)
} while(blist);
kfree(new_node, sizeof(vfs_node_t));
kfree(new_node);
return -ENOMEM;
}
@ -330,7 +330,7 @@ int stderr_init(vfs_node_t* node, const char* name)
} while(blist);
kfree(new_node, sizeof(vfs_node_t));
kfree(new_node);
return -ENOMEM;
}

View file

@ -210,7 +210,7 @@ static int initrd_open(fildes_t* file, const char* name)
if (file->node->type == FS_FILE) {
if ((file->flags & O_CREAT) && (file->flags & O_EXCL))
return -EEXIST;
/* in the case of O_TRUNC kfree all the nodes */
if (file->flags & O_TRUNC) {
uint32_t i;
@ -221,8 +221,7 @@ static int initrd_open(fildes_t* file, const char* name)
/* the first blist pointer have do remain valid. */
for(i=0; i<MAX_DATABLOCKS && !data; i++) {
if (blist->data[i]) {
kfree(blist->data[i],
sizeof(data_block_t));
kfree(blist->data[i]);
}
}
if (blist->next) {
@ -234,12 +233,12 @@ static int initrd_open(fildes_t* file, const char* name)
do {
for(i=0; i<MAX_DATABLOCKS && !data; i++) {
if (blist->data[i]) {
kfree(blist->data[i], sizeof(data_block_t));
kfree(blist->data[i]);
}
}
lastblist = blist;
blist = blist->next;
kfree(lastblist, sizeof(block_list_t));
kfree(lastblist);
} while(blist);
}
@ -253,7 +252,7 @@ static int initrd_open(fildes_t* file, const char* name)
/* opendir was called: */
if (name[0] == '\0')
return 0;
/* open file was called: */
if (!(file->flags & O_CREAT))
return -ENOENT;
@ -264,11 +263,11 @@ static int initrd_open(fildes_t* file, const char* name)
vfs_node_t* new_node = kmalloc(sizeof(vfs_node_t));
if (BUILTIN_EXPECT(!new_node, 0))
return -EINVAL;
blist = &file->node->block_list;
dir_block_t* dir_block;
dirent_t* dirent;
memset(new_node, 0x00, sizeof(vfs_node_t));
new_node->type = FS_FILE;
new_node->read = &initrd_read;
@ -286,7 +285,7 @@ static int initrd_open(fildes_t* file, const char* name)
if (!dirent->vfs_node) {
dirent->vfs_node = new_node;
strncpy(dirent->name, (char*) name, MAX_FNAME);
goto exit_create_file; // there might be a better Solution ***************
goto exit_create_file; // TODO: there might be a better Solution
}
}
}
@ -425,9 +424,9 @@ static vfs_node_t* initrd_mkdir(vfs_node_t* node, const char* name)
blist = blist->next;
} while(blist);
kfree(dir_block, sizeof(dir_block_t));
kfree(dir_block);
out:
kfree(new_node, sizeof(vfs_node_t));
kfree(new_node);
return NULL;
}

72
include/metalsvm/malloc.h Normal file
View file

@ -0,0 +1,72 @@
/*
* Copyright 2010 Steffen Vogel, Chair for Operating Systems,
* RWTH Aachen University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of MetalSVM.
*/
#ifndef __MALLOC_H__
#define __MALLOC_H__
#include <metalsvm/stddef.h>
#ifdef __cplusplus
extern "C" {
#endif
/// Binary exponent of maximal size for kmalloc()
#define BUDDY_MAX 32 // 4 GB
/// Binary exponent of minimal buddy size
#define BUDDY_MIN 4 // 16 Byte >= sizeof(buddy_prefix_t)
/// Binary exponent of the size which we allocate at least in one call to buddy_fill();
#define BUDDY_ALLOC 17 // 128 KByte >= PAGE_SHIFT, TODO: add Huge Page support?
#define BUDDY_LISTS (BUDDY_MAX-BUDDY_MIN+1)
#define BUDDY_MAGIC 0xBABE
union buddy;
/** @brief Buddy
*
* Every free memory block is stored in a linked list according to its size.
* We can use this free memory to store store this buddy_t union which represents
* this block (the buddy_t union is alligned to the front).
* Therefore the address of the buddy_t union is equal with the address
* of the underlying free memory block.
*
* Every allocated memory block is prefixed with its binary size exponent and
* a known magic number. This prefix is hidden by the user because its located
* before the actual memory address returned by kmalloc()
*/
typedef union buddy {
/// Pointer to the next buddy in the linked list.
union buddy* next;
struct {
/// The binary exponent of the block size
uint8_t exponent;
/// Must be equal to BUDDY_MAGIC for a valid memory block
uint16_t magic;
} prefix;
} buddy_t;
/** @brief Dump free buddies */
void buddy_dump(void);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -49,33 +49,39 @@ extern atomic_int32_t total_available_pages;
*/
int mmu_init(void);
/** @brief get continuous pages
/** @brief Get continuous pages
*
* This function finds a continuous page region (first fit algorithm)
*
* @param no_pages Desired number of pages
* Use first fit algorithm to find a suitable, continous physical memory region
*
* @param npages Desired number of pages
* @return
* - physical address on success
* - 0 on failure
*/
size_t get_pages(uint32_t no_pages);
size_t get_pages(uint32_t npages);
/** @brief get a single page
/** @brief Get a single page
*
* Convenience function: uses get_pages(1);
*/
static inline size_t get_page(void) { return get_pages(1); }
/** @brief Put back a page after use
/** @brief Put back a sequence of continous pages
*
* @param phyaddr Physical address to put back
* @param phyaddr Physical address of the first page
* @param npages Number of pages
*
* @return
* - 0 on success
* - -EINVAL (-22) on failure
*/
int put_page(size_t phyaddr);
int put_pages(size_t phyaddr, size_t npages);
/** @brief Put a single page
*
* Convenience function: uses put_pages(1);
*/
static inline int put_page(size_t phyaddr) { return put_pages(phyaddr, 1); }
#ifdef __cplusplus
}

View file

@ -29,10 +29,7 @@
#include <metalsvm/stddef.h>
#include <asm/page.h>
/**
* Sets up the environment, page directories etc and
* enables paging.
*/
/** @brief Sets up the environment, page directories etc and enables paging. */
static inline int paging_init(void) { return arch_paging_init(); }
#endif

View file

@ -28,7 +28,7 @@
extern "C" {
#endif
#define NULL ((void*) 0)
#define NULL ((void*) 0)
typedef unsigned int tid_t;
@ -62,10 +62,10 @@ typedef unsigned int tid_t;
irq_nested_enable(flags);\
return ret; \
}
#define CORE_ID smp_id()
#define CORE_ID smp_id()
#endif
/* needed to find the task, which is currently running on this core */
// needed to find the task, which is currently running on this core
struct task;
DECLARE_PER_CORE(struct task*, current_task);

