/* * Copyright 2011 Stefan Lankes, Chair for Operating Systems, * RWTH Aachen University * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of MetalSVM. */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_LWIP) && defined(CONFIG_ROCKCREEK) #include #include #include #include #include /* Limits */ #define BUFFER_ORDER 9 #define BUFFER_NUM (1 << BUFFER_ORDER) #define BUFFER_SIZE (BUFFER_NUM * PAGE_SIZE) #define EMAC0 0x01 #define EMAC1 0x02 #define EMAC2 0x04 #define EMAC3 0x08 #define EMAC_IPCONF 0x3200 #define EMAC_RX_CONTROL 0x9000 #define EMAC_TX_CONTROL 0x9900 /* Xilinx IP configuration - offsets */ #define CONFIG_FLOW_CONTROL_ADD 0xC0 #define TRANSMITTER_ADDRESS 0x80 #define RECEIVER1_ADDRESS 0x40 #define CONFIG_ADD 0x100 #define ADD_FILTER_MOD 0x190 /* EMAC RX */ #define EMAC_RX_BUFFER_START_ADDRESS 0x0000 #define EMAC_RX_BUFFER_READ_OFFSET 0x0100 #define EMAC_RX_BUFFER_WRITE_OFFSET 0x0200 #define EMAC_RX_BUFFER_SIZE 0x0300 #define EMAC_RX_BUFFER_THRESHOLD 0x0400 #define EMAC_RX_MODE 0x0500 #define EMAC_RX_NETWORK_PORT_MAC_ADDRESS_HI 0x0600 #define EMAC_RX_NETWORK_PORT_MAC_ADDRESS_LO 0x0700 #define EMAC_RX_NETWORK_PORT_ENABLE 0x0800 /* EMAC TX */ #define EMAC_TX_BUFFER_START_ADDRESS 0x0000 #define EMAC_TX_BUFFER_READ_OFFSET 0x0100 #define EMAC_TX_BUFFER_WRITE_OFFSET 0x0200 #define EMAC_TX_BUFFER_SIZE 0x0300 #define EMAC_TX_MODE 0x0400 #define EMAC_TX_NETWORK_PORT_ENABLE 0x0500 // Using of LVT1 as interrupt line #define EMAC_IRQ_MASK 0x00000001 #define EMAC_IRQ_NR 3 #define EMAC_LVT APIC_LVT1 #define EMAC_IRQ_CONFIG 1 #define IRQ_STATUS 0xD000 #define IRQ_MASK 0xD200 #define IRQ_RESET 0xD400 #define IRQ_CONFIG 0xD800 /* Cache line wrappers */ #define CLINE_SHIFT 5 #define CLINE_SIZE (1UL << CLINE_SHIFT) #define CLINE_MASK (~(CLINE_SIZE - 1)) #define CLINE_ALIGN(_x) (((_x) + CLINE_SIZE - 1) & CLINE_MASK) #define CLINE_PACKETS(_x) (CLINE_ALIGN(_x) >> CLINE_SHIFT) #define MAC_ADDRESS 0x00454D414331ULL #define MAC_HI(_x) ((((_x) >> 32)) & 0xFFFF) #define MAC_LO(_x) (((_x) ) & 0xFFFFFFFF) static struct netif* mynetif[4] = {NULL, NULL, NULL, NULL}; static inline int read_emac(int num_emac, int offset, int core) { return *((volatile int*) (FPGA_BASE + num_emac * 0x1000 + offset + core * 4)); } static inline void write_emac(int num_emac, int offset, int core, int value) { *((volatile int*) (FPGA_BASE + num_emac * 0x1000 + offset + core * 4)) = value; } /* * @return error code * - ERR_OK: packet transferred to hardware * - ERR_CONN: no link or link failure * - ERR_IF: could not transfer to link (hardware buffer full?) */ static err_t rckemacif_output(struct netif* netif, struct pbuf* p) { rckemacif_t* rckemacif = netif->state; uint32_t i; struct pbuf *q; void *addr = NULL; uint16_t read_offset = 0; int rest = 0; int packets = 0; int sum = 0; /* check for over/underflow */ if (BUILTIN_EXPECT(p->tot_len > 1536, 0)) { LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_output: illegal packet length %d => drop\n", p->len)); return ERR_IF; } rckemacif->tx_write_offset++; /* check if we need to wrap */ if (rckemacif->tx_write_offset > rckemacif->tx_buffer_max) rckemacif->tx_write_offset = 1; packets = CLINE_PACKETS(p->tot_len + 2); read_offset = read_emac(rckemacif->num_emac, EMAC_TX_CONTROL+EMAC_TX_BUFFER_READ_OFFSET, rckemacif->core); #if 1 again: if (read_offset < rckemacif->tx_write_offset) { sum = rckemacif->tx_buffer_max - rckemacif->tx_write_offset + read_offset - 1; } else if (read_offset > rckemacif->tx_write_offset) { sum = read_offset - rckemacif->tx_write_offset - 1; } if (sum < packets) { LWIP_DEBUGF(NETIF_DEBUG, ("Warning: not enough space available, retrying...