metalsvm/drivers/net/rckemac.c
2011-06-08 06:03:57 -07:00

735 lines
24 KiB
C

/*
* Copyright 2011 Stefan Lankes, Chair for Operating Systems,
* RWTH Aachen University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of MetalSVM.
*/
#include <metalsvm/stddef.h>
#include <metalsvm/stdio.h>
#include <metalsvm/string.h>
#include <metalsvm/processor.h>
#include <metalsvm/mailbox.h>
#include <metalsvm/page.h>
#include <metalsvm/time.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/RCCE.h>
#include <asm/RCCE_lib.h>
#include <asm/SCC_API.h>
#if defined(CONFIG_LWIP) && defined(CONFIG_ROCKCREEK)
#include <lwip/sys.h>
#include <lwip/stats.h>
#include <lwip/netif.h>
#include <netif/etharp.h>
#include <net/rckemac.h>
/* Limits */
#define BUFFER_ORDER 9
#define BUFFER_NUM (1 << BUFFER_ORDER)
#define BUFFER_SIZE (BUFFER_NUM * PAGE_SIZE)
#define EMAC0 0x01
#define EMAC1 0x02
#define EMAC2 0x04
#define EMAC3 0x08
#define EMAC_IPCONF 0x3200
#define EMAC_RX_CONTROL 0x9000
#define EMAC_TX_CONTROL 0x9900
/* Xilinx IP configuration - offsets */
#define CONFIG_FLOW_CONTROL_ADD 0xC0
#define TRANSMITTER_ADDRESS 0x80
#define RECEIVER1_ADDRESS 0x40
#define CONFIG_ADD 0x100
#define ADD_FILTER_MOD 0x190
/* EMAC RX */
#define EMAC_RX_BUFFER_START_ADDRESS 0x0000
#define EMAC_RX_BUFFER_READ_OFFSET 0x0100
#define EMAC_RX_BUFFER_WRITE_OFFSET 0x0200
#define EMAC_RX_BUFFER_SIZE 0x0300
#define EMAC_RX_BUFFER_THRESHOLD 0x0400
#define EMAC_RX_MODE 0x0500
#define EMAC_RX_NETWORK_PORT_MAC_ADDRESS_HI 0x0600
#define EMAC_RX_NETWORK_PORT_MAC_ADDRESS_LO 0x0700
#define EMAC_RX_NETWORK_PORT_ENABLE 0x0800
/* EMAC TX */
#define EMAC_TX_BUFFER_START_ADDRESS 0x0000
#define EMAC_TX_BUFFER_READ_OFFSET 0x0100
#define EMAC_TX_BUFFER_WRITE_OFFSET 0x0200
#define EMAC_TX_BUFFER_SIZE 0x0300
#define EMAC_TX_MODE 0x0400
#define EMAC_TX_NETWORK_PORT_ENABLE 0x0500
// Using of LVT1 as interrupt line
#define EMAC_IRQ_MASK 0x00000001
#define EMAC_IRQ_NR 3
#define EMAC_LVT APIC_LVT1
#define EMAC_IRQ_CONFIG 1
#define IRQ_STATUS 0xD000
#define IRQ_MASK 0xD200
#define IRQ_RESET 0xD400
#define IRQ_CONFIG 0xD800
/* Cache line wrappers */
#define CLINE_SHIFT 5
#define CLINE_SIZE (1UL << CLINE_SHIFT)
#define CLINE_MASK (~(CLINE_SIZE - 1))
#define CLINE_ALIGN(_x) (((_x) + CLINE_SIZE - 1) & CLINE_MASK)
#define CLINE_PACKETS(_x) (CLINE_ALIGN(_x) >> CLINE_SHIFT)
#define MAC_ADDRESS 0x00454D414331ULL
#define MAC_HI(_x) ((((_x) >> 32)) & 0xFFFF)
#define MAC_LO(_x) (((_x) ) & 0xFFFFFFFF)
static struct netif* mynetif[4] = {NULL, NULL, NULL, NULL};
static inline int read_emac(int num_emac, int offset, int core)
{
return *((volatile int*) (FPGA_BASE + num_emac * 0x1000 + offset + core * 4));
}
static inline void write_emac(int num_emac, int offset, int core, int value)
{
*((volatile int*) (FPGA_BASE + num_emac * 0x1000 + offset + core * 4)) = value;
}
/*
* @return error code
* - ERR_OK: packet transferred to hardware
* - ERR_CONN: no link or link failure
* - ERR_IF: could not transfer to link (hardware buffer full?)
