196 lines
4.4 KiB
C
196 lines
4.4 KiB
C
/*
|
|
* Copyright 2010-2011 Stefan Lankes
|
|
* Chair for Operating Systems, RWTH Aachen University
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
|
|
#define MATRIX_SIZE 128
|
|
#define MAXVALUE 1337
|
|
#define PAGE_SIZE 4096
|
|
#define CACHE_SIZE (256*1024)
|
|
#define ALIGN(x,a) (((x)+(a)-1)&~((a)-1))
|
|
|
|
static int generate_empty_matrix(double*** A , unsigned int N) {
|
|
unsigned int iCnt;
|
|
int i,j;
|
|
|
|
*A = (double**) malloc((N+1)*sizeof(double*));
|
|
|
|
if (*A == NULL)
|
|
return -2; /* Error */
|
|
|
|
(*A)[0] = (double*) malloc((N+1)*N*sizeof(double));
|
|
|
|
if (**A == NULL)
|
|
return -2; /* Error */
|
|
|
|
for(iCnt=1; iCnt<N; iCnt++) { /* Assign pointers in the first "real index"; Value from 1 to N (0 yet set, value N means N+1) */
|
|
(*A)[iCnt] = &((*A)[0][iCnt*(N+1)]);
|
|
}
|
|
|
|
memset(**A, 0, (N+1)*N*sizeof(double)); /* Fill matrix values with 0 */
|
|
|
|
srand( 42 /*(unsigned) time(NULL)*/ ) ; /* init random number generator */
|
|
|
|
/*
|
|
* initialize the system of linear equations
|
|
* the result vector is one
|
|
*/
|
|
for (i = 0; i < N; i++)
|
|
{
|
|
double sum = 0.0;
|
|
|
|
for (j = 0; j < N; j++)
|
|
{
|
|
if (i != j)
|
|
{
|
|
double c = ((double)rand()) / ((double)RAND_MAX) * MAXVALUE;
|
|
|
|
sum += fabs(c);
|
|
(*A)[i][j] = c;
|
|
(*A)[i][N] += c;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The Jacobi method will always converge if the matrix A is strictly or irreducibly diagonally dominant.
|
|
* Strict row diagonal dominance means that for each row, the absolute value of the diagonal term is
|
|
* greater than the sum of absolute values of other terms: |A[i][i]| > Sum |A[i][j]| with (i != j)
|
|
*/
|
|
|
|
(*A)[i][i] = sum + 2.0;
|
|
(*A)[i][N] += sum + 2.0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
double* temp;
|
|
unsigned int i, j, iter_start, iter_end;
|
|
unsigned int iterations = 0;
|
|
double error, norm, max = 0.0;
|
|
double** A=0;
|
|
double* X;
|
|
double* X_old, xi;
|
|
clock_t start, end;
|
|
|
|
if (generate_empty_matrix(&A,MATRIX_SIZE) < 0)
|
|
{
|
|
printf("generate_empty_matrix() failed...\n");
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
printf("generate_empty_matrix() done...\n");
|
|
|
|
X = (double*) malloc(MATRIX_SIZE*sizeof(double));
|
|
X_old = (double*) malloc(MATRIX_SIZE*sizeof(double));
|
|
if(X == NULL || X_old == NULL)
|
|
{
|
|
printf("X or X_old is NULL...\n");
|
|
exit(-1);
|
|
}
|
|
|
|
for(i=0; i<MATRIX_SIZE; i++)
|
|
{
|
|
X[i] = ((double)rand()) / ((double)RAND_MAX) * 10.0;
|
|
X_old[i] = 0.0;
|
|
}
|
|
|
|
printf("start calculation...\n");
|
|
|
|
iter_start = 0;
|
|
iter_end = MATRIX_SIZE;
|
|
|
|
start = clock();
|
|
|
|
while(1)
|
|
{
|
|
iterations++;
|
|
|
|
temp = X_old;
|
|
X_old = X;
|
|
X = temp;
|
|
|
|
for (i=iter_start; i<iter_end; i++)
|
|
{
|
|
for(j=0, xi=0.0; j<i; j++)
|
|
xi += A[i][j] * X_old[j];
|
|
|
|
for(j=i+1; j<MATRIX_SIZE; j++)
|
|
xi += A[i][j] * X_old[j];
|
|
X[i] = (A[i][MATRIX_SIZE] - xi) / A[i][i];
|
|
}
|
|
|
|
if (iterations % 5000 == 0 ) {/* calculate the Euclidean norm between X_old and X*/
|
|
norm = 0.0;
|
|
for (i=iter_start; i<iter_end; i++)
|
|
norm += (X_old[i] - X[i]) * (X_old[i] - X[i]);
|
|
|
|
/* check the break condition */
|
|
norm /= (double) MATRIX_SIZE;
|
|
if (norm < 0.0000001)
|
|
break;
|
|
}
|
|
}
|
|
|
|
end = clock();
|
|
|
|
if (MATRIX_SIZE < 16) {
|
|
printf("Print the solution...\n");
|
|
/* print solution */
|
|
for(i=0; i<MATRIX_SIZE; i++) {
|
|
for(j=0; j<MATRIX_SIZE; j++)
|
|
printf("%8.2f\t", A[i][j]);
|
|
printf("*\t%8.2f\t=\t%8.2f\n", X[i], A[i][MATRIX_SIZE]);
|
|
}
|
|
}
|
|
printf("Check the result...\n");
|
|
|
|
/*
|
|
* check the result
|
|
* X[i] have to be 1
|
|
*/
|
|
for(i=0; i<MATRIX_SIZE; i++) {
|
|
error = fabs(X[i] - 1.0f);
|
|
|
|
if (max < error)
|
|
max = error;
|
|
if (error > 0.01f) {
|
|
printf("Result is on position %d wrong (%f != 1.0)\n", i, X[i]);
|
|
exit(1);
|
|
}
|
|
}
|
|
printf("maximal error is %f\n", max);
|
|
|
|
printf("\nmatrix size: %d x %d\n", MATRIX_SIZE, MATRIX_SIZE);
|
|
printf("number of iterations: %d\n", iterations);
|
|
printf("calculation time: %f s\n", (float) (end-start) / (float) CLOCKS_PER_SEC);
|
|
|
|
free((void*) X_old);
|
|
free((void*) X);
|
|
|
|
return 0;
|
|
}
|