\n")); goto again; } #endif addr = rckemacif->tx_buffer + rckemacif->tx_write_offset * 32; /* Set frame length */ ((uint8_t*)addr)[0] = p->tot_len % 256; ((uint8_t*)addr)[1] = p->tot_len / 256; #if ETH_PAD_SIZE pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */ #endif if (rckemacif->tx_write_offset + packets - 1 <= rckemacif->tx_buffer_max) { /* * q traverses through linked list of pbuf's * This list MUST consist of a single packet ONLY */ for (q = p, i = 0; q != 0; q = q->next) { memcpy(addr + 2 + i, q->payload, q->len); i += q->len; } /* increment write ptr */ rckemacif->tx_write_offset += packets - 1; } else { /* wrap in offsets. first copy to the end, second at the starting * point */ int bytes_left = p->tot_len; int bytes_to_copy = (rckemacif->tx_buffer_max - rckemacif->tx_write_offset + 1) * 32 - 2; int sz = 0; if (bytes_left < bytes_to_copy) bytes_to_copy = bytes_left; LWIP_DEBUGF(NETIF_DEBUG, ("special case: copy last %d bytes\n", bytes_to_copy)); q = p; i = 0; while ((q != 0) && (i < bytes_to_copy)) { sz = q->len > bytes_to_copy-i ? bytes_to_copy-i : q->len; memcpy(addr + 2 + i, q->payload, sz); bytes_left -= sz; i += sz; if (i < bytes_to_copy) q = q->next; } if (bytes_left != 0) { rckemacif->tx_write_offset = 1; addr = rckemacif->tx_buffer + 32; LWIP_DEBUGF(NETIF_DEBUG, ("special case: copy remaining %d bytes\n", bytes_left)); i = 0; if (sz < q->len) { memcpy(addr, q->payload + sz, q->len - sz); bytes_left -= (q->len - sz); i = q->len - sz; } for(q=q->next; (q != 0); q = q->next) { memcpy(addr+i, q->payload, q->len); i += q->len; } rest = bytes_left % 32; if (rest != 0) rest = 32 - rest; LWIP_DEBUGF(NETIF_DEBUG, ("Rest is %d\n", rest)); rckemacif->tx_write_offset += CLINE_PACKETS(bytes_left + rest) - 1; } } *((volatile int*) rckemacif->tx_buffer) = 2; /* set new write offset */ LWIP_DEBUGF(NETIF_DEBUG, ("Update tx write offset: %d (read offset %d)\n", rckemacif->tx_write_offset, read_offset)); write_emac(rckemacif->num_emac, EMAC_TX_CONTROL+EMAC_TX_BUFFER_WRITE_OFFSET, rckemacif->core, rckemacif->tx_write_offset); #if ETH_PAD_SIZE pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */ #endif LINK_STATS_INC(link.xmit); return ERR_OK; } #if 0 static void rtl_rx_inthandler(struct netif* netif) { rtl1839if_t* rtl8139if = netif->state; uint16_t header; uint16_t length, i; uint8_t cmd; struct pbuf *p = NULL; struct pbuf* q; cmd = inportb(rtl8139if->iobase + CR); while(!(cmd & CR_BUFE)) { header = *((uint16_t*) (rtl8139if->rx_buffer+rtl8139if->rx_pos)); rtl8139if->rx_pos = (rtl8139if->rx_pos + 2) % (8192+16); if (header & ISR_ROK) { length = *((uint16_t*) (rtl8139if->rx_buffer+rtl8139if->rx_pos)) - 4; // copy packet (but not the CRC) rtl8139if->rx_pos = (rtl8139if->rx_pos + 2) % (8192+16); #if ETH_PAD_SIZE length += ETH_PAD_SIZE; /* allow room for Ethernet padding */ #endif p = pbuf_alloc(PBUF_RAW, length, PBUF_POOL); if (p) { #if ETH_PAD_SIZE pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */ #endif for (q=p; q!