View file

@ -29,9 +29,7 @@
#ifndef __STDLIB_H__
#define __STDLIB_H__
#include <metalsvm/config.h>
#include <metalsvm/tasks_types.h>
#include <asm/stddef.h>
#include <metalsvm/stddef.h>
#ifdef __cplusplus
extern "C" {
@ -55,46 +53,42 @@ extern "C" {
void NORETURN abort(void);
/** @brief Kernel's memory allocator function.
/** @brief General page allocator function
*
* This will just call mem_allocation with
* the flags MAP_KERNEL_SPACE and MAP_HEAP.
*
* @return Pointer to the new memory range
*/
void* kmalloc(size_t);
/** @brief Kernel's more general memory allocator function.
*
* This function lets you choose flags for the newly allocated memory.
* This function allocates and maps whole pages.
* To avoid fragmentation you should use kmalloc() and kfree()!
*
* @param sz Desired size of the new memory
* @param flags Flags to specify
* @param flags Flags to for map_region(), vma_add()
*
* @return Pointer to the new memory range
*/
void* mem_allocation(size_t sz, uint32_t flags);
void* palloc(size_t sz, uint32_t flags);
/** @brief Free memory
/** @brief Free general kernel memory
*
* The kernel malloc doesn't track how
* much memory was allocated for which pointer,
* The pmalloc() doesn't track how much memory was allocated for which pointer,
* so you have to specify how much memory shall be freed.
*/
void kfree(void*, size_t);
/** @brief Create a new stack for a new task
*
* @return start address of the new stack
* @param sz The size which should freed
*/
void* create_stack(void);
void pfree(void* addr, size_t sz);
/** @brief Delete stack of a finished task
/** @brief The memory allocator function
*
* @param addr Pointer to the stack
* @return 0 on success
* This allocator uses a buddy system to manage free memory.
*
* @return Pointer to the new memory range
*/
int destroy_stack(task_t* addr);
void* kmalloc(size_t sz);
/** @brief The memory free function
*
* Releases memory allocated by malloc()
*
* @param addr The address to the memory block allocated by malloc()
*/
void kfree(void* addr);
/** @brief String to long
*
@ -113,7 +107,7 @@ unsigned long strtoul(const char* nptr, char** endptr, int base);
*/
static inline int atoi(const char *str)
{
return (int)strtol(str, (char **)NULL, 10);
return (int)strtol(str, (char **) NULL, 10);
}
#ifdef __cplusplus

View file

@ -147,9 +147,7 @@ tid_t wait(int32_t* result);
*/
void update_load(void);
/** @brief Print the current cpu load
*
*/
/** @brief Print the current cpu load */
void dump_load(void);
#if MAX_CORES > 1
@ -201,9 +199,7 @@ int block_current_task(void);
*/
int set_timer(uint64_t deadline);
/** @brief check is a timer is expired
*
*/
/** @brief check is a timer is expired */
void check_timers(void);
/** @brief Abort current task */

View file

@ -27,56 +27,102 @@
#define __VMA_H__
#include <metalsvm/stddef.h>
#include <asm/page.h>
#ifdef __cplusplus
extern "C" {
#endif
/// Read access to this VMA is allowed
#define VMA_READ (1 << 0)
/// Write access to this VMA is allowed
#define VMA_WRITE (1 << 1)
/// Instructions fetches in this VMA are allowed
#define VMA_EXECUTE (1 << 2)
/// This VMA is cacheable
#define VMA_CACHEABLE (1 << 3)
#define VMA_NOACCESS (1 << 4)
/// This VMA is not accessable
#define VMA_NO_ACCESS (1 << 4)
/// This VMA should be part of the userspace
#define VMA_USER (1 << 5)
/// A collection of flags used for the kernel heap (kmalloc)
#define VMA_HEAP (VMA_READ|VMA_WRITE|VMA_CACHEABLE)
// boundaries for VAS allocation
extern const void kernel_end;
//#define VMA_KERN_MIN (((size_t) &kernel_end + PAGE_SIZE) & PAGE_MASK)
#define VMA_KERN_MAX KERNEL_SPACE
#define VMA_USER_MAX (1UL << 47) // TODO
struct vma;
/** @brief VMA structure definition */
/** @brief VMA structure definition
*
* Each item in this linked list marks a used part of the virtual address space.
* Its used by vm_alloc() to find holes between them.
*/
typedef struct vma {
/// Start address of the memory area
size_t start;
/// End address of the memory area
size_t end;
/// Type flags field
uint32_t type;
uint32_t flags;
/// Pointer of next VMA element in the list
struct vma* next;
/// Pointer to previous VMA element in the list
struct vma* prev;
} vma_t;
/** @brief Add a new virtual memory region to the list of VMAs
/** @brief Add a new virtual memory area to the list of VMAs
*
* @param task Pointer to the task_t structure of the task
* @param start Start address of the new region
* @param end End address of the new region
* @param type Type flags the new region shall have
* @param start Start address of the new area
* @param end End address of the new area
* @param flags Type flags the new area shall have
*
* @return
* - 0 on success
* - -EINVAL (-22) or -EINVAL (-12) on failure
*/
int vma_add(struct task* task, size_t start, size_t end, uint32_t type);
int vma_add(size_t start, size_t end, uint32_t flags);
/** @brief Dump information about this task's VMAs into the terminal.
/** @brief Search for a free memory area
*
* This will print out Start, end and flags for each VMA in the task's list
* @param size Size of requestes VMA in bytes
* @param flags
* @return Type flags the new area shall have
* - 0 on failure
* - the start address of a free area
*/
size_t vma_alloc(size_t size, uint32_t flags);
/** @brief Free an allocated memory area
*
* @param task The task's task_t structure
* @param start Start address of the area to be freed
* @param end End address of the to be freed
* @return
* - 0 on success
* - -EINVAL (-22) on failure
*/
int vma_dump(struct task* task);
int vma_free(size_t start, size_t end);
/** @brief Free all virtual memory areas
*
* @return
* - 0 on success
*/
int drop_vma_list();
/** @brief Copy the VMA list of the current task to task
*
* @param task The task where the list should be copied to
* @return
* - 0 on success
*/
int copy_vma_list(struct task* task);
/** @brief Dump information about this task's VMAs into the terminal. */
void vma_dump();
#ifdef __cplusplus
}

View file

@ -63,7 +63,7 @@ extern const void bss_end;
int lowlevel_init(void)
{
// initialize .bss section
memset((void*)&bss_start, 0x00, ((size_t) &bss_end - (size_t) &bss_start));
memset((char*) &bss_start, 0x00, (char*) &bss_end - (char*) &bss_start);
koutput_init();

View file

@ -74,6 +74,7 @@ int main(void)
kprintf("This is MetalSVM %s Build %u, %u\n",
METALSVM_VERSION, &__BUILD_DATE, &__BUILD_TIME);
popbg();
system_init();
irq_init();
timer_init();
@ -86,7 +87,7 @@ int main(void)
icc_init();
svm_init();
#endif
initrd_init();
initrd_init();
irq_enable();
@ -102,7 +103,7 @@ int main(void)
disable_timer_irq();
#endif
sleep(5);
sleep(2);
create_kernel_task(&id, initd, NULL, NORMAL_PRIO);
kprintf("Create initd with id %u\n", id);
reschedule();