*/
static err_t rckemacif_output(struct netif* netif, struct pbuf* p)
{
rckemacif_t* rckemacif = netif->state;
uint32_t i;
struct pbuf *q;
void *addr = NULL;
uint16_t read_offset = 0;
int rest = 0;
int packets = 0;
int sum = 0;
/* check for over/underflow */
if (BUILTIN_EXPECT(p->tot_len > 1536, 0)) {
LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_output: illegal packet length %d => drop\n", p->len));
return ERR_IF;
}
rckemacif->tx_write_offset++;
/* check if we need to wrap */
if (rckemacif->tx_write_offset > rckemacif->tx_buffer_max)
rckemacif->tx_write_offset = 1;
packets = CLINE_PACKETS(p->tot_len + 2);
read_offset = read_emac(rckemacif->num_emac, EMAC_TX_CONTROL+EMAC_TX_BUFFER_READ_OFFSET, rckemacif->core);
#if 1
again:
if (read_offset < rckemacif->tx_write_offset) {
sum = rckemacif->tx_buffer_max - rckemacif->tx_write_offset + read_offset - 1;
} else if (read_offset > rckemacif->tx_write_offset) {
sum = read_offset - rckemacif->tx_write_offset - 1;
}
if (sum < packets) {
LWIP_DEBUGF(NETIF_DEBUG, ("Warning: not enough space available, retrying...\n"));
goto again;
}
#endif
addr = rckemacif->tx_buffer + rckemacif->tx_write_offset * 32;
/* Set frame length */
((uint8_t*)addr)[0] = p->tot_len % 256;
((uint8_t*)addr)[1] = p->tot_len / 256;
#if ETH_PAD_SIZE
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif
if (rckemacif->tx_write_offset + packets - 1 <= rckemacif->tx_buffer_max) {
/*
* q traverses through linked list of pbuf's
* This list MUST consist of a single packet ONLY
*/
for (q = p, i = 0; q != 0; q = q->next) {
memcpy(addr + 2 + i, q->payload, q->len);
i += q->len;
}
/* increment write ptr */
rckemacif->tx_write_offset += packets - 1;
} else {
/* wrap in offsets. first copy to the end, second at the starting
* point
*/
int bytes_left = p->tot_len;
int bytes_to_copy = (rckemacif->tx_buffer_max - rckemacif->tx_write_offset + 1) * 32 - 2;
int sz = 0;
if (bytes_left < bytes_to_copy)
bytes_to_copy = bytes_left;
LWIP_DEBUGF(NETIF_DEBUG, ("special case: copy last %d bytes\n", bytes_to_copy));
q = p; i = 0;
while ((q != 0) && (i < bytes_to_copy)) {
sz = q->len > bytes_to_copy-i ? bytes_to_copy-i : q->len;
memcpy(addr + 2 + i, q->payload, sz);
bytes_left -= sz;
i += sz;
if (i < bytes_to_copy)
q = q->next;
}
if (bytes_left != 0) {
rckemacif->tx_write_offset = 1;
addr = rckemacif->tx_buffer + 32;
LWIP_DEBUGF(NETIF_DEBUG, ("special case: copy remaining %d bytes\n", bytes_left));
i = 0;
if (sz < q->len) {
memcpy(addr, q->payload + sz, q->len - sz);
bytes_left -= (q->len - sz);
i = q->len - sz;
}
for(q=q->next; (q != 0); q = q->next) {
memcpy(addr+i, q->payload, q->len);
i += q->len;
}
rest = bytes_left % 32;
if (rest != 0)
rest = 32 - rest;
LWIP_DEBUGF(NETIF_DEBUG, ("Rest is %d\n", rest));
rckemacif->tx_write_offset += CLINE_PACKETS(bytes_left + rest) - 1;
}
}
*((volatile int*) rckemacif->tx_buffer) = 2;
/* set new write offset */
LWIP_DEBUGF(NETIF_DEBUG, ("Update tx write offset: %d (read offset %d)\n", rckemacif->tx_write_offset, read_offset));