=NULL; q=q->next) { for(i=0; ilen; i++) { ((uint8_t*) q->payload)[i] = rtl8139if->rx_buffer[rtl8139if->rx_pos]; rtl8139if->rx_pos = (rtl8139if->rx_pos + 1) % (8192+16); } } #if ETH_PAD_SIZE pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */ #endif mailbox_ptr_post(&rtl8139if->mbox, (void*)p); //rtl8139if_input(netif, p); LINK_STATS_INC(link.recv); } else { LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_rx_inthandler: not enough memory!\n")); rtl8139if->rx_pos += (rtl8139if->rx_pos + length) % (8192+16); LINK_STATS_INC(link.memerr); LINK_STATS_INC(link.drop); } // packets are dword aligned rtl8139if->rx_pos = ((rtl8139if->rx_pos + 4 + 3) & ~0x3) % (8192+16); outportw(rtl8139if->iobase + CAPR, rtl8139if->rx_pos - 0x10); } else { LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_rx_inthandler: invalid header!\n")); LINK_STATS_INC(link.memerr); LINK_STATS_INC(link.drop); break; } cmd = inportb(rtl8139if->iobase + CR); } } static void rtl_tx_inthandler(struct netif* netif) { rtl1839if_t* rtl8139if = netif->state; uint32_t checks = rtl8139if->tx_queue - rtl8139if->tx_complete; uint32_t txstatus; uint8_t tmp8; while(checks > 0) { tmp8 = rtl8139if->tx_complete % 4; txstatus = inportl(rtl8139if->iobase + TSD0 + tmp8 * 4); if (!(txstatus & (TSD_TOK|TSD_TUN|TSD_TABT))) return; if (txstatus & (TSD_TABT | TSD_OWC)) { LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139_tx_inthandler: major error\n")); continue; } if (txstatus & TSD_TUN) { LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139_tx_inthandler: transmit underrun\n")); } if (txstatus & TSD_TOK) { rtl8139if->tx_inuse[tmp8] = 0; rtl8139if->tx_complete++; checks--; } } } #endif static void rckemacif_handler(struct state* s) { LWIP_DEBUGF(NETIF_DEBUG, ("HELLO! Got interrupt!\n")); #if 0 rtl1839if_t* rtl8139if = mynetif->state; uint16_t isr_contents; while (1) { isr_contents = inportw(rtl8139if->iobase + ISR); if (isr_contents == 0) break; if (isr_contents & ISR_ROK) { rtl_rx_inthandler(mynetif); outportw(rtl8139if->iobase + ISR, ISR_ROK); } if (isr_contents & ISR_TOK) { rtl_tx_inthandler(mynetif); outportw(rtl8139if->iobase + ISR, ISR_TOK); } if (isr_contents & ISR_RER) { LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: RX error detected!\n")); outportw(rtl8139if->iobase + ISR, ISR_RER); } if (isr_contents & ISR_TER) { LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: TX error detected!\n")); outportw(rtl8139if->iobase + ISR, ISR_TER); } if (isr_contents & ISR_RXOVW) { LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: RX overflow detected!\n")); outportw(rtl8139if->iobase + ISR, ISR_RXOVW); } } #endif } err_t rckemacif_wait(struct netif* netif, uint32_t poll) { return ERR_OK; #if 0 rckemacif_t* rckemacif = netif->state; struct eth_hdr *ethhdr; struct pbuf *p = NULL; err_t err = ERR_OK; LWIP_DEBUGF(NETIF_DEBUG, ("Hello from rckemacif_wait!