
New features: - support of kernel tasks in 64bit mode - support of LwIP in 64bit mode Missing features in 64bit mode - user-level support - APIC support => SMP support To create a 64bit version of the MetalSVM kernel, the compiler flags “-m64 -mno-red-zone” and the assembler flags “-felf64” has to be used. Please use qemu-system-x86_64 as test platform. Notice, metalsvm.elf is a 32bit ELF file. However, it contains (beside the startup code) only 64bit code. This is required because GRUB doesn’t boot 64bit ELF kernels. Therefore, for disassembling via objdump the flag “-M x86-64” has to be used.
387 lines
9 KiB
C
387 lines
9 KiB
C
/*
|
|
* Copyright 2010 Stefan Lankes, Chair for Operating Systems,
|
|
* RWTH Aachen University
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* This file is part of MetalSVM.
|
|
*/
|
|
|
|
/**
|
|
* @author Stefan Lankes
|
|
* @file arch/x86/include/asm/processor.h
|
|
* @brief CPU-specific functions
|
|
*
|
|
* This file contains structures and functions related to CPU-specific assembler commands.
|
|
*/
|
|
|
|
#ifndef __ARCH_PROCESSOR_H__
|
|
#define __ARCH_PROCESSOR_H__
|
|
|
|
#include <metalsvm/stddef.h>
|
|
#include <asm/gdt.h>
|
|
#include <asm/apic.h>
|
|
#ifdef CONFIG_PCI
|
|
#include <asm/pci.h>
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
// feature list 1
|
|
#define CPU_FEATURE_FPU (1 << 0)
|
|
#define CPU_FEATURE_MMX (1 << 23)
|
|
#define CPU_FEATURE_FXSR (1 << 24)
|
|
#define CPU_FEATURE_SSE (1 << 25)
|
|
#define CPU_FEATURE_SSE2 (1 << 26)
|
|
|
|
// feature list 2
|
|
#define CPU_FEATURE_AVX (1 << 28)
|
|
|
|
typedef struct {
|
|
uint32_t feature1, feature2;
|
|
} cpu_info_t;
|
|
|
|
extern cpu_info_t cpu_info;
|
|
|
|
// determine the cpu features
|
|
int cpu_detection(void);
|
|
|
|
inline static uint32_t has_fpu(void)
|
|
{
|
|
return (cpu_info.feature1 & CPU_FEATURE_FPU);
|
|
}
|
|
|
|
inline static uint32_t has_fxsr(void)
|
|
{
|
|
return (cpu_info.feature1 & CPU_FEATURE_FXSR);
|
|
}
|
|
|
|
inline static uint32_t has_xmm(void)
|
|
{
|
|
return (cpu_info.feature1 & CPU_FEATURE_SSE);
|
|
}
|
|
|
|
inline static uint32_t has_avx(void)
|
|
{
|
|
return (cpu_info.feature2 & CPU_FEATURE_AVX);
|
|
}
|
|
|
|
/** @brief Read out time stamp counter
|
|
*
|
|
* The rdtsc asm command puts a 64 bit time stamp value
|
|
* into EDX:EAX.
|
|
*
|
|
* @return The 64 bit time stamp value
|
|
*/
|
|
inline static uint64_t rdtsc(void)
|
|
{
|
|
uint64_t x;
|
|
asm volatile ("rdtsc" : "=A" (x));
|
|
return x;
|
|
}
|
|
|
|
/** @brief Flush cache
|
|
*
|
|
* The wbinvd asm instruction which stands for "Write back and invalidate"
|
|
* is used here
|
|
*/
|
|
inline static void flush_cache(void) {
|
|
asm volatile ("wbinvd" ::: "memory");
|
|
}
|
|
|
|
/** @brief Invalidate cache
|
|
*
|
|
* The invd asm instruction which invalidates cache without writing back
|
|
* is used here
|
|
*/
|
|
inline static void invalidate_cache(void) {
|
|
asm volatile ("invd" ::: "memory");
|
|
}
|
|
|
|
/** @brief Get return value from EAX
|
|
*
|
|
* If there is some return value in eax, this is the C-way to get it into a var
|
|
* if the function did not return it the normal way.
|
|
*
|
|
* @return The return value which wasn't returned as usual.