View file

@ -105,11 +105,11 @@ static int sys_open(const char* name, int flags, int mode)
/* file doesn't exist! */
if (check < 0) {
/* tidy up the fildescriptor */
kfree(curr_task->fildes_table[fd], sizeof(fildes_t));
kfree(curr_task->fildes_table[fd]);
curr_task->fildes_table[fd] = NULL;
return check;
}
return fd;
}
@ -196,7 +196,7 @@ static int sys_socket(int domain, int type, int protocol)
/* file doesn't exist! */
if (curr_task->fildes_table[fd]->node == NULL) {
/* tidy up the fildescriptor */
kfree(curr_task->fildes_table[fd], sizeof(fildes_t));
kfree(curr_task->fildes_table[fd]);
curr_task->fildes_table[fd] = NULL;
return -ENOENT;
}
@ -240,7 +240,7 @@ static int sys_accept(int s, struct sockaddr* addr, socklen_t* addrlen)
/* file doesn't exist! */
if (curr_task->fildes_table[fd]->node == NULL) {
/* tidy up the fildescriptor */
kfree(curr_task->fildes_table[fd], sizeof(fildes_t));
kfree(curr_task->fildes_table[fd]);
curr_task->fildes_table[fd] = NULL;
return -ENOENT;
}
@ -273,7 +273,7 @@ static int sys_close(int fd)
/* close command failed -> return check = errno */
if (BUILTIN_EXPECT(check < 0, 0))
return check;
kfree(curr_task->fildes_table[fd], sizeof(fildes_t));
kfree(curr_task->fildes_table[fd]);
curr_task->fildes_table[fd] = NULL;
} else {
curr_task->fildes_table[fd]->count--;
@ -356,7 +356,7 @@ static int sys_dup(int fd)
* free the memory which was allocated in get_fildes()
* cause will link it to another existing memory space
*/
kfree(curr_task->fildes_table[new_fd], sizeof(fildes_t));
kfree(curr_task->fildes_table[new_fd]);
/* and link it to another existing memory space */
curr_task->fildes_table[new_fd] = curr_task->fildes_table[fd];

View file

@ -78,6 +78,7 @@ DEFINE_PER_CORE(task_t*, current_task, task_table+0);
extern const void boot_stack;
/** @brief helper function for the assembly code to determine the current task
*
* @return Pointer to the task_t structure of current task
*/
task_t* get_current_task(void) {
@ -96,6 +97,32 @@ uint32_t get_highest_priority(void)
return msb(runqueues[CORE_ID].prio_bitmap);
}
/** @brief Create a new stack for a new task
*
* @return start address of the new stack
*/
static void* create_stack(void)
{
return palloc(KERNEL_STACK_SIZE, MAP_KERNEL_SPACE);
}
/** @brief Delete stack of a finished task
*
* @param addr Pointer to the stack
* @return
* - 0 on success
* - -EINVAL on failure
*/
static int destroy_stack(task_t* task)
{
if (BUILTIN_EXPECT(!task || !task->stack, 0))
return -EINVAL;
pfree(task->stack, KERNEL_STACK_SIZE);
return 0;
}
int multitasking_init(void) {
if (BUILTIN_EXPECT(task_table[0].status != TASK_IDLE, 0)) {
kputs("Task 0 is not an idle task\n");
@ -193,10 +220,8 @@ static void wakeup_blocked_tasks(int result)
spinlock_irqsave_unlock(&table_lock);
}
/** @brief A procedure to be called by
* procedures which are called by exiting tasks. */
/** @brief A procedure to be called by procedures which are called by exiting tasks. */
static void NORETURN do_exit(int arg) {
vma_t* tmp;
task_t* curr_task = per_core(current_task);
uint32_t flags, core_id, fd, status;
@ -204,17 +229,17 @@ static void NORETURN do_exit(int arg) {
for (fd = 0; fd < NR_OPEN; fd++) {
if(curr_task->fildes_table[fd] != NULL) {
/*
* delete a descriptor from the per-process object
* reference table. If this is not the last reference to the underlying
* object, the object will be ignored.
*/
* Delete a descriptor from the per-process object
* reference table. If this is not the last reference to the underlying
* object, the object will be ignored.
*/
if (curr_task->fildes_table[fd]->count == 1) {
/* try to close the file */
// try to close the file
status = close_fs(curr_task->fildes_table[fd]);
/* close command failed -> return check = errno */
// close command failed -> return check = errno
if (BUILTIN_EXPECT(status < 0, 0))
kprintf("Task %u was not able to close file descriptor %i. close_fs returned %d", curr_task->id, fd, -status);
kfree(curr_task->fildes_table[fd], sizeof(fildes_t));
kfree(curr_task->fildes_table[fd]);
curr_task->fildes_table[fd] = NULL;
} else {
curr_task->fildes_table[fd]->count--;
@ -223,31 +248,20 @@ static void NORETURN do_exit(int arg) {
}
}
//finally the table has to be cleared.
kfree(curr_task->fildes_table, sizeof(filp_t)*NR_OPEN);
kfree(curr_task->fildes_table);
}
kprintf("Terminate task: %u, return value %d\n", curr_task->id, arg);
wakeup_blocked_tasks(arg);
//vma_dump(curr_task);
spinlock_lock(&curr_task->vma_lock);
// remove memory regions
while((tmp = curr_task->vma_list) != NULL) {
kfree((void*) tmp->start, tmp->end - tmp->start + 1);
curr_task->vma_list = tmp->next;
kfree((void*) tmp, sizeof(vma_t));
}
spinlock_unlock(&curr_task->vma_lock);
drop_vma_list(); // kfree virtual memory areas and the vma_list
drop_page_map(); // delete page directory and its page tables
#if 0
if (atomic_int32_read(&curr_task->user_usage))