write_emac(rckemacif->num_emac, EMAC_TX_CONTROL+EMAC_TX_BUFFER_WRITE_OFFSET, rckemacif->core, rckemacif->tx_write_offset);
#if ETH_PAD_SIZE
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif
LINK_STATS_INC(link.xmit);
return ERR_OK;
}
#if 0
static void rtl_rx_inthandler(struct netif* netif)
{
rtl1839if_t* rtl8139if = netif->state;
uint16_t header;
uint16_t length, i;
uint8_t cmd;
struct pbuf *p = NULL;
struct pbuf* q;
cmd = inportb(rtl8139if->iobase + CR);
while(!(cmd & CR_BUFE)) {
header = *((uint16_t*) (rtl8139if->rx_buffer+rtl8139if->rx_pos));
rtl8139if->rx_pos = (rtl8139if->rx_pos + 2) % (8192+16);
if (header & ISR_ROK) {
length = *((uint16_t*) (rtl8139if->rx_buffer+rtl8139if->rx_pos)) - 4; // copy packet (but not the CRC)
rtl8139if->rx_pos = (rtl8139if->rx_pos + 2) % (8192+16);
#if ETH_PAD_SIZE
length += ETH_PAD_SIZE; /* allow room for Ethernet padding */
#endif
p = pbuf_alloc(PBUF_RAW, length, PBUF_POOL);
if (p) {
#if ETH_PAD_SIZE
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif
for (q=p; q!=NULL; q=q->next) {
for(i=0; i<q->len; i++) {
((uint8_t*) q->payload)[i] = rtl8139if->rx_buffer[rtl8139if->rx_pos];
rtl8139if->rx_pos = (rtl8139if->rx_pos + 1) % (8192+16);
}
}
#if ETH_PAD_SIZE
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif
mailbox_ptr_post(&rtl8139if->mbox, (void*)p);
//rtl8139if_input(netif, p);
LINK_STATS_INC(link.recv);
} else {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_rx_inthandler: not enough memory!\n"));
rtl8139if->rx_pos += (rtl8139if->rx_pos + length) % (8192+16);
LINK_STATS_INC(link.memerr);
LINK_STATS_INC(link.drop);
}
// packets are dword aligned
rtl8139if->rx_pos = ((rtl8139if->rx_pos + 4 + 3) & ~0x3) % (8192+16);
outportw(rtl8139if->iobase + CAPR, rtl8139if->rx_pos - 0x10);
} else {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_rx_inthandler: invalid header!\n"));
LINK_STATS_INC(link.memerr);
LINK_STATS_INC(link.drop);
break;
}
cmd = inportb(rtl8139if->iobase + CR);
}
}
static void rtl_tx_inthandler(struct netif* netif)
{
rtl1839if_t* rtl8139if = netif->state;
uint32_t checks = rtl8139if->tx_queue - rtl8139if->tx_complete;
uint32_t txstatus;
uint8_t tmp8;
while(checks > 0)
{
tmp8 = rtl8139if->tx_complete % 4;
txstatus = inportl(rtl8139if->iobase + TSD0 + tmp8 * 4);
if (!(txstatus & (TSD_TOK|TSD_TUN|TSD_TABT)))
return;
if (txstatus & (TSD_TABT | TSD_OWC)) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139_tx_inthandler: major error\n"));
continue;
}
if (txstatus & TSD_TUN) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139_tx_inthandler: transmit underrun\n"));
}
if (txstatus & TSD_TOK) {
rtl8139if->tx_inuse[tmp8] = 0;
rtl8139if->tx_complete++;
checks--;
}
}
}
#endif
static void rckemacif_handler(struct state* s)
{
LWIP_DEBUGF(NETIF_DEBUG, ("HELLO! Got interrupt!\n"));
#if 0
rtl1839if_t* rtl8139if = mynetif->state;
uint16_t isr_contents;
while (1) {
isr_contents = inportw(rtl8139if->iobase + ISR);
if (isr_contents == 0)
break;
if (isr_contents & ISR_ROK) {
rtl_rx_inthandler(mynetif);