\n")); if (poll) { if (mailbox_ptr_tryfetch(&(rckemacif->mbox), (void**) &p)) return err; } else { mailbox_ptr_fetch(&(rckemacif->mbox), (void**) &p); } /* points to packet payload, which starts with an Ethernet header */ ethhdr = p->payload; switch (htons(ethhdr->type)) { /* IP or ARP packet? */ case ETHTYPE_ARP: case ETHTYPE_IP: #if PPPOE_SUPPORT /* PPPoE packet? */ case ETHTYPE_PPPOEDISC: case ETHTYPE_PPPOE: #endif /* PPPOE_SUPPORT */ /* full packet send to tcpip_thread to process */ if ((err = mynetif[netif->num]->input(p, mynetif[netif->num])) != ERR_OK) { LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_poll: IP input error\n")); pbuf_free(p); } break; default: pbuf_free(p); break; } return err; #endif } err_t rckemacif_init(struct netif* netif) { rckemacif_t* rckemacif; int num, num_emac; int macPorts; int i, tmp, x, y, z, core; uint64_t tile_offset; uint16_t write_offset = 0; uint16_t read_offset = 0; int mode = 0; int subdest = 0; int route = 0; LWIP_ASSERT("netif != NULL", (netif != NULL)); // Find out who I am... tmp = ReadConfigReg(CRB_OWN+MYTILEID); x = (tmp>>3) & 0x0f; // bits 06:03 y = (tmp>>7) & 0x0f; // bits 10:07 z = (tmp ) & 0x07; // bits 02:00 core = 12 * y + 2 * x + z; rckemacif = kmalloc(sizeof(rckemacif_t)); if (!rckemacif) { LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: out of memory\n")); return ERR_MEM; } memset(rckemacif, 0, sizeof(rckemacif_t)); rckemacif->core = core; /* allocate the receive buffer */ rckemacif->rx_buffer = mem_allocation(BUFFER_SIZE, MAP_KERNEL_SPACE|MAP_NO_CACHE); if (!(rckemacif->rx_buffer)) { LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: out of memory\n")); kfree(rckemacif, sizeof(rckemacif_t)); return ERR_MEM; } memset(rckemacif->rx_buffer, 0, BUFFER_SIZE); rckemacif->rx_buffer_max = CLINE_PACKETS(BUFFER_SIZE) - 1; /* allocate the send buffers */ rckemacif->tx_buffer = mem_allocation(BUFFER_SIZE, MAP_KERNEL_SPACE|MAP_NO_CACHE); if (!(rckemacif->tx_buffer)) { LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: out of memory\n")); kfree(rckemacif->rx_buffer, BUFFER_SIZE); kfree(rckemacif, sizeof(rckemacif_t)); return ERR_MEM; } memset(rckemacif->tx_buffer, 0, BUFFER_SIZE); rckemacif->tx_buffer_max = CLINE_PACKETS(BUFFER_SIZE) - 1; mailbox_ptr_init(&rckemacif->mbox); netif->state = rckemacif; /* Depending on core location read own private data * (offset, subdest, route) */ if (z == 0) { tmp = ReadConfigReg(CRB_OWN + GLCFG0); rckemacif->irq_address = CRB_OWN + GLCFG0; } else { tmp = ReadConfigReg(CRB_OWN + GLCFG1); rckemacif->irq_address = CRB_OWN + GLCFG1; } tile_offset = (unsigned long long)((unsigned long long) tmp & 0x3FF) << 24; subdest = (tmp >> 10) & 0x07; route = (tmp >> 13) & 0xFF; mode = (subdest << 8) + route; /* get fpga/sccKit port settings */ tmp = *((volatile int*)(FPGA_BASE + 0x822C)); macPorts = ((tmp >> 9 ) & 0xFF); LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: eMAC0: %s eMAC1: %s eMAC2: %s eMAC3: %s\n", (macPorts & EMAC0) != 0 ? "present" : "-", (macPorts & EMAC1) != 0 ? "present" : "-", (macPorts & EMAC2) != 0 ? "present" : "-", (macPorts & EMAC3) != 0 ? "present" : "-")); // determine device and emac number for(num=0; (num<4) && (mynetif[num] != NULL); num++) ; if (num >= 4) return ERR_ARG; for(i=0, num_emac=0; (i<=num) && (num_emac < 4); i++) { while (((macPorts & (1 << num_emac)) == 0) && (num_emac < 4)) num_emac++; } if (num_emac >= 4) return ERR_ARG; mynetif[num] = netif; rckemacif->num_emac = num_emac; LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: map device %d to eMAC %d\n", num, num_emac)); if (core == 0) { /* Only core 0 initialize the xilinx port */ int flow_control = 0; int transmitter_addr = 0; int receiver1_addr = 0; int config_add = 0; int add_filter_mod = 0; /* Disable tx and rx flow control of eMAC */ LWIP_DEBUGF(NETIF_DEBUG, ("Disabling tx/rx flow control of eMAC%d\n", num_emac)); flow_control = read_emac(num_emac, EMAC_IPCONF+CONFIG_FLOW_CONTROL_ADD, 0); /* Set top 3 bits of the flow control configuration to zero, * therefore disabling tx and rx flow control */ flow_control &= 0x7FFFFFF; write_emac(num_emac, EMAC_IPCONF+CONFIG_FLOW_CONTROL_ADD, 0, flow_control); /* Sanity check */ flow_control = read_emac(num_emac, EMAC_IPCONF+CONFIG_FLOW_CONTROL_ADD, 0); LWIP_DEBUGF(NETIF_DEBUG, (" CONFIG_FLOW_CONTROL_ADD set: 0x%x\n", flow_control)); /* Setting the tx configuration bit to enable the transmitter and * set to full duplex mode. */ LWIP_DEBUGF(NETIF_DEBUG, ("Setting rx configuration of eMAC%d\n", num_emac)); transmitter_addr = read_emac(num_emac, EMAC_IPCONF+TRANSMITTER_ADDRESS, 0); /* Now set the relevant bits and write back into the register: * 26 (half duplex) = 0, 28 (transmit enable) = 1, 31 (reset) = 0 */ transmitter_addr &= ~(1 << 31); transmitter_addr &= ~(1 << 26); transmitter_addr |= (1 << 28); write_emac(num_emac, EMAC_IPCONF+TRANSMITTER_ADDRESS, 0, transmitter_addr); transmitter_addr = read_emac(num_emac, EMAC_IPCONF+TRANSMITTER_ADDRESS, 0); LWIP_DEBUGF(NETIF_DEBUG, (" TRANSMITTER_ADDRESS set: %x\n", transmitter_addr)); /* Setting the rx configuration bit to enable the transmitter and * set to full duplex mode. */ LWIP_DEBUGF(NETIF_DEBUG, ("Setting IP configuration of EMAC%d\n", num_emac)); /* Read the current config value from the register */ receiver1_addr = read_emac(num_emac, EMAC_IPCONF+RECEIVER1_ADDRESS, 0); /* Now set the relevant bits and write back into the register: * 25 = 1, 26 = 0, 28 = 1, 31 = 0 */ /* Length/Type Error Check Disable */ receiver1_addr |= (1 << 25); /* Disable Half Duplex => Full Duplex */ receiver1_addr &= ~(1 << 26); /* Receiver enable */ receiver1_addr |= (1 << 28); /* Reset */ receiver1_addr &= ~(1 << 31); write_emac(num_emac, EMAC_IPCONF+RECEIVER1_ADDRESS, 0, receiver1_addr); receiver1_addr = read_emac(num_emac, EMAC_IPCONF+RECEIVER1_ADDRESS, 0); LWIP_DEBUGF(NETIF_DEBUG, (" RECEIVER1_ADDRESS set: %x\n", receiver1_addr)); /* Setting the speed to eMAC to 1Gb/s */ LWIP_DEBUGF(NETIF_DEBUG, ("Setting speed of EMAC%d to 1Gb/s\n", num_emac)); /* Read the current config value from register */ config_add = read_emac(num_emac, EMAC_IPCONF+CONFIG_ADD, 0); /* Now set the relevant bits and write back into the register: * 31 = 1, 30 = 0 */ /* MAC Speed Configuration: 00 - 10Mbps, 01 - 100Mbps, 10 - 1Gbps */ config_add |= (1 << 31); config_add &= ~(1 << 30); write_emac(num_emac, EMAC_IPCONF+CONFIG_ADD, 0, config_add); config_add = read_emac(num_emac, EMAC_IPCONF+CONFIG_ADD, 0); LWIP_DEBUGF(NETIF_DEBUG, (" CONFIG_ADD set: %x\n", config_add)); /* Read the current config addr filter mode */ add_filter_mod = read_emac(num_emac, EMAC_IPCONF+ADD_FILTER_MOD, 0); /* Not set the relevant bits and write back into the register: * 31 (promiscuous mode) = 1 not working, but thats ok! */ add_filter_mod |= (1 << 31); write_emac(num_emac, EMAC_IPCONF+ADD_FILTER_MOD, 0, add_filter_mod); add_filter_mod = read_emac(num_emac, EMAC_IPCONF+ADD_FILTER_MOD, 0); LWIP_DEBUGF(NETIF_DEBUG, (" ADD_FILTER_MOD set: %x\n", add_filter_mod)); } sleep(3); /* Start address */ LWIP_DEBUGF(NETIF_DEBUG, (" RX Buffer %p (%lx phys)\n", rckemacif->rx_buffer, virt_to_phys(rckemacif->rx_buffer))); /**** Receiver configuration ****/ uint32_t utmp = virt_to_phys(rckemacif->rx_buffer); uint32_t addr_offset = tile_offset + utmp; addr_offset >>= 5; write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_START_ADDRESS, core, addr_offset); utmp = read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_START_ADDRESS, core); LWIP_DEBUGF(NETIF_DEBUG, (" RX Buffer set to @%x\n", utmp)); /* Set buffer write offset */ write_offset = read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_WRITE_OFFSET, core); LWIP_DEBUGF(NETIF_DEBUG, (" RX Buffer write offset at: %d\n", write_offset)); /* Set buffer read offset to write offset */ write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_READ_OFFSET, core, write_offset); LWIP_DEBUGF(NETIF_DEBUG, (" RX Buffer read offset set to: %d\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_READ_OFFSET, core))); rckemacif->rx_read_offset = write_offset; /* Size */ write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_SIZE, core, rckemacif->rx_buffer_max); LWIP_DEBUGF(NETIF_DEBUG, (" RX Size set to %d\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_SIZE, core))); /* Threshold */ write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_THRESHOLD, core, 0x01); LWIP_DEBUGF(NETIF_DEBUG, (" RX Threshold set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_THRESHOLD, core))); /* Route */ write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_MODE, core, (core << 24) | (((y << 4) | x) << 16) | mode); LWIP_DEBUGF(NETIF_DEBUG, (" RX Mode set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_MODE, core))); // determine mac address uint32_t mac1 = *((uint32_t*)(FPGA_BASE+0x7E00)); uint32_t mac2 = *((uint32_t*)(FPGA_BASE+0x7E04)); uint64_t mac = (((unsigned long long)mac1) << 32) + ( unsigned long long ) mac2; if (mac == 0x00) mac = MAC_ADDRESS; /* Calculate mac address of core depending on selected emac device */ mac = mac + (1 << num_emac) * 0x100 + core; LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: MAC address ")); for (i=0; i<6; i++) { mynetif[num]->hwaddr[i] = mac & 0xFF; mac = mac >> 8; LWIP_DEBUGF(NETIF_DEBUG, ("%02x ", mynetif[num]->hwaddr[i])); } LWIP_DEBUGF(NETIF_DEBUG, ("\n")); write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_MAC_ADDRESS_HI, core, MAC_HI(mac)); LWIP_DEBUGF(NETIF_DEBUG, (" MAC1 set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_MAC_ADDRESS_HI, core))); write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_MAC_ADDRESS_LO, core, MAC_LO(mac)); LWIP_DEBUGF(NETIF_DEBUG, (" MAC2 