kprintf("Memory leak! Task %d did not release %d pages\n",
curr_task->id, atomic_int32_read(&curr_task->user_usage));
curr_task->id, atomic_int32_read(&curr_task->user_usage));
#endif
curr_task->status = TASK_FINISHED;
@ -262,9 +276,7 @@ static void NORETURN do_exit(int arg) {
reschedule();
kprintf("Kernel panic: scheduler on core %d found no valid task\n", CORE_ID);
while(1) {
HALT;
}
while(1) HALT;
}
/** @brief A procedure to be called by kernel tasks */
@ -330,7 +342,7 @@ static int create_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio, uin
ret = create_page_map(task_table+i, 0);
if (ret < 0) {
ret = -ENOMEM;
goto create_task_out;
goto out;
}
task_table[i].id = i;
@ -376,7 +388,7 @@ static int create_task(tid_t* id, entry_point_t ep, void* arg, uint8_t prio, uin
}
}
create_task_out:
out:
spinlock_irqsave_unlock(&table_lock);
return ret;
@ -387,11 +399,7 @@ int sys_fork(void)
int ret = -ENOMEM;
unsigned int i, core_id, fd_i;
task_t* parent_task = per_core(current_task);
vma_t** child;
vma_t* parent;
vma_t* tmp;
spinlock_lock(&parent_task->vma_lock);
spinlock_irqsave_lock(&table_lock);
core_id = CORE_ID;
@ -403,43 +411,26 @@ int sys_fork(void)
ret = create_page_map(task_table+i, 1);
if (ret < 0) {
ret = -ENOMEM;
goto create_task_out;
goto out;
}
ret = copy_vma_list(child_task);
if (BUILTIN_EXPECT(!ret, 0)) {
ret = -ENOMEM;
goto out;
}
task_table[i].id = i;
task_table[i].last_stack_pointer = NULL;
task_table[i].stack = create_stack();
spinlock_init(&task_table[i].vma_lock);
// copy VMA list
child = &task_table[i].vma_list;
parent = parent_task->vma_list;
tmp = NULL;
while(parent) {
*child = (vma_t*) kmalloc(sizeof(vma_t));
if (BUILTIN_EXPECT(!child, 0))
break;
(*child)->start = parent->start;
(*child)->end = parent->end;
(*child)->type = parent->type;
(*child)->prev = tmp;
(*child)->next = NULL;
parent = parent->next;
tmp = *child;
child = &((*child)->next);
}
/* init fildes_table */
// init fildes_table
task_table[i].fildes_table = kmalloc(sizeof(filp_t)*NR_OPEN);
memcpy(task_table[i].fildes_table, parent_task->fildes_table, sizeof(filp_t)*NR_OPEN);
for (fd_i = 0; fd_i < NR_OPEN; fd_i++)
for (fd_i = 0; fd_i < NR_OPEN; fd_i++) {
if ((task_table[i].fildes_table[fd_i]) != NULL)
task_table[i].fildes_table[fd_i]->count++;
}
mailbox_wait_msg_init(&task_table[i].inbox);
memset(task_table[i].outbox, 0x00, sizeof(mailbox_wait_msg_t*)*MAX_TASKS);
@ -487,9 +478,8 @@ int sys_fork(void)
}
}
create_task_out:
out:
spinlock_irqsave_unlock(&table_lock);
spinlock_unlock(&parent_task->vma_lock);
return ret;
}
@ -515,7 +505,7 @@ static int kernel_entry(void* args)
ret = kernel_args->func(kernel_args->args);
kfree(kernel_args, sizeof(kernel_args_t));
kfree(kernel_args);
return ret;
}
@ -679,7 +669,7 @@ static int load_task(load_args_t* largs)
flags |= VMA_WRITE;
if (prog_header.flags & PF_X)
flags |= VMA_EXECUTE;
vma_add(curr_task, prog_header.virt_addr, prog_header.virt_addr+npages*PAGE_SIZE-1, flags);
vma_add(prog_header.virt_addr, prog_header.virt_addr+npages*PAGE_SIZE-1, flags);
if (!(prog_header.flags & PF_W))
change_page_permissions(prog_header.virt_addr, prog_header.virt_addr+npages*PAGE_SIZE-1, flags);
@ -708,7 +698,7 @@ static int load_task(load_args_t* largs)
flags |= VMA_WRITE;
if (prog_header.flags & PF_X)
flags |= VMA_EXECUTE;
vma_add(curr_task, stack, stack+npages*PAGE_SIZE-1, flags);
vma_add(stack, stack+npages*PAGE_SIZE-1, flags);
break;
}
}
@ -774,7 +764,7 @@ static int load_task(load_args_t* largs)
offset -= sizeof(int);
*((int*) (stack+offset)) = largs->argc;
kfree(largs, sizeof(load_args_t));
kfree(largs);
// clear fpu state
curr_task->flags &= ~(TASK_FPU_USED|TASK_FPU_INIT);
@ -806,7 +796,7 @@ static int user_entry(void* arg)
ret = load_task((load_args_t*) arg);
kfree(arg, sizeof(load_args_t));
kfree(arg);
return ret;
}
@ -871,13 +861,11 @@ int create_user_task_on_core(tid_t* id, const char* fname, char** argv, uint32_t
int sys_execve(const char* fname, char** argv, char** env)
{
vfs_node_t* node;
vma_t* tmp;
size_t i, buffer_size = 0;
load_args_t* load_args = NULL;
char *dest, *src;
int ret, argc = 0;
int envc = 0;
task_t* curr_task = per_core(current_task);
node = findnode_fs((char*) fname);
if (!node || !(node->type == FS_FILE))
@ -920,16 +908,8 @@ int sys_execve(const char* fname, char** argv, char** env)
while ((*dest++ = *src++) != 0);
}
spinlock_lock(&curr_task->vma_lock);
// remove old program
while((tmp = curr_task->vma_list) != NULL) {
kfree((void*) tmp->start, tmp->end - tmp->start + 1);
curr_task->vma_list = tmp->next;
kfree((void*) tmp, sizeof(vma_t));
}
spinlock_unlock(&curr_task->vma_lock);
drop_vma_list();
/*
* we use a trap gate to enter the kernel
@ -940,7 +920,7 @@ int sys_execve(const char* fname, char** argv, char** env)
ret = load_task(load_args);
kfree(load_args, sizeof(load_args_t));
kfree(load_args);
return ret;
}