outportw(rtl8139if->iobase + ISR, ISR_ROK);
}
if (isr_contents & ISR_TOK) {
rtl_tx_inthandler(mynetif);
outportw(rtl8139if->iobase + ISR, ISR_TOK);
}
if (isr_contents & ISR_RER) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: RX error detected!\n"));
outportw(rtl8139if->iobase + ISR, ISR_RER);
}
if (isr_contents & ISR_TER) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: TX error detected!\n"));
outportw(rtl8139if->iobase + ISR, ISR_TER);
}
if (isr_contents & ISR_RXOVW) {
LWIP_DEBUGF(NETIF_DEBUG, ("rtl8139if_handler: RX overflow detected!\n"));
outportw(rtl8139if->iobase + ISR, ISR_RXOVW);
}
}
#endif
}
err_t rckemacif_wait(struct netif* netif, uint32_t poll)
{
return ERR_OK;
#if 0
rckemacif_t* rckemacif = netif->state;
struct eth_hdr *ethhdr;
struct pbuf *p = NULL;
err_t err = ERR_OK;
LWIP_DEBUGF(NETIF_DEBUG, ("Hello from rckemacif_wait!\n"));
if (poll) {
if (mailbox_ptr_tryfetch(&(rckemacif->mbox), (void**) &p))
return err;
} else {
mailbox_ptr_fetch(&(rckemacif->mbox), (void**) &p);
}
/* points to packet payload, which starts with an Ethernet header */
ethhdr = p->payload;
switch (htons(ethhdr->type)) {
/* IP or ARP packet? */
case ETHTYPE_ARP:
case ETHTYPE_IP:
#if PPPOE_SUPPORT
/* PPPoE packet? */
case ETHTYPE_PPPOEDISC:
case ETHTYPE_PPPOE:
#endif /* PPPOE_SUPPORT */
/* full packet send to tcpip_thread to process */
if ((err = mynetif[netif->num]->input(p, mynetif[netif->num])) != ERR_OK) {
LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_poll: IP input error\n"));
pbuf_free(p);
}
break;
default:
pbuf_free(p);
break;
}
return err;
#endif
}
err_t rckemacif_init(struct netif* netif)
{
rckemacif_t* rckemacif;
int num, num_emac;
int macPorts;
int i, tmp, x, y, z, core;
uint64_t tile_offset;
uint16_t write_offset = 0;
uint16_t read_offset = 0;
int mode = 0;
int subdest = 0;
int route = 0;
LWIP_ASSERT("netif != NULL", (netif != NULL));
// Find out who I am...
tmp = ReadConfigReg(CRB_OWN+MYTILEID);
x = (tmp>>3) & 0x0f; // bits 06:03
y = (tmp>>7) & 0x0f; // bits 10:07
z = (tmp ) & 0x07; // bits 02:00
core = 12 * y + 2 * x + z;
rckemacif = kmalloc(sizeof(rckemacif_t));
if (!rckemacif) {
LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: out of memory\n"));
return ERR_MEM;
}
memset(rckemacif, 0, sizeof(rckemacif_t));
rckemacif->core = core;
/* allocate the receive buffer */
rckemacif->rx_buffer = mem_allocation(BUFFER_SIZE, MAP_KERNEL_SPACE|MAP_NO_CACHE);
if (!(rckemacif->rx_buffer)) {
LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: out of memory\n"));
kfree(rckemacif, sizeof(rckemacif_t));
return ERR_MEM;
}
memset(rckemacif->rx_buffer, 0, BUFFER_SIZE);
rckemacif->rx_buffer_max = CLINE_PACKETS(BUFFER_SIZE) - 1;
/* allocate the send buffers */
rckemacif->tx_buffer = mem_allocation(BUFFER_SIZE, MAP_KERNEL_SPACE|MAP_NO_CACHE);
if (!(rckemacif->tx_buffer)) {
LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: out of memory\n"));
kfree(rckemacif->rx_buffer, BUFFER_SIZE);
kfree(rckemacif, sizeof(rckemacif_t));
return ERR_MEM;
}