|
|
*/
|
|
inline static int get_return_value(void) {
|
|
int ret;
|
|
asm volatile ("movl %%eax, %0" : "=r"(ret));
|
|
return ret;
|
|
}
|
|
|
|
/* Force strict CPU ordering */
|
|
#ifdef CONFIG_ROCKCREEK
|
|
inline static void mb(void) { asm volatile ("lock; addl $0,0(%%esp)" ::: "memory", "cc"); }
|
|
inline static void rmb(void) { asm volatile ("lock; addl $0,0(%%esp)" ::: "memory", "cc"); }
|
|
inline static void wmb(void) { asm volatile ("lock; addl $0,0(%%esp)" ::: "memory", "cc"); }
|
|
#else
|
|
inline static void mb(void) { asm volatile("mfence" ::: "memory"); }
|
|
inline static void rmb(void) { asm volatile("lfence" ::: "memory"); }
|
|
inline static void wmb(void) { asm volatile("sfence" ::: "memory"); }
|
|
#endif
|
|
|
|
/** @brief Read out CPU ID
|
|
*
|
|
* The cpuid asm-instruction does fill some information into registers and
|
|
* this function fills those register values into the given uint32_t vars.\n
|
|
* \n
|
|
* Some people are used to flush the pipeline with this instruction;
|
|
* There is another function for doing this in MetalSVM called flush_pipeline().
|
|
* It basically does the same. Just use it if you only want to flush the pipeline
|
|
* as it will be more comfortable because it does not take any parameters.
|
|
*
|
|
* @param code Input parameter for the cpuid instruction. Take a look into the intel manual.
|
|
* @param a EAX value will be stores here
|
|
* @param b EBX value will be stores here
|
|
* @param c ECX value will be stores here
|
|
* @param d EDX value will be stores here
|
|
*/
|
|
inline static void cpuid(uint32_t code, uint32_t* a, uint32_t* b, uint32_t* c, uint32_t* d) {
|
|
asm volatile ("cpuid" : "=a"(*a), "=b"(*b), "=c"(*c), "=d"(*d) : "0"(code));
|
|
}
|
|
|
|
/** @brief Read MSR
|
|
*
|
|
* The asm instruction rdmsr which stands for "Read from model specific register"
|
|
* is used here.
|
|
*
|
|
* @param msr The parameter which rdmsr assumes in ECX
|
|
* @return The value rdmsr put into EDX:EAX
|
|
*/
|
|
inline static uint64_t rdmsr(uint32_t msr) {
|
|
uint32_t low, high;
|
|
|
|
asm volatile ("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
|
|
|
|
return ((uint64_t)high << 32) | low;
|
|
}
|
|
|
|
/** @brief Read cr0 register
|
|
* @return cr0's value
|
|
*/
|
|
static inline size_t read_cr0(void) {
|
|
size_t val;
|
|
asm volatile("mov %%cr0, %0" : "=r"(val));
|
|
return val;
|
|
}
|
|
|
|
/** @brief Write a value into cr0 register
|
|
* @param val The value you want to write into cr0
|
|
*/
|
|
static inline void write_cr0(size_t val) {
|
|
asm volatile("mov %0, %%cr0" : : "r"(val));
|
|
}
|
|
|
|
/** @brief Read cr2 register
|
|
* @return cr2's value
|
|
*/
|
|
static inline size_t read_cr2(void) {
|
|
size_t val;
|
|
asm volatile("mov %%cr2, %0" : "=r"(val));
|
|
return val;
|
|
}
|
|
|
|
/** @brief Read cr3 register
|
|
* @return cr3's value
|
|
*/
|
|
static inline size_t read_cr3(void) {
|
|
size_t val;
|
|
asm volatile("mov %%cr3, %0" : "=r"(val));
|
|
return val;
|
|
}
|
|
|
|
/** @brief Write a value into cr3 register
|
|
* @param val The value you want to write into cr3
|
|
*/
|
|
static inline void write_cr3(size_t val) {
|
|
asm volatile("mov %0, %%cr3" : : "r"(val));
|
|
}
|
|
|
|
/** @brief Read cr4 register
|
|
* @return cr4's value
|
|
*/
|
|
static inline size_t read_cr4(void) {
|
|
size_t val;
|
|
asm volatile("mov %%cr4, %0" : "=r"(val));
|
|
return val;
|
|
}
|
|
|
|
/** @brief Write a value into cr4 register
|
|
* @param val The value you want to write into cr4
|
|
*/
|
|
static inline void write_cr4(size_t val) {
|
|
asm volatile("mov %0, %%cr4" : : "r"(val));
|
|
}
|
|
|
|
int ipi_tlb_flush(void);
|
|
|
|
/** @brief Flush a specific page entry in TLB
|
|
* @param addr The (virtual) address of the page to flush
|
|
*/
|
|
static inline void tlb_flush_one_page(uint32_t addr)
|
|
{
|
|
asm volatile("invlpg (%0)" : : "r"(addr) : "memory");
|
|
#if MAX_CORES > 1
|
|
/*
|
|
* Currently, we didn't support user-level threads.