View file

@ -130,7 +130,7 @@ int kmsg_init(vfs_node_t * node, const char *name)
}
} while (blist);
kfree(new_node, sizeof(vfs_node_t));
kfree(new_node);
return -ENOMEM;
}

View file

@ -1,4 +1,4 @@
C_source := memory.c vma.c
C_source := memory.c vma.c malloc.c
MODULE := mm
include $(TOPDIR)/Makefile.inc

203
mm/malloc.c Normal file
View file

@ -0,0 +1,203 @@
/*
* Copyright 2010 Steffen Vogel, Chair for Operating Systems,
* RWTH Aachen University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of MetalSVM.
*/
#include <metalsvm/malloc.h>
#include <metalsvm/spinlock.h>
#include <metalsvm/stdio.h>
#include <metalsvm/mmu.h>
/// A linked list for each binary size exponent
static buddy_t* buddy_lists[BUDDY_LISTS] = { NULL };
/// Lock for the buddy lists
static spinlock_t buddy_lock = SPINLOCK_INIT;
/** @brief Check if larger free buddies are available */
static inline int buddy_large_avail(uint8_t exp)
{
while (exp<BUDDY_MAX && !buddy_lists[exp-BUDDY_MIN]) exp++;
return exp != BUDDY_MAX;
}
/** @brief Calculate the required buddy size */
static inline int buddy_exp(size_t sz)
{
int exp;
for (exp=0; (1<<exp)<sz; exp++);
if (exp > BUDDY_MAX)
return 0;
else if (exp < BUDDY_MIN)
return BUDDY_MIN;
else
return exp;
}
/** @brief Get a free buddy by potentially splitting a larger one */
static buddy_t* buddy_get(int exp)
{
spinlock_lock(&buddy_lock);
buddy_t** list = &buddy_lists[exp-BUDDY_MIN];
buddy_t* buddy = *list;
buddy_t* split;
if (buddy)
// there is already a free buddy =>
// we remove it from the list
*list = buddy->next;
else if (exp >= BUDDY_ALLOC && !buddy_large_avail(exp))
// theres no free buddy larger than exp =>
// we can allocate new memory
buddy = (buddy_t*) palloc(1<<exp, MAP_KERNEL_SPACE);
else {
// we recursivly request a larger buddy...
buddy = buddy_get(exp+1);
if (BUILTIN_EXPECT(!buddy, 0))
goto out;
// ... and split it, by putting the second half back to the list
split = (buddy_t*) ((size_t) buddy + (1<<exp));
split->next = *list;
*list = split;
}
out:
spinlock_unlock(&buddy_lock);
return buddy;
}
/** @brief Put a buddy back to its free list
*
* TODO: merge adjacent buddies (memory compaction)
*/
static void buddy_put(buddy_t* buddy)
{
spinlock_lock(&buddy_lock);
buddy_t** list = &buddy_lists[buddy->prefix.exponent-BUDDY_MIN];
buddy->next = *list;
*list = buddy;
spinlock_unlock(&buddy_lock);
}
void buddy_dump()
{
size_t free = 0;
int i;
for (i=0; i<BUDDY_LISTS; i++) {
buddy_t* buddy;
int exp = i+BUDDY_MIN;
if (buddy_lists[i])
kprintf("buddy_list[%u] (exp=%u, size=%lu bytes):\n", i, exp, 1<<exp);
for (buddy=buddy_lists[i]; buddy; buddy=buddy->next) {
kprintf(" %p -> %p \n", buddy, buddy->next);
free += 1<<exp;
}
}
kprintf("free buddies: %lu bytes\n", free);
}
void* palloc(size_t sz, uint32_t flags)
{
size_t phyaddr, viraddr;
uint32_t npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
kprintf("palloc(%lu) (%lu pages)\n", sz, npages); // TODO: remove
// get free virtual address space
viraddr = vma_alloc(npages*PAGE_SIZE, VMA_HEAP);
if (BUILTIN_EXPECT(!viraddr, 0))
return NULL;
// get continous physical pages
phyaddr = get_pages(npages);
if (BUILTIN_EXPECT(!phyaddr, 0)) {
vma_free(viraddr, viraddr+npages*PAGE_SIZE);
return NULL;
}
// map physical pages to VMA
viraddr = map_region(viraddr, phyaddr, npages, flags);
if (BUILTIN_EXPECT(!viraddr, 0)) {
vma_free(viraddr, viraddr+npages*PAGE_SIZE);
put_pages(phyaddr, npages);
return NULL;
}
return (void*) viraddr;
}
void pfree(void* addr, size_t sz)
{
if (BUILTIN_EXPECT(!addr || !sz, 0))
return;
size_t i;
size_t phyaddr;
size_t viraddr = (size_t) addr & PAGE_MASK;
uint32_t npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
// memory is propably not continously mapped!
for (i=0; i<npages; i++) {
phyaddr = virt_to_phys(viraddr+i*PAGE_SHIFT);
put_page(phyaddr);
}
unmap_region(viraddr, npages);
vma_free(viraddr, viraddr+npages*PAGE_SIZE);
}
void* kmalloc(size_t sz)
{
if (BUILTIN_EXPECT(!sz, 0))
return NULL;
// add space for the prefix
sz += sizeof(buddy_t);
int exp = buddy_exp(sz);
if (BUILTIN_EXPECT(!exp, 0))
return NULL;
buddy_t* buddy = buddy_get(exp);
if (BUILTIN_EXPECT(!buddy, 0))
return NULL;
// setup buddy prefix
buddy->prefix.magic = BUDDY_MAGIC;
buddy->prefix.exponent = exp;
// pointer arithmetic: we hide the prefix
return buddy+1;
}
void kfree(void *addr)
{
if (BUILTIN_EXPECT(!addr, 0))
return;
buddy_t* buddy = (buddy_t*) addr - 1; // get prefix
// check magic
if (BUILTIN_EXPECT(buddy->prefix.magic != BUDDY_MAGIC, 0))
return;
buddy_put(buddy);
}