memset(rckemacif->tx_buffer, 0, BUFFER_SIZE);
rckemacif->tx_buffer_max = CLINE_PACKETS(BUFFER_SIZE) - 1;
mailbox_ptr_init(&rckemacif->mbox);
netif->state = rckemacif;
/* Depending on core location read own private data
* (offset, subdest, route)
*/
if (z == 0) {
tmp = ReadConfigReg(CRB_OWN + GLCFG0);
rckemacif->irq_address = CRB_OWN + GLCFG0;
} else {
tmp = ReadConfigReg(CRB_OWN + GLCFG1);
rckemacif->irq_address = CRB_OWN + GLCFG1;
}
tile_offset = (unsigned long long)((unsigned long long) tmp & 0x3FF) << 24;
subdest = (tmp >> 10) & 0x07;
route = (tmp >> 13) & 0xFF;
mode = (subdest << 8) + route;
/* get fpga/sccKit port settings */
tmp = *((volatile int*)(FPGA_BASE + 0x822C));
macPorts = ((tmp >> 9 ) & 0xFF);
LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: eMAC0: %s eMAC1: %s eMAC2: %s eMAC3: %s\n",
(macPorts & EMAC0) != 0 ? "present" : "-",
(macPorts & EMAC1) != 0 ? "present" : "-",
(macPorts & EMAC2) != 0 ? "present" : "-",
(macPorts & EMAC3) != 0 ? "present" : "-"));
// determine device and emac number
for(num=0; (num<4) && (mynetif[num] != NULL); num++)
;
if (num >= 4)
return ERR_ARG;
for(i=0, num_emac=0; (i<=num) && (num_emac < 4); i++) {
while (((macPorts & (1 << num_emac)) == 0) && (num_emac < 4))
num_emac++;
}
if (num_emac >= 4)
return ERR_ARG;
mynetif[num] = netif;
rckemacif->num_emac = num_emac;
LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: map device %d to eMAC %d\n", num, num_emac));
if (core == 0) {
/* Only core 0 initialize the xilinx port */
int flow_control = 0;
int transmitter_addr = 0;
int receiver1_addr = 0;
int config_add = 0;
int add_filter_mod = 0;
/* Disable tx and rx flow control of eMAC */
LWIP_DEBUGF(NETIF_DEBUG, ("Disabling tx/rx flow control of eMAC%d\n", num_emac));
flow_control = read_emac(num_emac, EMAC_IPCONF+CONFIG_FLOW_CONTROL_ADD, 0);
/* Set top 3 bits of the flow control configuration to zero,
* therefore disabling tx and rx flow control
*/
flow_control &= 0x7FFFFFF;
write_emac(num_emac, EMAC_IPCONF+CONFIG_FLOW_CONTROL_ADD, 0, flow_control);
/* Sanity check */
flow_control = read_emac(num_emac, EMAC_IPCONF+CONFIG_FLOW_CONTROL_ADD, 0);
LWIP_DEBUGF(NETIF_DEBUG, (" CONFIG_FLOW_CONTROL_ADD set: 0x%x\n", flow_control));
/* Setting the tx configuration bit to enable the transmitter and
* set to full duplex mode.
*/
LWIP_DEBUGF(NETIF_DEBUG, ("Setting rx configuration of eMAC%d\n", num_emac));
transmitter_addr = read_emac(num_emac, EMAC_IPCONF+TRANSMITTER_ADDRESS, 0);
/* Now set the relevant bits and write back into the register:
* 26 (half duplex) = 0, 28 (transmit enable) = 1, 31 (reset) = 0
*/
transmitter_addr &= ~(1 << 31);
transmitter_addr &= ~(1 << 26);
transmitter_addr |= (1 << 28);
write_emac(num_emac, EMAC_IPCONF+TRANSMITTER_ADDRESS, 0, transmitter_addr);
transmitter_addr = read_emac(num_emac, EMAC_IPCONF+TRANSMITTER_ADDRESS, 0);
LWIP_DEBUGF(NETIF_DEBUG, (" TRANSMITTER_ADDRESS set: %x\n", transmitter_addr));
/* Setting the rx configuration bit to enable the transmitter and
* set to full duplex mode.