set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_MAC_ADDRESS_LO, core))); /* Activate network port by setting enable bit */ write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_ENABLE, core, 0x01); LWIP_DEBUGF(NETIF_DEBUG, (" RX Port enable set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_ENABLE, core))); /**** Transfer configuration ****/ /* Start address */ LWIP_DEBUGF(NETIF_DEBUG, (" TX Buffer %p (%lx phys)\n", rckemacif->tx_buffer, virt_to_phys(rckemacif->tx_buffer))); utmp = virt_to_phys(rckemacif->tx_buffer); write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_START_ADDRESS, core, (tmp + tile_offset) >> 5); utmp = read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_START_ADDRESS, core); LWIP_DEBUGF(NETIF_DEBUG, (" TX Buffer set to @%x\n", tmp)); /* Get buffer read offset */ read_offset = read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_READ_OFFSET, core); LWIP_DEBUGF(NETIF_DEBUG, (" TX Buffer read offset at: %d\n", read_offset)); /* Set buffer write offset to read offset */ write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_WRITE_OFFSET, core, read_offset); LWIP_DEBUGF(NETIF_DEBUG, (" TX Buffer write offset set to: %d\n", read_emac(num_emac, EMAC_TX_CONTROL+ EMAC_TX_BUFFER_WRITE_OFFSET, core))); rckemacif->tx_write_offset = read_offset; /* Size */ write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_SIZE, core, rckemacif->tx_buffer_max); LWIP_DEBUGF(NETIF_DEBUG, (" TX Size set to %d\n", read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_SIZE, core))); /* Route */ write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_MODE, core, mode); LWIP_DEBUGF(NETIF_DEBUG, (" TX Mode set to %x\n", read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_MODE, core))); /* Activate network port by setting enable bit */ write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_NETWORK_PORT_ENABLE, core, 0x01); LWIP_DEBUGF(NETIF_DEBUG, (" TX Port enable set to %x\n", read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_NETWORK_PORT_ENABLE, core))); // set interrupt handler (INTR/LINT0) irq_install_handler(125, rckemacif_handler); /* Enable interrupt */ tmp = *((volatile int*) (FPGA_BASE + IRQ_MASK + core * 2 * 4)); *((volatile int*) (FPGA_BASE + IRQ_MASK + core * 2 * 4)) = tmp & ~(1 << num_emac); *((volatile int*) (FPGA_BASE + IRQ_CONFIG + core * 4)) = EMAC_IRQ_CONFIG; /* * Initialize the snmp variables and counters inside the struct netif. * The last argument should be replaced with your link speed, in units * of bits per second. */ NETIF_INIT_SNMP(netif, snmp_ifType_ethernet_csmacd, 1000 /* speed */); /* administrative details */ netif->name[0] = 'e'; netif->name[1] = 'n'; netif->num = num; /* downward functions */ netif->output = etharp_output; netif->linkoutput = rckemacif_output; /* maximum transfer unit */ netif->mtu = 1500; /* broadcast capability */ netif->flags |= NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_LINK_UP; /* hardware address length */ netif->hwaddr_len = 6; rckemacif->ethaddr = (struct eth_addr *)netif->hwaddr; return ERR_OK; } #endif