View file

@ -37,17 +37,15 @@
#endif
/*
* 0 => free
* 1 => occupied
*
* Set whole address space as occupied
* Set whole address space as occupied:
* 0 => free, 1 => occupied
*/
static uint8_t bitmap[BITMAP_SIZE]; // = {[0 ... BITMAP_SIZE-1] = 0xFF};
static spinlock_t bitmap_lock = SPINLOCK_INIT;
static size_t alloc_start;
atomic_int32_t total_pages = ATOMIC_INIT(0);
atomic_int32_t total_allocated_pages = ATOMIC_INIT(0);
atomic_int32_t total_available_pages = ATOMIC_INIT(0);
static uint8_t bitmap[BITMAP_SIZE] = {[0 ... BITMAP_SIZE-1] = 0xFF};
static spinlock_t bitmap_lock = SPINLOCK_INIT;
atomic_int32_t total_pages = ATOMIC_INIT(0);
atomic_int32_t total_allocated_pages = ATOMIC_INIT(0);
atomic_int32_t total_available_pages = ATOMIC_INIT(0);
/*
* Note that linker symbols are not variables, they have no memory allocated for
@ -74,8 +72,8 @@ inline static void page_set_mark(size_t i)
size_t index = i >> 3;
size_t mod = i & 0x7;
//if (page_marked(i))
// kprintf("page %u is already marked\n", i);
if (page_marked(i))
kprintf("page_set_mark(%u): already marked\n", i);
bitmap[index] = bitmap[index] | (1 << mod);
}
@ -86,46 +84,145 @@ inline static void page_clear_mark(size_t i)
size_t mod = i % 8;
if (page_unmarked(i))
kprintf("page %u is already unmarked\n", i);
kprintf("page_clear_mark(%u): already unmarked\n", i);
bitmap[index] = bitmap[index] & ~(1 << mod);
}
size_t get_pages(uint32_t npages)
{
// skip first page
static size_t start = 1;
uint32_t i, j, l;
uint32_t k = 0;
size_t ret = 0;
if (BUILTIN_EXPECT(!npages, 0))
return ret;
if (BUILTIN_EXPECT(npages > atomic_int32_read(&total_available_pages), 0))
return ret;
spinlock_lock(&bitmap_lock);
i = start;
next_try:
while((k < BITMAP_SIZE) && page_marked(i)) {
k++;
i = (i+1) & (BITMAP_SIZE-1);
}
if (k >= BITMAP_SIZE)
goto oom;
for(j=1; (j<npages) && (i+j < BITMAP_SIZE) && (k < BITMAP_SIZE); j++, k++) {
if (page_marked(i+j)) {
i = (i+j) & (BITMAP_SIZE-1);
goto next_try;
}
}
if (i+j >= BITMAP_SIZE) {
i = 1;
goto next_try;
}
if (k >= BITMAP_SIZE)
goto oom;
ret = i*PAGE_SIZE;
kprintf("get_pages: ret 0x%x, i = %d, j = %d, npages = %d\n", ret, i, j, npages); // TODO: remove
for(l=i; l<i+j; l++)
page_set_mark(l);
start = i+j;
spinlock_unlock(&bitmap_lock);
atomic_int32_add(&total_allocated_pages, npages);
atomic_int32_sub(&total_available_pages, npages);
return ret;
oom:
spinlock_unlock(&bitmap_lock);
return ret;
}
int put_pages(size_t phyaddr, size_t npages)
{
if (BUILTIN_EXPECT(!phyaddr || !npages, 0))
return -EINVAL;
uint32_t index;
uint32_t base = phyaddr >> PAGE_SHIFT;
spinlock_lock(&bitmap_lock);
for (index=0; index<npages; index++)
page_clear_mark(base+index);
spinlock_unlock(&bitmap_lock);
atomic_int32_sub(&total_allocated_pages, npages);
atomic_int32_add(&total_available_pages, npages);
return 0;
}
int mmu_init(void)
{
size_t kernel_size;
unsigned int i;
size_t addr;
int ret = 0;
// at first, set default value of the bitmap
memset(bitmap, 0xFF, sizeof(uint8_t)*BITMAP_SIZE);
#ifdef CONFIG_MULTIBOOT
if (mb_info && (mb_info->flags & MULTIBOOT_INFO_MEM_MAP)) {
size_t end_addr;
multiboot_memory_map_t* mmap = (multiboot_memory_map_t*) ((size_t) mb_info->mmap_addr);
multiboot_memory_map_t* mmap_end = (void*) ((size_t) mb_info->mmap_addr + mb_info->mmap_length);
if (mb_info) {
if (mb_info->flags & MULTIBOOT_INFO_MEM_MAP) {
multiboot_memory_map_t* mmap = (multiboot_memory_map_t*) ((size_t) mb_info->mmap_addr);
multiboot_memory_map_t* mmap_end = (void*) ((size_t) mb_info->mmap_addr + mb_info->mmap_length);
while (mmap < mmap_end) {
if (mmap->type == MULTIBOOT_MEMORY_AVAILABLE) {
// set the available memory as "unused"
addr = mmap->addr;
end_addr = addr + mmap->len;
while (addr < end_addr) {
page_clear_mark(addr >> PAGE_SHIFT);
addr += PAGE_SIZE;
atomic_int32_inc(&total_pages);
atomic_int32_inc(&total_available_pages);
// mark available memory as free
while (mmap < mmap_end) {
if (mmap->type == MULTIBOOT_MEMORY_AVAILABLE) {
for (addr=mmap->addr; addr < mmap->addr + mmap->len; addr += PAGE_SIZE) {
page_clear_mark(addr >> PAGE_SHIFT);
atomic_int32_inc(&total_pages);
atomic_int32_inc(&total_available_pages);
}
}
mmap++;
}
mmap++;
}
} else {
kputs("Unable to initialize the memory management subsystem\n");
while(1) {
HALT;
else if (mb_info->flags & MULTIBOOT_INFO_MEM) {
size_t page;
size_t pages_lower = mb_info->mem_lower >> 2;
size_t pages_upper = mb_info->mem_upper >> 2;
for (page=0; page<pages_lower; page++)
page_clear_mark(page);
for (page=0x100000; page<pages_upper+0x100000; page++)
page_clear_mark(page);
atomic_int32_add(&total_pages, pages_lower + pages_upper);
atomic_int32_add(&total_available_pages, pages_lower + pages_upper);
}
else {
kputs("Unable to initialize the memory management subsystem\n");
while (1) HALT;
}
// mark mb_info as used
page_set_mark((size_t) mb_info >> PAGE_SHIFT);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
// mark modules list as used
if (mb_info->flags & MULTIBOOT_INFO_MODS) {
for(addr=mb_info->mods_addr; addr<mb_info->mods_addr+mb_info->mods_count*sizeof(multiboot_module_t); addr+=PAGE_SIZE) {
page_set_mark(addr >> PAGE_SHIFT);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
}
}
}
#elif defined(CONFIG_ROCKCREEK)
@ -135,7 +232,7 @@ int mmu_init(void)
if (addr > addr + PAGE_SIZE)
break;
atomic_int32_inc(&total_pages);
atomic_int32_inc(&total_available_pages);
atomic_int32_inc(&total_available_pages);
}
// Note: The last slot belongs always to the private memory.
@ -151,63 +248,74 @@ int mmu_init(void)
page_set_mark((size_t)bootinfo >> PAGE_SHIFT);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
#else
#error Currently, MetalSVM supports only the Multiboot specification or the RockCreek processor!
#endif
kernel_size = (size_t) &kernel_end - (size_t) &kernel_start;
if (kernel_size & (PAGE_SIZE-1))
kernel_size += PAGE_SIZE - (kernel_size & (PAGE_SIZE-1));
atomic_int32_add(&total_allocated_pages, kernel_size >> PAGE_SHIFT);
atomic_int32_sub(&total_available_pages, kernel_size >> PAGE_SHIFT);
// set kernel space as used