*/
LWIP_DEBUGF(NETIF_DEBUG, ("Setting IP configuration of EMAC%d\n", num_emac));
/* Read the current config value from the register */
receiver1_addr = read_emac(num_emac, EMAC_IPCONF+RECEIVER1_ADDRESS, 0);
/* Now set the relevant bits and write back into the register:
* 25 = 1, 26 = 0, 28 = 1, 31 = 0
*/
/* Length/Type Error Check Disable */
receiver1_addr |= (1 << 25);
/* Disable Half Duplex => Full Duplex */
receiver1_addr &= ~(1 << 26);
/* Receiver enable */
receiver1_addr |= (1 << 28);
/* Reset */
receiver1_addr &= ~(1 << 31);
write_emac(num_emac, EMAC_IPCONF+RECEIVER1_ADDRESS, 0, receiver1_addr);
receiver1_addr = read_emac(num_emac, EMAC_IPCONF+RECEIVER1_ADDRESS, 0);
LWIP_DEBUGF(NETIF_DEBUG, (" RECEIVER1_ADDRESS set: %x\n", receiver1_addr));
/* Setting the speed to eMAC to 1Gb/s */
LWIP_DEBUGF(NETIF_DEBUG, ("Setting speed of EMAC%d to 1Gb/s\n", num_emac));
/* Read the current config value from register */
config_add = read_emac(num_emac, EMAC_IPCONF+CONFIG_ADD, 0);
/* Now set the relevant bits and write back into the register:
* 31 = 1, 30 = 0
*/
/* MAC Speed Configuration: 00 - 10Mbps, 01 - 100Mbps, 10 - 1Gbps */
config_add |= (1 << 31);
config_add &= ~(1 << 30);
write_emac(num_emac, EMAC_IPCONF+CONFIG_ADD, 0, config_add);
config_add = read_emac(num_emac, EMAC_IPCONF+CONFIG_ADD, 0);
LWIP_DEBUGF(NETIF_DEBUG, (" CONFIG_ADD set: %x\n", config_add));
/* Read the current config addr filter mode */
add_filter_mod = read_emac(num_emac, EMAC_IPCONF+ADD_FILTER_MOD, 0);
/* Not set the relevant bits and write back into the register:
* 31 (promiscuous mode) = 1 not working, but thats ok!
*/
add_filter_mod |= (1 << 31);
write_emac(num_emac, EMAC_IPCONF+ADD_FILTER_MOD, 0, add_filter_mod);
add_filter_mod = read_emac(num_emac, EMAC_IPCONF+ADD_FILTER_MOD, 0);
LWIP_DEBUGF(NETIF_DEBUG, (" ADD_FILTER_MOD set: %x\n", add_filter_mod));
}
sleep(3);
/* Start address */
LWIP_DEBUGF(NETIF_DEBUG, (" RX Buffer %p (%lx phys)\n", rckemacif->rx_buffer, virt_to_phys(rckemacif->rx_buffer)));
/**** Receiver configuration ****/
uint32_t utmp = virt_to_phys(rckemacif->rx_buffer);
uint32_t addr_offset = tile_offset + utmp;
addr_offset >>= 5;
write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_START_ADDRESS, core, addr_offset);
utmp = read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_START_ADDRESS, core);
LWIP_DEBUGF(NETIF_DEBUG, (" RX Buffer set to @%x\n", utmp));
/* Set buffer write offset */
write_offset = read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_WRITE_OFFSET, core);
LWIP_DEBUGF(NETIF_DEBUG, (" RX Buffer write offset at: %d\n", write_offset));
/* Set buffer read offset to write offset */
write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_READ_OFFSET, core, write_offset);
LWIP_DEBUGF(NETIF_DEBUG, (" RX Buffer read offset set to: %d\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_READ_OFFSET, core)));
rckemacif->rx_read_offset = write_offset;
/* Size */
write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_SIZE, core, rckemacif->rx_buffer_max);
LWIP_DEBUGF(NETIF_DEBUG, (" RX Size set to %d\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_SIZE, core)));
/* Threshold */
write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_THRESHOLD, core, 0x01);
LWIP_DEBUGF(NETIF_DEBUG, (" RX Threshold set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_BUFFER_THRESHOLD, core)));
/* Route */
write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_MODE, core, (core << 24) | (((y << 4) | x) << 16) | mode);
LWIP_DEBUGF(NETIF_DEBUG, (" RX Mode set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_MODE, core)));
// determine mac address
uint32_t mac1 = *((uint32_t*)(FPGA_BASE+0x7E00));
uint32_t mac2 = *((uint32_t*)(FPGA_BASE+0x7E04));
uint64_t mac = (((unsigned long long)mac1) << 32) + ( unsigned long long ) mac2;