|
|
* => User-level applications run only on one
|
|
* and we didn't flush the TLB of the other cores
|
|
*/
|
|
if (addr <= KERNEL_SPACE)
|
|
ipi_tlb_flush();
|
|
#endif
|
|
}
|
|
|
|
/** @brief Invalidate the whole TLB
|
|
*
|
|
* Just reads cr3 and writes the same value back into it.
|
|
*/
|
|
static inline void tlb_flush(void)
|
|
{
|
|
uint32_t val = read_cr3();
|
|
|
|
if (val)
|
|
write_cr3(val);
|
|
#if MAX_CORES > 1
|
|
ipi_tlb_flush();
|
|
#endif
|
|
}
|
|
|
|
/** @brief Read EFLAGS
|
|
*
|
|
* @return The EFLAGS value
|
|
*/
|
|
static inline uint32_t read_eflags(void)
|
|
{
|
|
uint32_t result;
|
|
asm volatile ("pushf; pop %0" : "=r"(result));
|
|
return result;
|
|
}
|
|
|
|
/** @brief search the first most significant bit
|
|
*
|
|
* @param i source operand
|
|
* @return
|
|
* - first bit, which is set in the source operand
|
|
* - invalid value, if not bit ist set
|
|
*/
|
|
static inline size_t msb(size_t i)
|
|
{
|
|
size_t ret;
|
|
|
|
if (!i)
|
|
return (sizeof(size_t)*8);
|
|
asm volatile ("bsr %1, %0" : "=r"(ret) : "r"(i) : "cc");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/** @brief search the least significant bit
|
|
*
|
|
* @param i source operand
|
|
* @return
|
|
* - first bit, which is set in the source operand
|
|
* - invalid value, if not bit ist set
|
|
*/
|
|
static inline size_t lsb(size_t i)
|
|
{
|
|
size_t ret;
|
|
|
|
if (!i)
|
|
return (sizeof(size_t)*8);
|
|
asm volatile ("bsf %1, %0" : "=r"(ret) : "r"(i) : "cc");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/** @brief Read extended instruction pointer
|
|
* @return The EIP's value
|
|
*/
|
|
uint32_t read_eip(void);
|
|
|
|
/// A one-instruction-do-nothing
|
|
#define NOP1 asm volatile ("nop")
|
|
/// Do nothing for 2 instructions
|
|
#define NOP2 asm volatile ("nop;nop")
|
|
/// Do nothing for 4 instructions
|
|
#define NOP4 asm volatile ("nop;nop;nop;nop")
|
|
/// Do nothing for 8 instructions
|
|
#define NOP8 asm volatile ("nop;nop;nop;nop;nop;nop;nop;nop")
|
|
#define HALT asm volatile ("hlt");
|
|
|
|
/** @brief Init several subsystems
|
|
*
|
|
* This function calls the initialization procedures for:
|
|
* - GDT
|
|
* - APIC
|
|
* - PCI [if configured]
|
|
*
|
|
* @return 0 in any case
|
|
*/
|
|
inline static int system_init(void)
|
|
{
|
|
gdt_install();
|
|
#ifdef CONFIG_X86_32
|
|
apic_init();
|
|
#endif
|
|
#ifdef CONFIG_PCI
|
|
pci_init();
|
|
#endif
|
|
cpu_detection();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** @brief Detect and read out CPU frequency
|
|
*
|
|
* @return The CPU frequency in MHz
|
|
*/
|
|
uint32_t detect_cpu_frequency(void);
|
|
|
|
/** @brief Read out CPU frequency if detected before
|
|
*
|
|
* If you did not issue the detect_cpu_frequency() function before,
|
|
* this function will call it implicitly.
|
|
*
|
|
* @return The CPU frequency in MHz
|
|
*/
|
|
uint32_t get_cpu_frequency(void);
|
|
|
|
/** @brief Busywait an microseconds interval of time
|
|
* @param usecs The time to wait in microseconds
|
|
*/
|
|
void udelay(uint32_t usecs);
|
|
|
|
/** @brief System calibration
|
|
*
|
|
* This procedure will detect the CPU frequency and calibrate the APIC timer.
|
|
*
|
|
* @return 0 in any case.
|
|
*/
|
|
inline static int system_calibration(void)
|
|
{
|
|
detect_cpu_frequency();
|
|
apic_calibration();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|