for(i=(size_t) &kernel_start >> PAGE_SHIFT; i < (size_t) &kernel_end >> PAGE_SHIFT; i++)
page_set_mark(i);
if ((size_t) &kernel_end & (PAGE_SIZE-1))
page_set_mark(i);
alloc_start = (size_t) &kernel_end >> PAGE_SHIFT;
if ((size_t) &kernel_end & (PAGE_SIZE-1))
alloc_start++;
// mark kernel as used
for(addr=(size_t) &kernel_start; addr<(size_t) &kernel_end; addr+=PAGE_SIZE) {
page_set_mark(addr >> PAGE_SHIFT);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
}
#if MAX_CORES > 1
// reserve physical page for SMP boot code
page_set_mark(SMP_SETUP_ADDR >> PAGE_SHIFT);
atomic_int32_add(&total_allocated_pages, 1);
atomic_int32_sub(&total_available_pages, 1);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
#endif
// enable paging and map SMP, VGA, Multiboot modules etc.
ret = paging_init();
if (ret) {
kprintf("Failed to initialize paging: %d\n", ret);
return ret;
}
// add kernel to VMA list
vma_add((size_t) &kernel_start & PAGE_MASK,
PAGE_ALIGN((size_t) &kernel_end),
VMA_READ|VMA_WRITE|VMA_EXECUTE|VMA_CACHEABLE);
// add LAPIC tp VMA list
vma_add((size_t) &kernel_start - PAGE_SIZE,
(size_t) &kernel_start,
VMA_READ|VMA_WRITE);
#if MAX_CORES > 1
// reserve page for SMP boot code
vma_add(SMP_SETUP_ADDR & PAGE_MASK,
PAGE_ALIGN(SMP_SETUP_ADDR + PAGE_SIZE),
VMA_READ|VMA_WRITE|VMA_EXECUTE|VMA_CACHEABLE);
#endif
#ifdef CONFIG_MULTIBOOT
/*
* Modules like the init ram disk are already loaded.
* Therefore, we set these pages as used.
*/
if (mb_info && (mb_info->flags & MULTIBOOT_INFO_MODS)) {
multiboot_module_t* mmodule = (multiboot_module_t*) ((size_t) mb_info->mods_addr);
if (mb_info) {
vma_add((size_t) mb_info & PAGE_MASK,
PAGE_ALIGN((size_t) mb_info + sizeof(multiboot_info_t)),
VMA_READ|VMA_CACHEABLE);
// mark the mb_info as used.
page_set_mark((size_t)mb_info >> PAGE_SHIFT);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
if (mb_info->flags & MULTIBOOT_INFO_MODS) {
multiboot_module_t* mmodule = (multiboot_module_t*) ((size_t) mb_info->mods_addr);
for(addr = mb_info->mods_addr; addr < mb_info->mods_addr + mb_info->mods_count * sizeof(multiboot_module_t); addr += PAGE_SIZE) {
page_set_mark(addr >> PAGE_SHIFT);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
}
vma_add((size_t) mb_info->mods_addr & PAGE_MASK,
PAGE_ALIGN((size_t) mb_info->mods_addr + mb_info->mods_count*sizeof(multiboot_module_t)),
VMA_READ|VMA_CACHEABLE);
for(i=0; i<mb_info->mods_count; i++, mmodule++) {
for(addr=mmodule->mod_start; addr<mmodule->mod_end; addr+=PAGE_SIZE) {
page_set_mark(addr >> PAGE_SHIFT);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
for(i=0; i<mb_info->mods_count; i++) {
vma_add(PAGE_ALIGN(mmodule[i].mod_start),
PAGE_ALIGN(mmodule[i].mod_end),
VMA_READ|VMA_WRITE|VMA_CACHEABLE);
for(addr=mmodule[i].mod_start; addr<mmodule[i].mod_end; addr+=PAGE_SIZE) {
page_set_mark(addr >> PAGE_SHIFT);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
}
}
}
}
@ -235,8 +343,8 @@ int mmu_init(void)
* The init ram disk are already loaded.
* Therefore, we set these pages as used.
*/
for(addr=bootinfo->addr; addr < bootinfo->addr+bootinfo->size; addr+=PAGE_SIZE) {
// This area is already mapped, so we need to virt_to_phys() these addresses.
for(addr=bootinfo->addr; addr<bootinfo->addr+bootinfo->size; addr+=PAGE_SIZE) {
// this area is already mapped, so we need to virt_to_phys() these addresses.
page_set_mark(virt_to_phys(addr) >> PAGE_SHIFT);
atomic_int32_inc(&total_allocated_pages);
atomic_int32_dec(&total_available_pages);
@ -246,147 +354,3 @@ int mmu_init(void)
return ret;
}
/*
* Use first fit algorithm to find a suitable physical memory region
*/
size_t get_pages(uint32_t npages)
{
uint32_t i, j, l;
uint32_t k = 0;
size_t ret = 0;
if (BUILTIN_EXPECT(!npages, 0))
return ret;
if (BUILTIN_EXPECT(npages > atomic_int32_read(&total_available_pages), 0))
return ret;
spinlock_lock(&bitmap_lock);
i = alloc_start;
next_try:
while((k < BITMAP_SIZE) && page_marked(i)) {
k++;
i = (i+1) & (BITMAP_SIZE-1);
}
if (k >= BITMAP_SIZE)
goto oom;
for(j=1; (j<npages) && (i+j < BITMAP_SIZE) && (k < BITMAP_SIZE); j++, k++) {
if (page_marked(i+j)) {
i = (i+j) & (BITMAP_SIZE-1);
goto next_try;
}
}
if (i+j >= BITMAP_SIZE) {
i = 0;
goto next_try;
}
if (k >= BITMAP_SIZE)
goto oom;
ret = i*PAGE_SIZE;
//kprintf("alloc: ret 0x%x, i = %d, j = %d, npages = %d\n", ret, i, j, npages);
for(l=i; l<i+j; l++)
page_set_mark(l);
alloc_start = i+j;
spinlock_unlock(&bitmap_lock);
atomic_int32_add(&total_allocated_pages, npages);
atomic_int32_sub(&total_available_pages, npages);
return ret;
oom:
spinlock_unlock(&bitmap_lock);
return ret;
}
int put_page(size_t phyaddr)
{
uint32_t index = phyaddr >> PAGE_SHIFT;
if (BUILTIN_EXPECT(!phyaddr, 0))
return -EINVAL;
spinlock_lock(&bitmap_lock);
page_clear_mark(index);
spinlock_unlock(&bitmap_lock);
atomic_int32_sub(&total_allocated_pages, 1);
atomic_int32_add(&total_available_pages, 1);
return 0;
}
void* mem_allocation(size_t sz, uint32_t flags)
{
size_t phyaddr, viraddr;
uint32_t npages = sz >> PAGE_SHIFT;
if (sz & (PAGE_SIZE-1))
npages++;
phyaddr = get_pages(npages);
if (BUILTIN_EXPECT(!phyaddr, 0))
return 0;
viraddr = map_region(0, phyaddr, npages, flags);
return (void*) viraddr;
}
void* kmalloc(size_t sz)
{
return mem_allocation(sz, MAP_KERNEL_SPACE);
}
void kfree(void* addr, size_t sz)
{
uint32_t index, npages, i;
size_t phyaddr;
if (BUILTIN_EXPECT(!addr && !sz, 0))
return;
npages = sz >> PAGE_SHIFT;
if (sz & (PAGE_SIZE-1))
npages++;
spinlock_lock(&bitmap_lock);
for(i=0; i<npages; i++) {
unmap_region((size_t) addr+i*PAGE_SIZE, 1);
phyaddr = virt_to_phys((size_t) addr+i*PAGE_SIZE);
if (!phyaddr)
continue;
index = phyaddr >> PAGE_SHIFT;
page_clear_mark(index);
}
spinlock_unlock(&bitmap_lock);
vm_free((size_t) addr, npages);
atomic_int32_sub(&total_allocated_pages, npages);
atomic_int32_add(&total_available_pages, npages);
}
void* create_stack(void)
{
return kmalloc(KERNEL_STACK_SIZE);
}
int destroy_stack(task_t* task)
{
if (BUILTIN_EXPECT(!task || !task->stack, 0))
return -EINVAL;
kfree(task->stack, KERNEL_STACK_SIZE);
return 0;
}