if (mac == 0x00)
mac = MAC_ADDRESS;
/* Calculate mac address of core depending on selected emac device */
mac = mac + (1 << num_emac) * 0x100 + core;
LWIP_DEBUGF(NETIF_DEBUG, ("rckemacif_init: MAC address "));
for (i=0; i<6; i++) {
mynetif[num]->hwaddr[i] = mac & 0xFF;
mac = mac >> 8;
LWIP_DEBUGF(NETIF_DEBUG, ("%02x ", mynetif[num]->hwaddr[i]));
}
LWIP_DEBUGF(NETIF_DEBUG, ("\n"));
write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_MAC_ADDRESS_HI, core, MAC_HI(mac));
LWIP_DEBUGF(NETIF_DEBUG, (" MAC1 set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_MAC_ADDRESS_HI, core)));
write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_MAC_ADDRESS_LO, core, MAC_LO(mac));
LWIP_DEBUGF(NETIF_DEBUG, (" MAC2 set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_MAC_ADDRESS_LO, core)));
/* Activate network port by setting enable bit */
write_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_ENABLE, core, 0x01);
LWIP_DEBUGF(NETIF_DEBUG, (" RX Port enable set to %x\n", read_emac(num_emac, EMAC_RX_CONTROL + EMAC_RX_NETWORK_PORT_ENABLE, core)));
/**** Transfer configuration ****/
/* Start address */
LWIP_DEBUGF(NETIF_DEBUG, (" TX Buffer %p (%lx phys)\n", rckemacif->tx_buffer, virt_to_phys(rckemacif->tx_buffer)));
utmp = virt_to_phys(rckemacif->tx_buffer);
write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_START_ADDRESS, core, (tmp + tile_offset) >> 5);
utmp = read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_START_ADDRESS, core);
LWIP_DEBUGF(NETIF_DEBUG, (" TX Buffer set to @%x\n", tmp));
/* Get buffer read offset */
read_offset = read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_READ_OFFSET, core);
LWIP_DEBUGF(NETIF_DEBUG, (" TX Buffer read offset at: %d\n", read_offset));
/* Set buffer write offset to read offset */
write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_WRITE_OFFSET, core, read_offset);
LWIP_DEBUGF(NETIF_DEBUG, (" TX Buffer write offset set to: %d\n", read_emac(num_emac, EMAC_TX_CONTROL+ EMAC_TX_BUFFER_WRITE_OFFSET, core)));
rckemacif->tx_write_offset = read_offset;
/* Size */
write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_SIZE, core, rckemacif->tx_buffer_max);
LWIP_DEBUGF(NETIF_DEBUG, (" TX Size set to %d\n", read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_BUFFER_SIZE, core)));
/* Route */
write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_MODE, core, mode);
LWIP_DEBUGF(NETIF_DEBUG, (" TX Mode set to %x\n", read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_MODE, core)));
/* Activate network port by setting enable bit */
write_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_NETWORK_PORT_ENABLE, core, 0x01);
LWIP_DEBUGF(NETIF_DEBUG, (" TX Port enable set to %x\n", read_emac(num_emac, EMAC_TX_CONTROL + EMAC_TX_NETWORK_PORT_ENABLE, core)));
// set interrupt handler (INTR/LINT0)
irq_install_handler(125, rckemacif_handler);
/* Enable interrupt */
tmp = *((volatile int*) (FPGA_BASE + IRQ_MASK + core * 2 * 4));
*((volatile int*) (FPGA_BASE + IRQ_MASK + core * 2 * 4)) = tmp & ~(1 << num_emac);
*((volatile int*) (FPGA_BASE + IRQ_CONFIG + core * 4)) = EMAC_IRQ_CONFIG;
/*
* Initialize the snmp variables and counters inside the struct netif.
* The last argument should be replaced with your link speed, in units
* of bits per second.
*/
NETIF_INIT_SNMP(netif, snmp_ifType_ethernet_csmacd, 1000 /* speed */);
/* administrative details */
netif->name[0] = 'e';
netif->name[1] = 'n';
netif->num = num;
/* downward functions */
netif->output = etharp_output;
netif->linkoutput = rckemacif_output;
/* maximum transfer unit */
netif->mtu = 1500;
/* broadcast capability */
netif->flags |= NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_LINK_UP;
/* hardware address length */
netif->hwaddr_len = 6;
rckemacif->ethaddr = (struct eth_addr *)netif->hwaddr;
return ERR_OK;
}
#endif