355
mm/vma.c
View file

@ -1,5 +1,5 @@
/*
* Copyright 2011 Stefan Lankes, Chair for Operating Systems,
* Copyright 2011 Steffen Vogel, Chair for Operating Systems,
* RWTH Aachen University
*
* Licensed under the Apache License, Version 2.0 (the "License");
@ -17,87 +17,322 @@
* This file is part of MetalSVM.
*/
#include <metalsvm/vma.h>
#include <metalsvm/stdlib.h>
#include <metalsvm/stdio.h>
#include <metalsvm/tasks_types.h>
#include <metalsvm/spinlock.h>
#include <metalsvm/vma.h>
#include <metalsvm/errno.h>
/*
* add a new virtual memory region to the list of VMAs
* Kernel space VMA list and lock
*
* For bootstrapping we initialize the VMA list with one empty VMA
* (start == end) and expand this VMA by calls to vma_alloc()
*/
int vma_add(task_t* task, size_t start, size_t end, uint32_t type)
static vma_t vma_boot = { VMA_KERN_MAX, VMA_KERN_MAX, VMA_HEAP };
static vma_t* vma_list = &vma_boot;
static spinlock_t vma_lock = SPINLOCK_INIT;
size_t vma_alloc(size_t size, uint32_t flags)
{
vma_t* new_vma;
if (BUILTIN_EXPECT(!task || start > end, 0))
task_t* task = per_core(current_task);
spinlock_t* lock;
vma_t** list;
size_t ret = 0;
kprintf("vma_alloc(0x%lx, 0x%x)\n", size, flags);
size_t base, limit; // boundaries for search
size_t start, end;
if (BUILTIN_EXPECT(!size, 0))
return 0;
if (flags & VMA_USER) {
base = VMA_KERN_MAX;
limit = VMA_USER_MAX;
list = &task->vma_list;
lock = &task->vma_lock;
}
else {
base = 0;
limit = VMA_KERN_MAX;
list = &vma_list;
lock = &vma_lock;
}
spinlock_lock(lock);
// "last" fit search for free memory area
vma_t* pred = *list; // vma before current gap
vma_t* succ = NULL; // vma after current gap
do {
start = (pred) ? pred->end : base;
end = (succ) ? succ->start : limit;
if (end > start && end - start > size)
break; // we found a gap
succ = pred;
pred = (pred) ? pred->prev : NULL;
} while (pred || succ);
if (BUILTIN_EXPECT(end > limit || end < start || end - start < size, 0)) {
spinlock_unlock(lock);
return 0;
}
// resize existing vma
if (succ && succ->flags == flags) {
succ->start -= size;
ret = succ->start;
}
// insert new vma
else {
vma_t* new = kmalloc(sizeof(vma_t));
if (BUILTIN_EXPECT(!new, 0))
return 0;
new->start = end-size;
new->end = end;
new->flags = flags;
new->next = succ;
new->prev = pred;
if (pred)
pred->next = new;
if (succ)
succ->prev = new;
else
*list = new;
ret = new->start;
}
spinlock_unlock(lock);
return ret;
}
int vma_free(size_t start, size_t end)
{
task_t* task = per_core(current_task);
spinlock_t* lock;
vma_t* vma;
vma_t** list;
if (BUILTIN_EXPECT(start >= end, 0))
return -EINVAL;
new_vma = kmalloc(sizeof(new_vma));
if (!new_vma)
return -ENOMEM;
if (end <= VMA_KERN_MAX) {
lock = &vma_lock;
list = &vma_list;
}
else if (start >= VMA_KERN_MAX) {
lock = &task->vma_lock;
list = &task->vma_list;
}
else
return -EINVAL;
if (BUILTIN_EXPECT(!*list, 0))
return -EINVAL;
spinlock_lock(lock);
// search vma
vma = *list;
while (vma) {
if (start >= vma->start && end <= vma->end) break;
vma = vma->prev;
}
if (BUILTIN_EXPECT(!vma, 0)) {
spinlock_unlock(lock);
return -EINVAL;
}
// free/resize vma
if (start == vma->start && end == vma->end) {
if (vma == *list)
*list = vma->next; // update list head
if (vma->prev)
vma->prev->next = vma->next;
if (vma->next)
vma->next->prev = vma->prev;
kfree(vma);
}
else if (start == vma->start)
vma->start = end;
else if (end == vma->end)
vma->end = start;
else {
vma_t* new = kmalloc(sizeof(vma_t));
if (BUILTIN_EXPECT(!new, 0)) {
spinlock_unlock(lock);
return -ENOMEM;
}
new->start = end;
vma->end = start;
new->end = vma->end;
new->next = vma->next;
new->prev = vma;
vma->next = new;
}
spinlock_unlock(lock);
return 0;
}
int vma_add(size_t start, size_t end, uint32_t flags)
{
task_t* task = per_core(current_task);
spinlock_t* lock;
vma_t** list;
kprintf("vma_add(0x%lx, 0x%lx, 0x%x)\n", start, end, flags);
if (BUILTIN_EXPECT(start >= end, 0))
return -EINVAL;
if (flags & VMA_USER) {
list = &task->vma_list;
lock = &task->vma_lock;
// check if address is in userspace
if (BUILTIN_EXPECT(start < VMA_KERN_MAX, 0))
return -EINVAL;
}
else {
list = &vma_list;
lock = &vma_lock;
// check if address is in kernelspace
if (BUILTIN_EXPECT(end > VMA_KERN_MAX, 0))
return -EINVAL;
}
spinlock_lock(lock);
// search gap
vma_t* pred = *list;
vma_t* succ = NULL;
while (pred) {
if ((!pred || pred->end <= start) &&
(!succ || succ->start >= end))
break;
succ = pred;
pred = pred->prev;
}
// resize existing vma
if (pred && pred->end == start && pred->flags == flags)
pred->end = end;
else if (succ && succ->start == end && succ->flags == flags)
succ->start = start;
// insert new vma
else {
vma_t* new = kmalloc(sizeof(vma_t));
if (BUILTIN_EXPECT(!new, 0))
return 0;
new->start = start;
new->end = end;
new->flags = flags;
new->next = succ;
new->prev = pred;
if (pred)
pred->next = new;
if (succ)
succ->prev = new;
else
*list = new;
}
spinlock_unlock(lock);
return 0;
}
int copy_vma_list(task_t* task)
{
task_t* parent_task = per_core(current_task);
spinlock_init(&task->vma_lock);
spinlock_lock(&parent_task->vma_lock);
spinlock_lock(&task->vma_lock);
int ret = 0;
vma_t* last = NULL;
vma_t* parent = parent_task->vma_list;
while (parent) {
vma_t *new = kmalloc(sizeof(vma_t));
if (BUILTIN_EXPECT(!new, 0)) {
ret = -ENOMEM;
goto out;
}
new->start = parent->start;
new->end = parent->end;
new->flags = parent->flags;
new->prev = last;
if (last)
last->next = new;
else
task->vma_list = new;
last = new;
parent = parent->next;
}
out:
spinlock_unlock(&task->vma_lock);
spinlock_unlock(&parent_task->vma_lock);
return ret;
}
int drop_vma_list()
{
task_t* task = per_core(current_task);
spinlock_lock(&task->vma_lock);
new_vma->start = start;
new_vma->end = end;
new_vma->type = type;
if (!(task->vma_list)) {
new_vma->next = new_vma->prev = NULL;
task->vma_list = new_vma;
} else {
vma_t* tmp = task->vma_list;
while (tmp->next && tmp->start < start)
tmp = tmp->next;
new_vma->next = tmp->next;
new_vma->prev = tmp;
tmp->next = new_vma;
}
while(task->vma_list)
pfree((void*) task->vma_list->start, task->vma_list->end - task->vma_list->start);
spinlock_unlock(&task->vma_lock);
return 0;
}
int vma_dump(task_t* task)
void vma_dump()
{
vma_t* tmp;
if (BUILTIN_EXPECT(!task, 0))
return -EINVAL;
spinlock_lock(&task->vma_lock);
int cnt = 0;
tmp = task->vma_list;
while (tmp) {
kprintf("#%d\t%8x - %8x: size=%6x, flags=", cnt, tmp->start, tmp->end, tmp->end - tmp->start);
if (tmp->type & VMA_READ)
kputs("r");
else
kputs("-");
if (tmp->type & VMA_WRITE)
kputs("w");
else
kputs("-");
if (tmp->type & VMA_EXECUTE)
kputs("x");
else
kputs("-");
kputs("\n");
tmp = tmp->next;
cnt++;
void print_vma(vma_t *vma) {
while (vma) {
kprintf("0x%lx - 0x%lx: size=%x, flags=%c%c%c\n", vma->start, vma->end, vma->end - vma->start,
(vma->flags & VMA_READ) ? 'r' : '-',
(vma->flags & VMA_WRITE) ? 'w' : '-',
(vma->flags & VMA_EXECUTE) ? 'x' : '-');
vma = vma->prev;
}
}
spinlock_unlock(&task->vma_lock);
task_t* task = per_core(current_task);
return 0;
kputs("Kernelspace VMAs:\n");
spinlock_lock(&vma_lock);
print_vma(vma_list);
spinlock_unlock(&vma_lock);
kputs("Userspace VMAs:\n");
spinlock_lock(&task->vma_lock);
print_vma(task->vma_list);
spinlock_unlock(&task->vma_lock);
}